PUBLICATIONS

Search Filters
 (complete or partial)
 (complete or partial)
Filter By Year (slide to select)
Start: 2008 End: 2016

Reset
Sort By:

The Next-Generation Airborne Collision Avoidance System (ACAS X) is intended to be installed on all large aircraft to give advice to pilots and prevent mid-air collisions with other aircraft. It is currently being developed by the Federal Aviation Administration (FAA). In this paper, we determine the geometric configurations under which the advice   ...more

This work investigates a hybrid method based on random forests and deep image features to combine non-visual side channel information with image data for classification. We apply this to automated retinal image analysis (ARIA) and the detection of age-related macular degeneration (AMD). For evaluation, we use a dataset collected by the National In   ...more

A May 2011 Nature article by Liu, Slotine, and Barabasi laid a mathematical foundation for analyzing network controllability of self-organizing networks and how to identify the minimum number of nodes needed to control a network, or driver nodes. In this paper, we continue to explore this topic, beginning with a look at how Laplacian eigenvalues r   ...more

Syndromic surveillance has expanded since 2001 in both scope and geographic reach and has benefited from research studies adapted from numerous disciplines. The practice of syndromic surveillance continues to evolve rapidly. The International Society for Disease Surveillance solicited input from its global surveillance network on key research ques   ...more

Objective: To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Methods: Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included   ...more

We propose a novel method for generating test scenarios for a black box autonomous system that demonstrate critical transitions in its performance modes. In complex environments it is possible for an autonomous system to fail at its assigned mission even if it complies with requirements for all subsystems and throws no faults. This is particularly   ...more

Contact Us


Chief
Ashley Llorens
Ashley.Llorens@jhuapl.edu
240-228-0312

Experience Manager
Tricia Latham
Patricia.Latham@jhuapl.edu
240-228-8048

Physical Address
7701 Montpelier Road
Laurel, MD 20723


The Intelligent Systems Center is located at the Montpelier Campus of the Johns Hopkins Applied Physics Laboratory.
Click here for a map, directions and other visitor information.