PUBLICATIONS

Search Filters
 (complete or partial)
 (complete or partial)
Filter By Year (slide to select)
Start: 2008 End: 2016

Reset
Sort By:

X-ray image guidance enables percutaneous alternatives to complex procedures. Unfortunately, the indirect view onto the anatomy in addition to projective simplification substantially increase the task-load for the surgeon. Additional 3D information such as knowledge of anatomical landmarks can benefit surgical decision making in complicated scenar   ...more

In conventional core decompression of osteonecrosis, surgeons cannot successfully reach the whole area of the femoral head due to rigidity of the instruments currently used. To address this issue, we present design and fabrication of a novel steerable drill using a continuum dexterous manipulator (CDM) and two different flexible cutting tools pass   ...more

In conventional core decompression of osteonecrosis, surgeons cannot successfully reach the whole area of the femoral head due to rigidity of the instrumentscurrently used. To address this issue, we present design and fabrication of a novel steerable drill using a continuum dexterousmanipulator (CDM) and two different flexible cutting tools passin   ...more

The Next-Generation Airborne Collision Avoidance System (ACAS X) is intended to be installed on all large aircraft to give advice to pilots and prevent mid-air collisions with other aircraft. It is currently being developed by the Federal Aviation Administration (FAA). In this paper, we determine the geometric configurations under which the advice   ...more

This work investigates a hybrid method based on random forests and deep image features to combine non-visual side channel information with image data for classification. We apply this to automated retinal image analysis (ARIA) and the detection of age-related macular degeneration (AMD). For evaluation, we use a dataset collected by the National In   ...more

A May 2011 Nature article by Liu, Slotine, and Barabasi laid a mathematical foundation for analyzing network controllability of self-organizing networks and how to identify the minimum number of nodes needed to control a network, or driver nodes. In this paper, we continue to explore this topic, beginning with a look at how Laplacian eigenvalues r   ...more

Contact Us


Chief
Ashley Llorens
Ashley.Llorens@jhuapl.edu
240-228-0312

Experience Manager
Tricia Latham
Patricia.Latham@jhuapl.edu
240-228-8048

Physical Address
7701 Montpelier Road
Laurel, MD 20723


The Intelligent Systems Center is located at the Montpelier Campus of the Johns Hopkins Applied Physics Laboratory.
Click here for a map, directions and other visitor information.