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ABSTRACT
The metal additive manufacturing (AM) process uses high-power lasers to rapidly melt and solidify 
metal powder into complex 3-D shapes, but unfortunately the rapid solidification process often 
results in stochastic defect formation and nonequilibrium microstructures. To fully understand 
the AM process and ensure a high-quality, defect-free manufacturing process, novel high-speed 
sensing methods that can capture key physical phenomena associated with the AM process at 
high resolution are needed. A team at the Johns Hopkins University Applied Physics Laboratory 
(APL) is developing novel spectrometry techniques capable of measurement speed exceeding 
50 kHz along the laser path to aid in understanding how materials are formed under different 
laser inputs. The team is also developing machine learning tools to interpret these signals, thus 
revealing features and trends that are not apparent to human analysts in the sensor data or physi-
cal post mortem inspection results of the printed components.

AM. APL has extensively researched1–3 the generation 
and effects of microstructure and defects during laser 
powder bed fusion to build an understanding of process–
structure–property–performance relationships for vari-
ous AM material systems. This research includes the 
development of novel processing methods to tailor micro-
structure and evaluate the sensitivity of defect formation 
to changing laser processing parameters. Figure 1a shows 
the impact of variations in laser energy and the associ-
ated defects: lack-of-fusion and keyhole. Lack-of-fusion 
defects form as a result of insufficient energy to induce 
full melting, whereas keyhole defects form as a result of 
excess energy and gas entrapment. As the energy input 

INTRODUCTION
Additive manufacturing (AM) is a disruptive man-

ufacturing technology with potential to significantly 
impact supply chain and engineering capability. The 
ability to synthesize materials directly into complex 
parts has shifted the paradigm for how components are 
designed today, from complex heat sinks to jet fuel noz-
zles. In addition, because of its rapid solidification rates 
of ~104–107 K/s, AM has enabled manufacturing of new 
alloys with unique microstructures and properties.

These assets do not come without challenges: most 
paramount is the formation of thousands of tiny defects 
per cubic inch of material, roughly 10–250 μm in diam-
eter with seemingly random occurrence inherent to 
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and solidification processes change, so does the micro-
structure (Figure 1b), as shown in a recent study by APL 
and Naval Air Systems Command (NAVAIR).1 Large 
defect volume fractions or gross changes in microstruc-
ture can significantly affect the mechanical properties 
and reliability of AM components.

Current-generation AM systems lack closed-loop 
control systems to ensure process stability, which means 
that processing conditions can drift away from notional 
set points and result in deleterious microstructures and 
defect populations. An opportunity exists to generate 
sensors and techniques to detect formation of process 
faults and mitigation strategies in real-time and in three 
dimensions as a geometry is being formed. It is criti-
cal that new in situ monitoring tools are developed to 
enable understanding of how and when defects form. 
At the same time, these tools will offer insight into the 
fundamental solidification mechanisms that result in 
unique microstructures. For instance, a material’s micro-
structure reflects its thermal history during solidifica-
tion and repeated heating and cooling cycles, such that 
an in situ thermal sensor could be incredibly useful to 
understand why similar processing conditions can result 
in different microstructures.

The variability in material performance caused by 
these defects gives the Department of Defense pause 
in applying AM to its most critical applications, which 
often could benefit the most from this new manufactur-
ing technique.4,5 Critical applications often require high 
process stability, repeatability, and reliability. Because 
there are significant consequences if these applications 

fail, they require engineering certainty in structural 
performance in order to be implemented. The conven-
tional AM qualification and certification approaches 
require burdensome post-manufacturing inspection 
to achieve engineering confidence in AM parts. To 
accelerate adoption of AM and revolutionize its use in 
critical applications, an in situ technique is needed to 
monitor the manufacturing process and validate the fab-
ricated component. Such an advance would minimize 
or even eliminate the need for costly, time-consuming 
post-manufacturing inspection steps and enable exten-
sion of AM to components that cannot be inspected 
because of their size or composition.

The community has recognized this challenge, and 
significant progress has been made in the field of in 
situ monitoring over the last 10  years.6–9 Bartlett et 
al.10 showed the ability to use conventional infrared 
(IR) cameras to detect defects on the order of 1–3 mm. 
Mitchell et al.11 showed the ability to detect defects down 
to 70 mm but only on a small area of ~1.5 mm2. Even 
with these advancements, trade-offs between speed and 
resolution of monitoring systems still limit functional 
advancement of process monitoring.12 In practice, cur-
rent in situ monitoring techniques either have insuf-
ficient temporal sampling to detect process anomalies 
or insufficient spatial resolution to resolve fine thermal 
details over large areas.

For process modeling to be relevant to the size of 
AM defects, detection down to 50 mm is needed, espe-
cially if clusters of small defects are present in critically 
stressed areas of parts.13 It is challenging or impossible 
to achieve this resolution with conventional or emerg-
ing nondestructive evaluation techniques, such as x-ray 
computed tomography (XRCT), as growing part sizes 
and high-density materials limit x-ray imaging methods. 
In addition to issues with in situ data acquisition speed 
and precision, the incredible amount of data collected 
during a build can make the analysis of parts intracta-
ble. In recent years, advances in machine learning have 
helped compress data sets and find correlations where 
conventional mathematical closed-form solutions do not 
exist. Effective implementation of in situ thermal sensing 
combined with machine learning will enable real-time 
detection of defects and microstructural anomalies to 
reduce the burden of qualification, which will enhance 
quality and trust of AM parts for critical applications.

NOVEL SENSING DEVELOPMENT
The optical resolution and speed limitations associ-

ated with conventional IR cameras prevent realization 
of information required to detect AM physics, making 
it a challenge to monitor the AM process with con-
ventional sensors. In addition, the rapid change from 
solid powder to molten metal to solidified part results 
in rapid changes in emissivity with temperature, which 
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Figure 1. Impact of variations in laser energy and the associated 
defects. (a) Schematic showing the impact of laser processing 
energy on defect formation in the selective laser melting pro-
cess. (Reprinted from Montalbano et al.,1 with permission from 
Elsevier.) (b) Electron backscattered diffraction images showing 
the impact of laser energy on microstructure: as the energy is 
increased, the microstructural texture changes.
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can result in spurious temperature measurements if the 
sensor is not properly designed or calibrated. To resolve 
the optical limitations, the APL team developed a 
unique sensor that is coaxially aligned with the laser 
optics, enabling the sensor to focus on the melt pool. 
Through the use of high-speed sensors, this approach 
enables high-spatial-resolution data on the melt pool 
and high-temporal-resolution data on the melt pool 
dynamics. Figure 2 shows the configuration of the 
sensor, which includes several photodiodes, dichroics, a 
beam-splitter, and bandpass filters. This configuration 
permits true temperature to be resolved using two-color 
pyrometry fitting to Planck’s law. Experiments with the 
sensor have demonstrated increased signal-to-noise ratio 
and a high frame rate exceeding 60 kHz.

This proof-of-principle system enables us to resolve 
significant variation in the thermal response of the 
material. In the color contour map on the right side of 
Figure 2, the laser path starts in the 7 o’clock position 
on the sample and finishes between the 12 and 1 o’clock 
positions as represented by the traverse direction. Two 
smaller arrows show the individual laser scan paths, 
marked “Individual vectors.” Thermal saturation is 
shown at the end of the laser tool path, and cool pockets 
are shown near the start of the tool path. The system 
records thermal data point by point as the laser traverses 
the material cross section, giving a representation of the 
peak thermal energy achieved at each voxel. In an ideal 
process, the melt pool would be the same temperature 
across the entire sample.

In addition to resolving pure variation in the ther-
mal profile, the APL team is developing machine learn-
ing methods to correlate measured signals with internal 

defect formation, which was previously only quantifiable 
in XRCT in post-manufacturing nondestructive evalua-
tion. To identify defects using machine learning, it will 
be necessary to index the thermal data to a ground-truth 
sample with independently verified defects. Figure  3 
shows a preliminary index of thermal data with four pro-
cessing conditions in a single sample. These zones con-
sist of both keyhole and lack-of-fusion laser conditions in 
a single sample, allowing training of ground-truth defect 
populations (from XRCT data) for both defect class and 
size/volume in a single high-throughput sample.

The goal of the initial research is to find thermal 
fingerprints associated with defect formation in the 
AM process. Figure 4 shows a representative statistical 
sample for the thermal voxels around defects in both 
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Figure 3. A composite image of thermal data extracted layer 
by layer compared with XRCT data showing defect location. 
The composite consists of both keyhole and lack-of-fusion laser 
conditions in a single sample, allowing training of ground-truth 
defect populations (from XRCT data) for both defect class and 
size/volume in a single high-throughput sample.

Figure 2. Custom on-axis thermal sensor compared with the sensing rate of competitive IR camera systems. This configuration allows 
both high spatial resolution and high speed. The sample shown is a 5-mm cylindrical screening sample with a single reconstructed ther-
mal layer shown. The thermal data is collected layer by layer and can be reconstructed into the 3-D part geometry.
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a lack-of-fusion sample and a keyhole sample. These 
thermal signatures show characteristics unique to each 
defect class and provide insight that can be used to pre-
dict different categories of spatial defects by applying 
machine learning to high-speed thermal data.

The ability to identify and record defects as they form 
in 3-D space would provide significant insight into final 
part performance. This is especially important in pre-
venting potential failures in critical defect-dominated 
applications such as fatigue for biomedical and aero-
space applications. While quantifying defects in situ 
would reduce post-manufacturing part qualification 
costs by eliminating the need to proof-test parts for 
critical flaws, any parts with critical defects would still 
have to be scrapped. However, early detection could 

provide further savings in manufacturing time as the 
process could be stopped and restarted upon detection 
of a critical defect potentially in the first few hours of 
a multiple-day print. Under the current paradigm, the 
weeklong print would need to be completed and then 
inspected after manufacturing to discover that the part 
contains a critical defect and is therefore insufficient to 
meet the application’s needs.

Figure 5 shows a representative build where simulated 
laser faults are induced in varying layers by manipulat-
ing processing conditions. This allows visualization of 
defect formation and recognition where the defect-laden 
layers are bright spots in the processed melt pool ther-
mal data and can be correlated to the formation as iden-
tified by XRCT. The next frontier beyond identifying 
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Figure 4. The distribution of thermal image voxel intensities for a lack-of-fusion sample and a keyhole sample plotted for clean and 
defect voxels. In the lack-of-fusion sample (left), the thermal signature amplitudes of low thermal energy appear in greater magnitude 
when compared with the control, while in the keyhole sample (right), thermal signatures in the high-intensity region are more promi-
nent when compared with defect-free signatures. Plots were generated from 200 slices of each sample totaling ~820,000 voxels.
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Figure 5. A representative build 
where simulated laser faults are 
induced in varying layers by manip-
ulating processing conditions. 
(a) Experimental design showing 
simulated faults in varying layer 
increments (i.e., a single bad layer, 
two bad layers, or three bad layers). 
(b) XRCT of the post-manufactured 
sample showing defects and also 
an indication of healing from the 
secondary melting of the nomi-
nal parameter set. (c) A 2-D cross 
section of the 3-D thermal recon-
struction with anomalous layers 
identified via high-intensity sig-
nals from melt pool sensing. (d) An 
enlarged image showing defect 
overlay with the XRCT and thermal 
data fused into a single data file.
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defects would be real-time control preventing the forma-
tion or initiating healing of defects. This would prevent 
parts from being scrapped and maximize production effi-
ciency. As a proof of principle, the APL team printed 
parts with known lack-of-fusion flaws and then inter-
rupted the build process to prove that a secondary laser 
healing pass could recover parts with defects if they 
could be identified in real time (Figure 6).

The sensor has since been upgraded to better capture 
increased spectral channels by adding photodiodes at 
extended wavelengths and enhancing temporal and spa-
tial resolution by increasing sample frequency. Figure 7 
shows the new configuration. Known as SATURN 
(Spectrally Augmented Thermal Understanding Reduc-
ing Nonconformance), it has potential to measure four 
channels at 11 MHz, an increase in speed of more than 
180 times, with improved accuracy. This will open the 

possibility of healing defects 
in real time, maximizing 
the acceptance of parts and 
reducing the burden on 
part qualification.

CONCLUSIONS AND 
FUTURE WORK

Metal AM has promise 
to revolutionize the way we 
develop and form materi-
als for critical applications. 
A major limitation in this 
vision is the absence of pro-
cess sensing to detect anom-
alies such as manufacturing 
flaws due to the rapid solidi-
fication of the material. This 
article presents a novel sens-

ing technique capable of establishing true temperature 
at 60 kHz combined with a spatial resolution of ~50 mm. 
With each new iteration of in situ monitoring sensors, 
the data density and accuracy increases, allowing fur-
ther coupling with machine learning to address deeper 
fundamental synthesis of materials via AM, such as 
developing new alloys specific to AM or tailoring micro-
structure within a part to further optimize performance. 
Machine learning with high data density, combined 
with feedback loop control, will potentially enable the 
process to be adjusted even before defects form, result-
ing in a near-perfect part. A prescribed temperature 
could be set and feedback loop control could enable 
tailored melting for any material in any geometry. This 
would result in microstructure control in three dimen-
sions that has never before been possible. With gradi-
ent materials, the system could be used to look at how 
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Figure 6. XRCT data for three layers in a build where contrived lack-of-fusion (LOF) porosity was 
selectively healed with a secondary pass. In layers 19 and 20, all defects greater than 100 mm have 
been healed. In layer 21, two defects are present even after the healing pass. The global sample 
also indicates the significant reduction in porosity between the two conditions (lack-of-fusion 
[control] vs. lack-of-fusion + healing pass).
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Figure 7. APL’s SATURN system. This system can measure up to 11 MHz across four tailored spectral bands configured to maximize 
transmission and minimize noise driven by artifacts in the laser powder bed fusion optics optimized for 1070 nm.
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well dissimilar material interfaces are forming.14–16 If it is 
possible to realize this vision, the application of critical 
AM-fabricated parts will grow tremendously, enabling 
significant advances in a diverse array of industrial sec-
tors, including aerospace, biomedicine, transportation, 
and energy.
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