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he continuous wavelet transform (CWT) displays the scale-dependent structure
of a signal as it varies in time. This scale-dependent structure, in turn, is essentially the
instantaneous frequency, so that the CWT provides a view of the frequency versus time
behavior of the signal and therefore has great potential as a preliminary tool for
investigating wideband, nonstationary, or other types of signals having time-dependent
spectral characteristics. In this article, the CWT is considered as a qualitative tool that
can be used to analyze such signals. The results of this analysis would then be used to
construct appropriate signal processing algorithms to detect, characterize, and classify
the signals. A particular complex-valued wavelet, proposed by Morlet, has good
properties for use as the kernel in a qualitative CWT. These properties are presented,
and the use of the CWT for studying wideband communications signals and for finding
features that might be of phenomenological significance in a seismic signal is discussed.
INTRODUCTION
The continuous wavelet transform (CWT) provides

a method for displaying and analyzing characteristics of
signals that are dependent on time and scale. It there-
fore is potentially a useful tool for detecting and iden-
tifying signals with exotic spectral features, transient
information content, or other nonstationary properties.
The CWT is an operator that takes a signal and pro-
duces a function of two variables: time and scale. As
a two-variable function, it can be considered as a sur-
face or image. The idea to be explored in this article
is that features in this CWT surface result from param-
eters of the signal that could prove useful for its detec-
tion, characterization, classification, or conditioning.

As a first step toward a process of signal character-
ization, we review the definition of the CWT and why
this definition would have any relationship to the time-
varying scale and frequency structure of a signal. A
particular wavelet well-suited to qualitative analysis of
time series is the Morlet wavelet. An analysis of this
wavelet is presented and its basic properties are de-
scribed. Analytic calculations of the Morlet-based CWT
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on fundamental signals such as sinusoids, impulses, and
linear frequency modulation are then derived, and the
resulting CWT surfaces are shown and discussed.

Finally, a set of nonstationary and wideband signals
is presented for which the CWT is an especially good
tool for analysis and for the design of signal processing
algorithms. These signals are of special interest in
advanced communications and radar systems and indi-
cate a particular advantage to considering the CWT as
part of a signal intelligence toolkit. A particular em-
pirical example of the use of the CWT for qualitative
investigation of signal characteristics is also presented.
In this example, a sampled time series of an under-
ground explosion intended to emulate a seismic event
is used as input to a CWT surface-generation algo-
rithm. This time series is a good example of a transient
waveform with certain additional characteristics. The
CWT surface has features that can apparently be attrib-
uted to the shock and aftershock features in the event,
and these features are not readily apparent for the time
series or a spectral estimation from the time series.
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 THE CONTINUOUS WAVELET TRANSFORM
REVIEW OF THE CONTINUOUS
WAVELET TRANSFORM

In this section, we review the definition and basic
properties of the CWT. These properties were described
in a previous article,1 and more complete and mathe-
matical treatments can be found in the classical refer-
ences in the field (see, for example, Daubechies2 and
Meyer3). We also introduce the particular mother
wavelet used for the investigation in this article.

The CWT is defined with respect to a particular
function, called a mother wavelet, that satisfies some
particular properties. Not every function can qualify to
be a mother wavelet. As the kernel function of a signal
transform, it is important that the mother wavelet be
designed so that the transform can be inverted—there
must be some related transform that permits one to
recover the original signal from its CWT. Even if the
application of the CWT does not require such trans-
form inversion, the invertibility of the CWT is neces-
sary to assure that no signal information is lost in the
CWT. Signal information may be restructured or re-
arranged, but it must still be present in the CWT for
the original signal to be reconstructed.

The most important property that must be satisfied
by the mother wavelet is the “admissibility condition,”
which is required for an inverse wavelet transform to
exist. This admissibility condition is discussed formally
in the boxed insert (Admissibility Condition for the
Mother Wavelet). It implies that the Fourier transform
of the mother wavelet is 0 at frequency 0. Thus, the
mother wavelet has no DC bias and, therefore, must
have oscillations to cause it to act as a bandpass filter.
Figures 1a and 1b illustrate this property for two example
real-valued mother  wavelets, the Mexican hat function
C( ) ( )t c t e t= − −1 2 22

 (where c is a normalizing constant
and t is time), and the Daubechies D5 function,2 a
wavelet with nice smoothness and compactness
characteristics but whose definition is somewhat com-
plicated and is indirectly given through the coefficients
of a dilation equation satisfied by the wavelet.

Suppose that c(t) denotes the mother wavelet, and
that ˆ( )c v  denotes its Fourier transform. We use the
definition (in which j denotes −1 )

ˆ( ) ( ) .c v
p

c v= ⌠
⌡
−∞

∞

−1

2
t e dtj t

(1)

Then the admissibility condition implies that
ˆ( )c 0 = 0, that is, c( ) .t dt =∫ 0  Figure 2 illustrates this

effect for the Morlet wavelet c(t), defined by the formula
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c a p p a( ) .t e e et j t= −





− −2
2 2 2 2 4 (2)

The parameter a in Eq. 2 can be set to obtain desired
time–frequency shaping in the CWT. Note that in the
graph of c(t) in Fig. 2a, there appear to be no oscil-
lations, but this apparent absence is the result of the
graph being that of the amplitude of the complex wave-
form—the oscillations are contributed by the phase.
One can compute directly the Fourier transform of this
wavelet. It is

ˆ( ) .( ) /c v a a p v pa v= −





− +e e
2 2 2 24 2 1 (3)

From Eq. 3, one immediately sees that ˆ( )c 0 0=  and
that the admissibility condition holds. A more explicit
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Figure 1. Examples of real-valued wavelets satisfying the
admissibility condition. (a) The Mexican hat wavelet,

C( ) ( ) ( ) .t t e t= − −2 3 14 2 22
p  (b) The Daubechies D5 wavelet,

derived from dilation coefficients (see Ref. 2, pp. 194–202).
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For the continuous wavelet transform to be invertible, the

mother wavelet C(t) must satisfy the admissibility condition:

−∞

∞
⌠
⌡

< ∞
ˆ ( )

,
C v

v
v

2

d

where ˆ ( )C v  is the Fourier transform of the wavelet. We sup-

pose that C(t) is continuous with continuous Fourier transform.

If ˆ ( ) ,C 0 0≠  then from continuity, there is a small interval I

containing 0, and an e > 0 such that ˆ ( )C v e>  for all v in I.

But it would then follow that
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The admissibility condition therefore implies that the

mother wavelet has no DC component, that is, ˆ ( ) .C 0 0=  One

computes directly that

ˆ ( ) ( ) ,C C0
1

2
= ⌠

⌡
−∞

∞

p
t dt

and so the admissibility condition implies that the integral of

the mother wavelet is zero. For this to occur, the mother

wavelet must contain oscillations; it must have sufficient neg-

ative area to cancel out the positive area. Of course, this is what

it means to have no DC component.

We will explain in what sense the admissibility condition

implies that the continuous wavelet transform has an inverse.

For this, we use the notation, Ca,b(t) to denote the scaled,

time-shifted wavelet, C Ca, b t
a

t b
a

( ) .= −





1
 We can there-

fore express the continuous wavelet transform of a signal s(t)

as ( )( ) ( ) ( ) .T s a, b s t t dtwav a, b= ∫
−∞

∞
C  Also, we will use the nota-

tion <f, g> for the scalar product in the Hilbert Space of finite

energy signals, f, g f t g t dt= ∫ ( ) ( ) .

The admissibility condition implies that we can define a

finite value CC via

C dC

C
= ⌠

⌡
−∞

∞

2

2

p
v

v
v

ˆ ( )
.

If f(t) and g(t) are two finite energy signals, then one can

compute the following using the inverse Fourier transform and

the Plancherel theorem:

⌠
⌡

⌠
⌡

=( )( ) , .T f a, b g
da db

a
C f, gwav a, bC C2

Thus, considered as operators on the signal g(t), we see

that the linear functionals 
⌠
⌡

⌠
⌡

( )( ) ,_T f a, b
da db

a
wav a, bC 2

and C fC , _  both perform the same operation. It is in this

weak convergence sense that we therefore can conclude that

f t T f a, b
da db

a
wav a, b( ) ( )( ) ,= ⌠

⌡
⌠
⌡

C 2

i.e., that the difference between the two finite energy signals

acts as a zero linear functional on the space of finite energy

signals. We note that this inversion is as one would expect—

the continuous wavelet transform of the signal provides the

coefficients of a decomposition of the signal into a superposi-

tion of scaled and translated mother wavelets, integrated with

respect to the scaling metric 
da db

a2 .

ADMISSIBILITY CONDITION FOR THE MOTHER WAVELET
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verification of the admissibility condition is given in
the boxed insert (Proof of the Admissibility of the
Morlet Wavelet).

In Fig. 2, we see that the Morlet wavelet, in the
frequency domain, is a complex bandpass filter. Its
effect as a filter would be to limit a signal to a
band centered about the frequency of approximately
p rad/s, with the center point approaching p as the
parameter a gets large. One can also calculate that the
3-dB bandwidth of the Morlet wavelet is approximately
3.33022/a (where 4 2 3 33022ln( ) . )≈  and is thus in-
versely proportional to the parameter a. Figure 3 illus-
trates this for several values of the parameter a.

The CWT of a signal s(t) with respect to the wavelet
C(t) is a function of the two variables a > 0 and b, and
is defined by the expression

( )( ) ( ) ,*Cs a, b
a

s t
t b

a
dt+ ⌠

⌡
−





−∞

∞
1

C (4)

where * denotes complex conjugation. Suppose that we
denote by subscript a,b the rescaling of a function by

Figure 2. The Morlet wavelet c(t ) and its power spectrum. For
simplicity, the parameter a is set to 4. (a) Amplitude of the complex
Morlet wavelet. (b) Power spectrum of the Morlet wavelet.
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a and the translation of a function by b; that is, let
C Ca,b t a t b a( ) ( ) [( ) ].= −1  Then (Cs)(a,b) is just the
correlation of the signal s(t) by Ca,b(t). Now, one can
easily compute the Fourier transform of Ca,b(t) as

ˆ ( ) ˆ ( ) .C Ca, b
j ba a ev v v= − (5)

A rescaling by a in the time domain becomes a
rescaling by 1/a in the frequency domain, which has the
effect of moving the center frequency of the passband
from p to p/a, with a similar rescaling of the 3-dB
bandwidth.

Effectively through a Parseval’s identity, one can
compute a frequency domain formulation of the CWT
and obtain
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Figure 3. The power spectrum (normalized) of the Morlet wavelet
for several values of the shaping parameter a. (a) Power spectrum
at a = 1, 4, and 10. (b) Fourier transform for a varying continuously
from 1 to 4.
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To prove that the Morlet wavelet, c a p p a( ) ,t e e et j t= −





− −2
2 2 2 2 4  satisfies the

admissibility condition, we must look at upper bounds on ˆ( )c v v
2

 for v near 0 and

approaching 1∞ and 2∞.

Now, as was noted in the text, ˆ( ) .( )c v a p v pa v= −





− +e e
2 2 2 24 2 1  Near v = 0, the

term e− +a p v2 2 2 4( )  is approximately e− a p2 2 4.  Thus, we need to consider the be-

havior of epa v v
2 2

2
1−



  as v approaches 0 from the left and right. But, by

L’Hospital’s rule, for example, it is clear that this ratio approaches 0 in these cases,

and so the integral 

−

⌠
⌡

1

1 2ˆ( )c v

v
vd  is finite.

As v approaches 1∞, one has

ˆ( )

,

( ) ( )

( )

c v a p v pa v a p a v pv

a v p

= −



 ≤

=

− + − − −
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e
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(I)

and so it follows that for some positive B,

B B B

d e d
d

∞ ∞
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∞
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⌡

< ∞
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.( )
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v
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v
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v

v
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2

2
2
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(II)

The second inequality of Expression II is true for all v large enough so that

e− − ≤a v p

v

2 2 2 1( ) , i.e., greater than some B so that ( ) log( )v p
a

v− >2
2

2
.

As v approaches 2∞, one has epa v2 2  approaching 0 and so, in particular, for

v less than some negative C e, .pa v2 2 1 1−



 ≤  Thus, we have

-

C

B

d e d
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2
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(III)

using the same reasoning used in Expression II.

PROOF OF THE ADMISSIBILITY OF THE MORLET WAVELET



( )( ) ˆ( ) ˆ ( ) .*Cs a, b a s a e dj b= ⌠
⌡
−∞

∞

v v vvC (6)

Both the time domain and frequency domain formu-
lations of the CWT can be used to compute the Morlet
wavelet transform of the prototypical basic signals,
the complex sine wave, and the impulse. For the com-
plex sine wave of frequency f0 Hz, s(t) = e j2pf0t, it is
simpler to use the frequency domain formulation, as
ˆ ( ),s( )= fv pd v p2 2 0−  with d(t) being the Dirac delta
distribution. Thus,

( )( ) ˆ ( ) .*Cs a, b 2 a af e j f b= p c p p2 0
2 0 (7)

The equation for the Morlet CWT of the sine wave
(Eq. 7) therefore separates into a product of a function
only of a and a function only of b. The b function is
strictly a periodic phase function whose period is pro-
portional to the frequency of the sine wave. The a
function is a scaled version of the Fourier transform of
the Morlet wavelet and thus has a peak at scale value
a = 1/2f0. The CWT surface should, therefore, show a
ridge at this location, the width of which is proportion-
al to a. Figure 4 contains CWTs for three different
complex sine waves to illustrate this surface feature.

The CWTs illustrated in Fig. 4 and the subsequent
figures are complex-valued surfaces. Each point of the
surface is therefore a complex number of a given am-
plitude and phase. Amplitude is represented in the
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 17, NUMBER 3 (1
 THE CONTINUOUS WAVELET TRANSFORM

figures by pixel density (color saturation), from low
density (white background) for near-zero amplitude, to
saturated color for high density. The phase is represent-
ed by the color spectrum from phase 0° (purple) to
phase 360° (red). The horizontal axis represents time
in the CWT (variable b), and the vertical axis is log-
arithmic and represents scale [variable log(a)]. In
the vertical axis, a = 0 is at the top of the figure, so
that small scale (high frequency) is rendered above
larger scale (low frequency), as is customary for time–
frequency plots.

The CWT surfaces in Fig. 4, therefore, contain
horizontal ridges at the appropriate scales. The ridge
widths are constant for the three frequencies because
the scale axis is logarithmic and bandwidth in a wavelet
transform is constant over logarithmic scales. In Fig. 5,
we illustrate a CWT for an impulse, s(t) = d(t 2 t0), in
which the impulse occurrence t0 is placed 1/3 of the way
across the b axis. For this signal, it is simpler to use the
time-domain formulation and compute

( )( ) .*Cs a, b
a

t b
a

=
−





1 0c (8)

Ideally, an impulse would appear as a vertical ridge in
the CWT surface. The fanning effect at lower frequen-
cies in Fig. 5 is a result of the specific form of the Morlet
wavelet.

In many applications, a modified version of the
Morlet wavelet is used, which we shall call the Morlet
(a) (c)(b)

lo
g(

a)

b

Figure 4. The continuous wavelet transform of a complex sine wave generated using the Morlet wavelet. The horizontal axis is time
translation (variable b) and the vertical axis is log scale [variable log(a)], with small scale (high frequency) above larger scale (low
frequency.) (a) Low-frequency sine wave. (b) Medium-frequency sine wave. (c) High-frequency sine wave.
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pseudowavelet. Kronland-Martinet et al.4 have used it
in the analysis of sound, for example, and Dutilleux5

has used it in the analysis of musical instruments. Its
general form is

j
p

v( ) ,( / )t e t j t= − +1

2

2
02

(9)

where v0 is a parameter that can be set to center
wavelet over the appropriate range of frequencies. In
analogy with the Morlet wavelet, for example, one has
the normalized value of v0 = p. In Ref. 5, a suggested
reasonable value for v0 for the analysis of speech or
music is between 5 and 6.

Strictly speaking, the Morlet pseudowavelet is not
a mother wavelet because it can be shown that it does
not satisfy the admissibility condition. Indeed, one can
easily compute

−∞

∞

−⌠
⌡

= ≠j j v( ) .t d e 0
2 2 0 (10)

Equation 10 can be made arbitrarily close to 0 by choos-
ing v0 large enough. For v0 = 5, for example, this in-
tegral is less than 4 × 1026. Although the pseudowave-
let is not necessarily useful for reconstructing a signal

lo
g(

a)

b

Figure 5. The continuous wavelet transform of an impulse gener-
ated using the Morlet wavelet. The horizontal axis is time translation
(variable b) and the vertical axis is log scale [variable log(a)], with
small scale (high frequency) above larger scale (low frequency.)
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from its CWT, as the resolution of the identity no
longer holds, it is quite useful for time–frequency dis-
play of signals, because relevant features of the signal
appear as patterns in the surface and the Morlet
pseudowavelet is much simpler than the Morlet wave-
let to use in computations. For example, the Fourier
transform of the Morlet pseudowavelet takes the much
simpler form

ˆ( ) .( )j v
p

v v= − −1

2
0

2 2e (11)

An example of a signal with finite duration and with
a time-varying spectrum is a chirp signal, that is, a
signal with quadratic phase. Because the phase is qua-
dratic, its instantaneous frequency (the derivative of its
phase) is a linear function of time, and so the signal
is often called a linear frequency modulation (LFM)
signal. Thus, the frequency spectrum is shifting either
up or down (depending on the quadratic coefficient in
the phase) over time. For our example, we have re-
stricted the chirp signal to a finite duration with a
Gaussian envelope. The form for the signal is

s t e t j t j t( ) ./ /= − + +a b g2 22 2 (12)

Here, the parameter a controls the Gaussian enve-
lope time duration, b is the linear frequency change
rate, and g is the initial frequency. The frequency
spectrum for this chirp signal is centered about the
frequency g rad/s and has a bandwidth proportional to

a b2 2+ . Figure 6 shows the chirp signal and its power
spectrum. Although the parameters of the chirp can be
estimated from the spectrum, if the signal of interest
is known to be a chirp and if the duration parameter
of the Gaussian window is known, there is nothing
implicit in the shape of its power spectrum that spe-
cifically characterizes LFM.

Figure 7 illustrates the CWT of a chirp signal. Here
we have used the Morlet pseudowavelet to simplify the
computation somewhat. A Morlet wavelet would de-
crease the amount of lower-amplitude spreading but
would not qualitatively differ significantly in appear-
ance. Through a tedious but not difficult calculation,
the CWT for the chirp whose form is given in Eq. 12,
with a Morlet pseudowavelet with parameter k, can be
expressed in closed form. The expression is messy but
straightforward to graph.

THE CWT OF A SEISMIC EVENT
Figure 8 contains the time series of measurements

of a seismic event. A section of the CWT generated
from this time series is shown in Fig. 9. This example
S HOPKINS APL TECHNICAL DIGEST, VOLUME 17, NUMBER 3 (1996)
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was generated from a data set of a sampled time series
of shock waves at a specific location from a seismic
event simulated by an underground explosion. As in
the previous figures, the CWT surface is shown with
the time delay (variable b) as the horizontal axis and
the logarithm of the scale [log(a), for variable a] as the
vertical axis with small scale above large scale. For clar-
ity of the image, the background zero-amplitude regions
are displayed as black rather than white. Figure 9 shows
a section of the overall CWT surface. Again, amplitude
is indicated with color density and phase with color.
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Chirp rate b

Chirp rate 3b

(a)

(c)
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Figure 6. Time- and frequency-domain plots of the chirp (linear
frequency modulated, LFM) signal with Gaussian window.
(a) Time-domain plot of a chirp signal with Gaussian window.
(b) Power spectrum of chirp signal. (c) Power spectrum of two chirp
signals with the same initial frequency g but different chirp rates b.
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Except for the striking patterns of phase changes across
increasing scale at various time delays, it is difficult to
see much structure in the amplitude variations. Thus,
a threshold was applied to the image, presenting only
those amplitudes within 5 dB of the maximum ampli-
tude in the surface. The resulting surface is shown in
Fig. 10.

In Fig. 10, we have divided the CWT surface into
two sections to show a fairly long duration (range of
variable b), presented as Figs. 10a and 10b. The ini-
tial shock is shown as a moderate-bandwidth, high-
frequency island of relatively long duration. One can
see in the figure that this shock actually consists of

b

lo
g(

a)

Figure 7. The CWT of a chirp signal showing a feature generated
in a CWT surface by a chirp signal of sufficient chirp rate to span
5 octaves of scale change over its duration. The feature was
isolated via a 3-dB threshold applied to the surface. The horizontal
axis is time delay b, and the vertical axis is log scale log(a), with
small scale above large scale.
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Figure 8. Time series of a seismic event simulated with an
underground explosion.
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g(

a)

b

Figure 9. The CWT of a seismic event generated using the Morlet pseudowavelet. The background (zero-amplitude region) is black. The
horizontal axis is time delay b, and the vertical axis is log scale log(a), with small scale above large scale.
components at two scales (frequencies) that undulate
and blend together at certain times over their duration.
An immediate aftershock appears a short time later and
has two major components. One component is a high-
frequency piece with characteristics similar to the orig-
inal shock but with the larger of the two scale compo-
nents somewhat reduced and disconnected.

The aftershock displays another component at a
lower frequency and much smaller bandwidth, especial-
ly considering that the scale axis is logarithmic, so that
bandwidth would increase in the CWT with increasing
scale. This lower-frequency component appears on the
right side of the image in Fig. 10a and is delayed in
time, with respect to the higher frequency aftershock,
by an amount approximately equal to the time delay
between the shock and aftershock. Much smaller after-
shocks continue to appear at spectral frequencies be-
tween these dominant frequencies for a period of time,
as illustrated in Fig. 10b.
266 JOHN
Although there are small nonzero slopes in the ridg-
es in the CWT surface, the ridges are basically hori-
zontal, indicating very little to no linear or nonlinear
frequency modulation in the components. This is con-
firmed as well by the colored phase lines in the com-
ponents, which maintain a fairly even crest-to-crest
spacing, indicating constant frequency over the time
duration. Moreover, the phase branching patterns
shown in the nonthresholded surface of Fig. 9 appear
in the thresholded surface to occur below the threshold
of significant features. They reside in the noise and are
essentially artifacts because the threshold-crossing ridg-
es are at different scales and therefore have different
phase periods, but the CWT generation algorithm
strongly attempts phase continuity where possible.

To provide a physical interpretation for these fea-
tures, perhaps as underground echo returns or other
structural modes of vibration, would require seismolog-
ical expertise. The CWT analysis is not intended to
S HOPKINS APL TECHNICAL DIGEST, VOLUME 17, NUMBER 3 (1996)
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(a)
(b)
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b

Figure 10. The CWT of the seismic event of Fig. 8, except with a threshold set at 5 dB below the surface maximum amplitude. The surface
is a rather long time series and so is displayed in two rows: (a) onset of a seismic event, and (b) a continuation in time. The horizontal axis
is time delay b, and the vertical axis is log scale log(a), with small scale above large scale.
provide such physical modeling. Rather, the CWT sur-
face displays in a basically qualitative fashion those
patterns that are likely to have physical interpretation
and contribution to the phenomenological modeling.
The CWT is therefore useful as an early data analysis
tool to provide a different view and insight into time-
scale and time–frequency behavior.

SIGNAL PROCESSING WITH THE CWT
The CWT is thus a natural tool to be used early in

the investigation of the properties of signals to develop
processing algorithms and concepts. It produces a rep-
resentation of the time–frequency features of the signal,
with the additional benefit of a so-called “zooming”
effect. This zooming effect modifies the spectral reso-
lution to be a function of scale—small-scale structure
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has higher resolution (frequency bandwidth) than does
large-scale structure. In other words, the CWT zooms
in to display detailed, fine features (high frequency)
and zooms out to display large, coarse trends (low fre-
quency). Thus, for signals for which spectral character-
istics or statistical properties are likely to change over
time, the CWT could be used to identify those signal
features that are potentially exploitable by signal pro-
cessing. Moreover, a processing approach to such sig-
nals might be to generate a CWT with the appropriate
fast algorithm and process the resulting image with
pattern recognition algorithms to detect and character-
ize objects in the CWT surface.

Signal intelligence (SIGINT) is an area of signal
processing application that would benefit greatly from
qualitative and quantitative analysis using the CWT.
An important goal of SIGINT processing is to detect
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and characterize communications, radar, and electron-
ic countermeasures signals that are deliberately de-
signed to be difficult to detect, locate, and characterize.
Methods for design generally are based on the structure
of such signals in the frequency domain and in the time
domains. By presenting the same information con-
tained in the signal in a different manner, such as the
time-scale analysis of the CWT, it is possible that
otherwise hidden structure can be emphasized.

CWT analysis has great potential for wideband
communications signals, such as frequency-hopped and
spread-spectrum waveforms. In all such signals, infor-
mation for detection and characterization is found in
the instantaneous spectrum, and the property that
makes these signals most useful is that this spectrum
changes over time. The signals are important for secure
or covert communications specifically because these
characteristics can be difficult to estimate by tradition-
al signal processing methods. The CWT can be a useful
qualitative tool for early analysis of signals of interest
as preparation for subsequent design and development
of signal-specific processing algorithms.

Frequency-hopped signals, for example, have nar-
rowband instantaneous frequency that is centered at
specific values for short durations, but over time these
values can vary over a wide range of frequency. Thus,
time-averaged spectral estimators would compute a
much wider band spectrum. These signals are therefore
quite useful for wideband jamming, for example.
Notched filters in the jamming band are of little use,
because the hopped signal’s instantaneous frequency
remains in the passband of the notched filter for a very
small portion of the time. Attempts to cover more of
the components of the total jamming spectrum with
several notches or a wider stopband filter will seriously
degrade a processor’s performance on the signal being
jammed because the filters suppress too much of the
signal energy.

A better approach would be to track the jammer’s
frequency hopping and remove only that energy. The
frequency hopper appears in the CWT as short ridges
of limited time duration and at different scales corre-
sponding to the hopping pattern. The locations of
these ridges contain valuable signal intelligence for the
design of an antijam processor, such as the locations of
the instantaneous frequency centers, the durations of
each frequency dwell, duty cycles, possible hopping
patterns, and hopping sequences for deriving more
sophisticated information about the hopping pattern
(e.g., an initial register for linear shift register generator
estimation).

A second use of the CWT would be as a direct
jammer filter. Sampled signals can be used to compute
the coefficients of a discrete wavelet transform, that is,
the set of coefficients that represent the signal with
respect to a basis consisting of scalings and translations
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of a given mother wavelet. From these coefficients, the
original sampled signal can be reconstructed. Both the
computation of the coefficients and the reconstruction
of the signal from the coefficients can be performed
very efficiently with the linear-time Mallat algorithm
(see, for example, Ref. 6). By zeroing out those coef-
ficients corresponding to the instantaneous spectrum
locations of the jammer, as determined by the thresh-
olding of a CWT surface, for example, and reconstruct-
ing the signal from the resulting coefficients, one would
effectively have excised the jammer with minimal
degradation in the energy of the signal of interest.

Spread-spectrum signals are usually created through
a technique known as direct sequence spread spectrum
(DSSS). In this method, a narrowband communica-
tions signal of any type (digital or analog) is multiplied
by the “DSSS chip rate,” a phase-shift keyed (PSK)
signal having a significantly higher keying rate than the
signal bandwidth. (The data stream used to spread the
signal is called the sequence of “chips.”) The data
sequence of the PSK signal is pseudorandom, usually
generated with a linear recurrence sequence or some
other pseudorandom number generator, to assure a
balanced spectrum. The resulting effect on the spec-
trum of the DSSS signal is the convolution of the
spectra from the original signal and the PSK signal.
Because the PSK signal has a high chip rate, its spec-
trum is significantly wider than the original signal and
so the resulting signal is spread to a much wider band-
width. By conservation of energy, the energy can be
spread over a wider spectral band only if the instanta-
neous frequency energy is reduced. Therefore, DSSS
signals can be spread to lie below background noise for
secure communication. By matching the PSK signal on
the receiver end of a communication system, the DSSS
signal is returned to its original bandwidth, completing
the communications link. If the DSSS signal is mul-
tiplied by some PSK signal that is not matched to the
keying sequence, the signal is not returned to its orig-
inal bandwidth and remains spread in frequency. In this
way, multiple DSSS signals of different keying sequenc-
es can share the same part of the spectrum simulta-
neously, thus allowing for code division multiple access
multiplexing. The detection and characterization of
such signals is a difficult problem because DSSS signals
often lie below the noise.

One method for their detection uses a signal process-
ing algorithm called a chip rate detector. This algo-
rithm multiplies a DSSS signal with a square wave of
frequency equal to the chip rate, offset by one-half
wavelength from the chip boundaries of the DSSS’s
PSK component. The resulting signal has a strong si-
nusoidal trend at the chip rate, which can then be
detected and estimated with a discrete Fourier trans-
form. The problem with this chip rate detector is that
it requires knowledge of the chip rate and testing of
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various offsets to obtain an offset approximately half-
way between DSSS chip boundaries. The CWT surface
effectively displays a range of possible chip rates and
offsets. By beginning with a mother wavelet that is
square-wave-like (the admissibility condition forces
the wavelet to have many oscillations), such as the
Haar wavelet or its modifications (see Ref. 2), the range
of values of the variable a rescales the wavelet and,
hence, produces a continuously changing hypothetical
chip rate. Near the true chip rate of the DSSS signal,
the two signals (the DSSS and the scaled mother
wavelet) slowly slide past each other, so that the two
signals are offset by one-half wavelength for a time. By
computing a one-dimensional Fourier transform of
each row of a CWT surface (i.e., at constant values of
the scale variable a), one should detect a peak in the
transformed surface at the chip rate.

Other signals of interest for intelligence and elec-
tronic warfare applications of the CWT include radar
signals with pulse modulation and modulation of the
pulse repetition interval. Again, such signals exhibit
changes in instantaneous spectrum over time that are
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 17, NUMBER 3 (1
important to their function as military radar signals and
that are displayed as features in a CWT surface. Re-
searchers are currently pursuing these applications of
the CWT, which may lead to new and exciting signal
processing techniques and algorithms based on this
powerful tool from applied mathematics.
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