PUBLICATIONS

Search Filters
 (complete or partial)
 (complete or partial)
Filter By Year (slide to select)
Start: 2008 End: 2016

Reset
Sort By:

Multifrequency impedance measurements have been recognized as a technique for the monitoring of individual cells in lithium-ion (Li-ion) batteries. However, its practical introduction for battery management has been slow, mainly due to added size and larger operating power requirements. Here, we describe a small, low-power, multifrequency (1–1000   ...more

One of the major challenges in metal additive manufacturing is developing in-situ sensing and feedback control capabilities to eliminate build errors and allow qualified part creation without the need for costly and destructive external testing. Previously, many groups have focused on high fidelity numerical modeling and true temperature thermal i   ...more

Understanding the biological implications of cellular mechanotransduction, especially in the context of pathogenesis, requires the accurate resolution of material deformation and strain fields surrounding the cells. This is particularly challenging for cells displaying branched, 3D architectures. Here, we provide a modular approach for 3D image se   ...more

Neuroscientists are actively pursuing high-precision maps, or graphs consisting of networks of neurons and connecting synapses in mammalian and non-mammalian brains. Such graphs, when coupled with physiological and behavioral data, are likely to facilitate greater understanding of how circuits in these networks give rise to complex information pro   ...more

This paper provides a complexity analysis for the game of reconnaissance blind chess (RBC), a recently-introduced variant of chess where each player does not know the positions of the opponent's pieces a priori but may reveal a subset of them through chosen, private sensing actions. In contrast to many commonly studied imperfect information ga   ...more

Fiber Bragg Grating (FBG) has shown great potential in shape and force sensing of continuum manipulators (CM) and biopsy needles. In the recent years, many researchers have studied different manufacturing and modeling techniques of FBG-based force and shape sensors for medical applications. These studies mainly focus on obtaining shape and force i   ...more

Contact Us


Chief
Ashley Llorens
Ashley.Llorens@jhuapl.edu
240-228-0312

Experience Manager
Tricia Latham
Patricia.Latham@jhuapl.edu
240-228-8048

Physical Address
7701 Montpelier Road
Laurel, MD 20723


The Intelligent Systems Center is located at the Montpelier Campus of the Johns Hopkins Applied Physics Laboratory.
Click here for a map, directions and other visitor information.