












Table 2. Oxygen diffusion constants for different layers 
at various temperatures. 

Temperature Diffusion constant 
Layer (OC) (cm2/s) 

Outer oxide 1400 8.1 X 10 8 

2060 3.0 X 10- 6 

Interlayer 1400 7.9 X 10- 9 

oxide 2060 1.1 X 10- 7 

Carbide 1400 2.6 X 10- 7 

2060 1.6 X 10- 5 

its interfaces with either of the other two layers. In ad
dition, we have not observed cracks or voids within the 
material itself. Our observations of this new material 
suggest that it might be a very useful and protective high
temperature substance. Currently, no reasons are known 
why the material could not be produced as a monolithic 
protective film. 

It is instructive to compare our results with those of 
others who have investigated the oxidation of hafnium 
carbide. Only two groups of investigators will be men
tioned here. Berkowitz-Mattuck l2 used arc-melting tech
niques to make samples. She observed grain boundary 
oxidation in her specimen, which often fell apart during 
oxidation at temperatures up to 1730°C, which was her 
maximum value. In this instance, it seems that grain 
boundary impurities , probably carbon, were oxidizing 
much faster than the bulk. Recently, Prater et al. 13 pub
lished their research on hot-pressed powders of hafnium 
carbide. In their paper, curiously, they do not mention the 
formation of an interlayer at all. In the Ph.D. dissertation 
of Holcomb, 14 however, who is one of the authors of Ref. 
13, the interlayer is mentioned rather often, and specu
lation is presented about its possible nature. It is likely 
that the interlayer was not as prominent in the specimens 
of Prater et al.13 because the hot-pressed samples had 
micrometer-size pores that allowed greater oxygen diffu
sion to the critical region and, thus, oxidized the inter
layer at a greater rate, keeping it thin. 

In regard to the oxidation of hafnium diboride, no 
evidence seems to indicate that hafnium diboride dis
solves oxygen into its bulk. In addition, near and above 
the boiling point of boric oxide, large voids and stove
pipes form in the oxide layer, indicating a prominent 
gaseous presence in the film, even though the oxygen was 
maintained in the initial gas stream at the same level as 
during the oxidation of hafnium carbide. The large voids 
and other paths through the oxide mean easier access to 
the interface where the oxidation takes place, creating 
additional gaseous products that then must be disposed 
of. Evidence indicates that B20 3 is released from the 
oxidizing film. After the higher-temperature (3) 1850°C) 
hafnium diboride tests, one finds a water-soluble, white 
powder deposited downstream on the walls of the fur-
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nace. In qualitative chemical analysis, the white powder 
tests positively for boron. Boric oxide melts at about 
450°C, so at 1675°C it is present in the oxide as a liquid, 
in which form it probably acts to seal any porosity or 
cracks and contributes to the slower oxidation rate. 

Therefore, in the oxidation of hafnium diboride, no 
oxygen is absorbed into the bulk, culminating in a phase 
change when a saturation level is reached. Instead, a 
chemical reaction takes place directly at the interface, 
releasing gaseous products that form large pathways 
through the oxide. This result allows additional oxygen 
to reach the interface more expeditiously, thus beginning 
the cycle again. 

Our work has shown that hafnium carbide and hafnium 
diboride films oxidize in quite different ways at elevated 
temperatures. The carbide forms a fine-grained, compact 
protective interlayer that slows the diffusion of oxygen. 
In contrast, the diboride forms gaseous products at the 
interface, creating voids and easy oxygen access. The 
formation of the interlayer during the hafnium carbide 
oxidation also has the apparent benefit of matching 
materials together better, probably with respect to both 
interfacial chemical adhesion and coefficients of thermal 
expansion, such that they do not separate from one an
other during broad temperature excursions. 
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