








C. H. Romine

15 F ,/—"'—— -‘-\\ -
or _.f"l =TS ."\\ i
5= £ b y -
2 - (T A &
£ Sl ‘\ \'K)U ; ]
L /
-10 X T 7 -
2 9 /
—15 | \\\ 1. |
1 1 1 1
-30 -20 -10 0 10 20 30
Re(N)
Figure 3. Results of the computational experiment with
matrix Az.
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Figure 4. Results of the computational experiment with
matrix Ag.

Since those disks overlap—and hence the region
D(A,) has only one connected component—the corollary
to Theorem 4, part II. says nothing about how many dis-
joint annuli A(A,) can contain. This leads naturally to the
following question: Is the converse of Corollary 1 true?
That is, if D(A) consists of k disjoint annuli, must A(A)
also have exactly k disjoint components?

A simple counterexample shows that the answer is no.
Consider the matrix

139 1 0
0 0 2

Since As is upper triangular, the region A(As) is just the
union of the three circles centered at the origin with radii
1.9, 2.1, and 2. These are clearly disjoint, so A(As) has
three disjoint components. The three Gerschgorin disks
corresponding to As are, however, the disk centered at

1.9 with radius 1. the disk centered at 2.1 with radius 1,
and the disk centered at 2 with radius 0 (i.e., the point 2).
Clearly, the region D(As) formed by rotating these disks
about the origin forms a single annulus with inner radius
0.9 and outer radius 3.1.

CONCLUSION

Sharp bounds on the eigenvalues of a general com-
plex matrix in terms of its elements do not now exist. Al-
though Gerschgorin’s theorem is not the sharpest known
bound, other bounds (such as the l1-norm and cc-norm
bounds) that are also invariant with respect to unit
changes in the entries of the original matrix are also in-
sufficient to categorize A(A). We claim that empirical in-
vestigations such as those described in the preceding sec-
tions, however, can offer insight into the behavior of the
eigenvalues of a matrix as it undergoes unit changes. Fu-
ture, more methodical computational investigations into
this distribution of eigenvalues may yield stronger
results for bounding the spectrum of a general complex
matrix.
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