PUBLICATIONS

Search Filters
 (complete or partial)
 (complete or partial)
Filter By Year (slide to select)
Start: 2008 End: 2016

Reset
Sort By:

In percutaneous orthopedic interventions the surgeon attempts to reduce and fixate fractures in bony structures. The complexity of these interventions arises when the surgeon performs the challenging task of navigating surgical tools percutaneously only under the guidance of 2D interventional X-ray imaging. Moreover, the intra-operatively acquired   ...more

The occurrence of regional and global dust storms, observations of migrating ripples and dunes, and the recognition of aeolian sandstone outcrops demonstrate that aeolian processes have been and continue to be a significant agent of surface modification on Mars. However, the mechanisms of aeolian transport within Mars’ low atmospheric pressure sur   ...more

Combat helmets are expected to protect the warfighter from a variety of blunt, blast, and ballistic threats. Their blunt impact performance is evaluated by measuring linear headform acceleration in drop tower tests, which may be indicative of skull fracture, but not necessarily brain injury. The current study leverages a blunt impact biomechanics   ...more

Medical imaging analysis depends on the reproducibility of complex computation. Linux containers enable the abstraction, installation, and configuration of environments so that software can be both distributed in self-contained images and used repeatably by tool consumers. While several initiatives in neuroimaging have adopted approaches for creat   ...more

Machine learning-based approaches outperform competing methods in most disciplines relevant to diagnostic radiology. Interventional radiology, however, has not yet benefited substantially from the advent of deep learning, in particular because of two reasons: (1) Most images acquired during the procedure are never archived and are thus not availab   ...more

In this paper, we describe the design and analysis of a fixed-wing unmanned aerial-aquatic vehicle. Inspired by prior work in aerobatic post-stall maneuvers for fixed-wing vehicles [1], we explore the feasibility of executing a water-to-air transition with a fixed-wing vehicle using almost entirely commercial off-the-shelf components (excluding th   ...more

Page 5 of 24

Contact Us


Chief
Ashley Llorens
Ashley.Llorens@jhuapl.edu
240-228-0312

Experience Manager
Tricia Latham
Patricia.Latham@jhuapl.edu
240-228-8048

Physical Address
7701 Montpelier Road
Laurel, MD 20723


The Intelligent Systems Center is located at the Montpelier Campus of the Johns Hopkins Applied Physics Laboratory.
Click here for a map, directions and other visitor information.