PUBLICATIONS

Search Filters
 (complete or partial)
 (complete or partial)
Filter By Year (slide to select)
Start: 2008 End: 2016

Reset
Sort By:

Programs that focus on student outreach are often disjoint from sponsored research efforts, despite the mutually beneficial opportunities that are possible with a combined approach. We designed and piloted a program to simultaneously meet the needs of underserved students and a large-scale sponsored research goal. Our program trained undergraduate   ...more

In percutaneous orthopedic interventions the surgeon attempts to reduce and fixate fractures in bony structures. The complexity of these interventions arises when the surgeon performs the challenging task of navigating surgical tools percutaneously only under the guidance of 2D interventional X-ray imaging. Moreover, the intra-operatively acquired   ...more

Medical imaging analysis depends on the reproducibility of complex computation. Linux containers enable the abstraction, installation, and configuration of environments so that software can be both distributed in self-contained images and used repeatably by tool consumers. While several initiatives in neuroimaging have adopted approaches for creat   ...more

Machine learning-based approaches outperform competing methods in most disciplines relevant to diagnostic radiology. Interventional radiology, however, has not yet benefited substantially from the advent of deep learning, in particular because of two reasons: (1) Most images acquired during the procedure are never archived and are thus not availab   ...more

In this paper, we describe the design and analysis of a fixed-wing unmanned aerial-aquatic vehicle. Inspired by prior work in aerobatic post-stall maneuvers for fixed-wing vehicles [1], we explore the feasibility of executing a water-to-air transition with a fixed-wing vehicle using almost entirely commercial off-the-shelf components (excluding th   ...more

This work studies joint camera and robotic manipulator control for reaching tasks in complex environments with obstacles and occluders. We obviate the conventional challenges involved in complex perception, planning, and control modules and careful calibration for sensing and actuation and seek a solution leveraging deep reinforcement learning (DRL   ...more

Contact Us


Chief
Ashley Llorens
Ashley.Llorens@jhuapl.edu
240-228-0312

Physical Address
7701 Montpelier Road
Laurel, MD 20723


The Intelligent Systems Center is located at the Montpelier Campus of the Johns Hopkins Applied Physics Laboratory.
Click here for a map, directions and other visitor information.