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ABSTRACT
Atomic and molecular modeling techniques have developed over the past 75 years into a vibrant 
field of computational science, used to understand and predict materials properties and phenom-
ena in academic, industrial, and government labs. Researchers today have the benefit of decades 
of Moore’s law growth in computer processors, decades of algorithm and software develop-
ment, experiments capable of atomic-scale characterization for validation, and a deeper under-
standing of the strengths, limitations, and complementary features of different computational 
methods. It is not surprising then that important problems in many fields—battery chemistry, 
drug design, mechanics of materials, biocompatibility, and catalyst design—are routinely stud-
ied using atomic-scale simulation and modeling. In this article, we first outline a brief history and 
background of the density functional theory and molecular dynamics methods. Next, we discuss 
several case studies that exemplify how scientists and engineers at the Johns Hopkins University 
Applied Physics Laboratory (APL) use these computational methods to attain APL’s broader goals 
and mission. Finally, we discuss future directions for atomic-scale modeling and calculations, such 
as integration with modeling methods at other scales and with artificial intelligence–enabled 
frameworks, to meet the next generation of sponsor challenges.

We strive to build all physical human technology 
using materials with just the right stiffness, clarity to 
light, or push or pull to electrons. We rely on chemi-
cals with just the right stick or slip, taste and smell, and 
interference with toxicity and disease. All these proper-
ties of materials and chemicals arise, albeit in complex 
ways, from two attributes: the elements that compose 
them and their spatial arrangement, atom by atom.

INTRODUCTION
If, in some cataclysm, all of scientific knowledge were to 
be destroyed, and only one sentence passed on to the next 
generations of creatures, what statement would contain the 
most information in the fewest words? I believe it is the 
atomic hypothesis (or the atomic fact, or whatever you wish 
to call it) that all things are made of atoms . . .

—Richard Feynman, 
The Feynman Lectures on Physics1
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Humans have not always needed to know that all 
things are made of atoms, but our capabilities have 
expanded immeasurably now that we do. In many 
cases, the behavior of huge numbers of nearby atoms 
does not depend at all on the details of a few. In those 
cases, one can step back from the trees and use models 
at larger scales based on average properties of the forest, 
as described in this issue by Darragh et al. However, in 
many other cases, differences at the atomic scale have 
measurable, human-scale effects. Researchers and engi-
neers have rapidly developed ways to exploit these dif-
ferences to design polymers, drugs, doped semiconductor 
devices, and nanostructured materials whose incredible 
properties can vary drastically based on the identity and 
placement of individual atoms in a motif.

As humans continue to invent novel materials, 
our capabilities to physically manipulate and engineer 
materials on these scales improve as well, so that 
the shoreline of new possibilities is expanding rather 
than shrinking. Exhaustive searches of all possible 
materials and chemicals will be impossible even 
if the most optimistic projections of experimental 
technologies are realized.2 Models and simulations are 
therefore critical to predict the properties of materials 
based on new compositions and atomic structure, 
sight unseen, in tandem with physical synthesis and 
characterization methods.

This article provides a brief survey of important 
methods for atomic-scale modeling and illustrates 
how they can impact missions relevant to APL and its 
sponsors. Methods such as density functional theory 
(DFT) and classical molecular dynamics (MD) have 
decades-long histories of development and fruitful 
application across materials science, chemistry, and 
biology. This includes not just fundamental scientific 
work but applied research as well: just a few examples 
are designing macro molecules for pharmaceuticals,3 
silicate glass for consumer devices,4 and polymers for 
defense applications.5 DFT and MD have become 
critical links in a chain of physical modeling meth-
ods that capture different physical phenomena across 
length and timescales. As improvements continue in 
theory, software, and computational hardware, the 
range of practicality and applicability of these methods 
also expands. We describe a few example challenges 
of interest to APL that require atomic-scale model-
ing, and we conclude with an outlook on the future of 
atomistic modeling.

BACKGROUND
DFT and MD are the two most widely used atom-

istic modeling techniques today. They are complemen-
tary tools, capturing different physics to answer different 
questions. They were developed largely in parallel, with 
only loose coupling between them.

After the formal theory of quantum mechanics was 
laid out in the mid-1920s, scientists realized its nearly 
universal predictive power, but they also immediately 
realized the importance of developing approximate 
models that could be solved efficiently. Paul Dirac wrote 
in 1929 that “the underlying physical laws necessary for 
the mathematical theory of a large part of physics and 
the whole of chemistry are thus completely known, and 
the difficulty is only that the exact application of these 
laws leads to equations much too complicated to be sol-
uble.”6 In principle, all thermal, mechanical, electronic, 
and chemical properties can be predicted by solving the 
Schrödinger equation, but the exponential scaling of its 
complexity makes a solution impossible for systems with 
more than a few dozen electrons.

DFT is widely used because it addresses this chal-
lenge of capturing enough quantum mechanical effects 
to predict properties accurately, while being computa-
tionally efficient enough to solve quickly. Hohenberg, 
Kohn, and Sham developed the fundamental theories 
in 1964 and 1965, showing that a system’s ground-state 
properties can be determined from its total electron den-
sity instead of the more complex many-body wavefunc-
tion.7 In other words, DFT is a method of obtaining an 
approximate solution to the Schrödinger equation for a 
many-body system.

The wide adoption of DFT began in earnest decades 
later in the 1980s and 1990s enabled by joint progress 
in theory, software, and computational hardware. With 
time, physicists developed more accurate functionals, 
and these theoretical developments were steadily incor-
porated into commercial and open-source software,8,9 
making them available to chemists and materials 
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Figure 1. Number of publications using atomistic modeling 
since 1990. The number of journal articles published per year 
containing the phrases molecular dynamics and density functional 
theory in the title or abstract continues to rise, as indexed by the 
Clarivate Web of Science. Data from Web of Science, provided by 
Clarivate. Web of Science and Clarivate are trademarks of their 
respective owners and used herein with permission.
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scientists as well. Accordingly, the volume of research 
based on DFT grew rapidly, as shown in Figure 1. Today, 
researchers use DFT to model inorganic and organic 
materials across academia, industry, and government 
institutions.

In parallel, several efforts in the mid-20th century 
began to use computers to model materials at the atomic 
and molecular level using a classical description to cap-
ture phenomena in which quantum mechanical effects 
can be neglected. In 1964, the first MD simulation was 
performed by Aneesur Rahman at Argonne National 
Laboratory. It simulated just 864 atoms of liquid argon 
for only 103 time steps (≈10–12 s), but allowed for mea-
suring the atomic radial distribution function, velocity 
autocorrelation, and diffusion.10 Molecular interaction 
models developed throughout the 1940s and 1950s (used 
for finding minimum-energy, optimum molecular struc-
tures) were subsequently used in MD simulations to 
model increasingly complex systems.

Early researchers recognized the shortcomings of 
MD’s classical description and limited length and time-
scales and worked to overcome them. In 2013, the Nobel 
Prize in Chemistry recognized two different flavors 
of “multiscale models,” developed in the 1970s, that 
(1) presented a systematic way to simulate some parts of 
a molecule quantum-mechanically while treating other 
parts classically and (2) combined distinct amino acids 
within a protein into pseudoatom units, enabling much 
larger and faster simulations of proteins and peptides.11 
As shown in Figure  1, the utility of MD paired with 
increasing accessibility to software and hardware has led 
to rapid growth in usage in parallel with DFT. Today, all 
manner of materials from metals to organic molecules 
and biomolecules are regularly simulated in systems 
with more than 107 atoms, and for times greater than 
1 μs. Modern simulations run on thousands of computer 
processors and specially designed hardware for weeks or 
months and can generate terabytes of data.

Despite the obvious increase in computing resources 
since the early days of molecular simulation, researchers 
face many similar challenges today. Treating molecular 
systems both classically and quantum-mechanically can 
be critical when modeling many systems. In particular, 
APL efforts to understand and design quantum-biological 
systems rely on designing and understanding these 
dual-fidelity models. Many physical phenomena arise 
from coupling of physics across many scales, requiring a 
multiscale modeling approach.

METHODS
DFT and classical MD are the two best-established 

modeling methods to account for electronic and atomic 
effects on the properties of materials and chemical com-
pounds. In the following sections, we briefly describe 
how they work and what phenomena they can model.

Density Functional Theory
DFT is the most widely used method today for incor-

porating electronic effects in atomistic models of materi-
als and molecules. The goal of any electronic structure 
method is to compute the energies of electrons in a 
chemical system, and by doing so, any related property 
can be determined. The crux of DFT is that only the 
electron density—a function of three coordinates—is 
needed to predict properties of the system. The density is 
just a scalar field that depends on position, regardless of 
the number of electrons in the system. This is an enor-
mous simplification from the many-body wave function 
of quantum mechanics, which is a complex field that 
depends on the coordinates of all N electrons in the 
system: Ψ( r1, r2, …, rN ). The relationship between 
the density perspective and the many-body perspec-
tive is illustrated schematically in Figure 2. These two 
approaches have been proven equivalent if the exact 
dependence of energy on ρ( r ) is known. This depen-
dence is called the exact DFT functional. Unfortunately, 
the form of the exact functional is not known, and the 
utility of DFT hinges on the development of approximate 
functionals that balance accuracy and computational 
efficiency. Physicists have proposed many functionals, 
and each has its own benefits and drawbacks; for more 
on the selection of functionals, the authors recom-
mend Ref. 12. Given a system of N electrons, whereas 
the computational complexity of the many-body prob-
lem scales exponentially as 2N, the cost of DFT scales as 
N3. In practice, this makes DFT calculations currently 
tractable for systems with up to 103 to 104 valence elec-
trons, as opposed to tens of electrons for solving the full 
many-body problem.

Given a set of atomic elements and positions in 
space, a DFT software package works to compute the 
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Figure 2. Relationship between electron density perspective 
and many-body perspective. More direct approaches to mod-
eling quantum mechanical systems of N electrons solve for the 
many-body wavefunction, a function of 3N coordinates. DFT, 
however, relies only on the electron density, which is a function 
of three spatial coordinates and results in a simpler mathemati-
cal problem. (Reprinted by permission from Springer, MRS Bulle-
tin, M. T. Lusk and A. E. Mattsson, “High-performance computing 
for materials design to advance energy science,” vol. 36, no. 3, 
pp. 169–174, © 2011, https://doi.org/10.1557/mrs.2011.30.13)
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corresponding ground-state electron density in a system. 
If the system is periodic, such as in a crystalline solid 
material, symmetries of the lattice are included here. A 
DFT practitioner will then prescribe calculation details 
that provide the best compromise among desired accu-
racy, time, and computing resources. These additional 
details include the DFT functional, basis functions, and 
pseudopotentials, which incorporate the chemical envi-
ronments of the atoms, among others. The energy of the 
system is computed iteratively until self-consistency is 
achieved, and a converged electron density and energy 
are the main results.

The output of a DFT calculation is the ground-state 
electronic density of a system, from which any related 
property can be computed. Examples of these properties 
include the optimized equilibrium geometry, free ener-
gies (from which one can compute relative stability of 
related structures), and energetics of defects.

The most basic applications, however, are to cal-
culate electronic and optical properties (e.g., energies 
of molecular orbitals in nonperiodic systems or band 
structure in periodic systems). The total energy as a 
function of atomic geometry is also a useful result and 
allows a researcher to determine binding preferences 
(e.g., an adsorbent and surface for a chemical sensor or 
a substrate and an enzyme in a biochemical reaction). 
This is computed by taking a simple difference between 
the energy of the bound system and the energies of the 
constituents.14 The converged density of electrons in a 
system can also provide insight into its charge distribu-
tion, which in turn elucidates the partial charges in a 
system. In short, DFT is widely used for property predic-
tion and screening of materials or molecules for a variety 
of specific applications.

Classical MD
In many material systems, electronic degrees of free-

dom can be ignored at larger length scales, and classical 
MD can be used to model atoms and molecules. The 
method is a discretization and integration of Newton’s 
second law, F = ma, for every atom in a material system. 
Intramolecular forces are calculated from simple poten-
tial energy functions that contain terms representing 
molecular bonds (characterized by equilibrium distances 
and vibrational frequencies), three-atom angles, and 
four-atom torsions. Intermolecular van der Waals forces 
and electrostatic interactions are also included. All these 
interactions together make up a molecular “force field” 
that parameterizes interactions for different atomic spe-
cies in different chemical environments.11

Taking atoms rather than electrons as the fundamen-
tal unit enables orders of magnitude larger simulations 
(partially because of better scaling), but simulations are 
currently limited to ≈107 degrees of freedom (atoms). As 
the name molecular dynamics (MD) implies, capturing 

atomic and molecular dynamics is an important feature; 
however, resolving atomic bond vibrations requires an 
integration time on the order of a femtosecond (10–15 s). 
Even a relatively long simulation of 108 time steps only 
captures ≈100  ns, so processes that evolve over much 
longer timescales require special techniques to simulate. 
Many advances in algorithms and computational meth-
ods have sought to overcome these length and time scale 
limitations. Advances addressing the former involve 
sophisticated methods to couple different length resolu-
tions; for example, continuum flow or solid media sur-
rounding a computational region with atomic detail.15 
Methods to address the latter go by the name “enhanced 
sampling” because they “push” simulations to sample sta-
tistically unlikely states. For example, a protein unfolding 
transition, which might naturally occur on a millisecond 
timescale, can be “pushed” to sample the transition state 
in a physical way on a realizable simulation timescale 
≈107 times faster.16

One of the inherent strengths of MD is the natu-
ral, central position of temperature in simulations. The 
motion of atoms and molecules is explicitly simulated 
and the kinetic energy of this motion defines the tem-
perature. Intuition suggests this is an important feature! 
Decrease the motion or temperature of a system, and 
the simulated materials change their properties: a solid’s 
mechanical response becomes more brittle, or the water 
surrounding a protein freezes. Increase the temperature, 
and a polymer softens or a protein becomes denatured. 
This natural realization of temperature in simulation is 
important for understanding many material properties 
and for connecting explicitly with experimental results 
and trends.

Explicitly simulating atomic and molecular motion 
also allows researchers to model nonequilibrium and 
dynamic phenomena, typical conditions found in mate-
rials processing. Example applications include modeling 
the intricate folding and binding of biological macromol-
ecules,17 crack propagation during fracture of inorganic 
materials,18 and heat transfer in nanoscale devices.19 
Phenomena like nonelectronic heat and mass diffusion, 
vibrational spectra, and rheological response in flow are 
all routinely modeled using MD. In all these cases, the 
relevant material properties are impractical to calculate 
analytically, but emerge from the complex motion and 
interactions of constituent atoms. Dynamic phenomena 
such as flow rheology, adatom or interstitial/vacancy dif-
fusion, mixing, phase (or glass) transitions, and many 
others can be modeled to better understand the effects 
of processing or operating conditions at an atomic scale.

CASE STUDIES
These modeling methods have a range of applications: 

at APL, many internally funded and sponsor-funded ini-
tiatives are employing atomistic modeling to achieve 
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their goals. Calculations for these projects have made 
use of existing mature software packages: Quantum 
Espresso8 and NWChem9 were used for periodic and 
nonperiodic DFT calculations, and NAMD20 and 
LAMMPS21 were used for organic and inorganic MD 
simulations, respectively.

Designing Reactive Oxides to Destroy Toxic 
Environmental Compounds

APL is currently applying atomic-scale models in col-
laboration with researchers at the US Naval Research 
Laboratory (NRL) and the US Army Chemical Biologi-
cal Center (CCDC-CBC) to develop novel materials for 
destroying toxic chemical compounds in the environ-
ment. Responding to a need from the Defense Threat 
Reduction Agency (DTRA), APL aims to improve on 
NRL-developed aerogel material that harnesses light to 
decompose toxic environmental compounds22 by extend-
ing their activity for hours after the light is removed. 
Current technologies based on photocatalytic oxide 
materials can effectively break down toxic compounds 
under UV illumination, as shown in Figure 3a. We are 
therefore researching ways to keep this solar-powered 
chemistry working “around the clock.”

The team’s proposed solution is to develop compos-
ite, high-surface-area aerogel materials based on certain 
oxides, including engineered defects that can bind and 
extend the lifetime of photo-generated reactive oxygen 
species (ROS) such as superoxide (O2

•–).23 As illustrated 
in Figure 3b, this will result in a material that can gener-
ate ROS under illumination (left) and store them to oxi-
dize compounds hours later (right). However, significant 
development is still required to improve performance 
and translate this concept into mission-ready materials. 
The overall challenge requires optimizing optical, elec-
tronic, chemical, and thermodynamic properties in a 
large design space of material composition and structure.

Atomic-scale modeling is a powerful complement to 
experimental synthesis and characterization in navigat-
ing that space: DFT provides a “virtual laboratory” for 
modeling oxide surface structures and calculating cou-
pled electronic and chemical properties with control not 
attainable experimentally. This will help answer critical 
questions: What types of defects maximize the stabili-
zation of ROS? How can we synthetically incorporate 
those desired defects and optimize their density? We 
are therefore using DFT to calculate and compare the 
intrinsic stability of different defect types (surface and 
subsurface oxygen vacancies) on selected material sur-
faces, along with the relative binding strength of neutral 
oxygen molecules to form O2

•– (Figure 3c), and finally 
coadsorption with organic toxic compounds, questions 
that have only been partially addressed in previous lit-
erature.24,25 This modeling work is proceeding hand in 
hand with experimental work at NRL testing strategies 
to incorporate those defects in synthesized samples and 
at CCDC-CBC to assess their effectiveness in destroy-
ing toxic compounds.

Bridging Scales in Quantum Biology
Can migratory birds use radical pairs and spin chem-

istry to sense the direction of an external magnetic 
field?26 How could molecular simulations and quantum 
calculations predict magnetic field sensitivity and help 
us to engineer more sensitive molecular sensors?

A multiscale model of MD and electron dynamics is 
being used to understand how an external magnetic field 
influences electron-scale interactions and how informa-
tion about the electron interactions propagates to larger 
scales. The work builds from a long history of linking 
classical and quantum mechanical calculations to model 
complex molecular systems where both electron-scale 
and molecule-scale dynamics are important.
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Figure 3. Overview of a collaborative effort among APL, NRL, and CCDC-CBC to address a current performance gap. (a) Existing photo-
driven materials for destruction of toxic compounds quickly lose efficacy in darkness. (b) Materials with tailored composition and defects 
could stabilize reactive chemical species for much longer, enabling continued efficacy in darkness. (c) APL is performing DFT calcula-
tions to understand and optimize the effect of chemical and structural features on lifetimes of reactive species.
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The physical system modeled comprises a common 
protein (e.g., certain cryptochrome proteins), an embed-
ded cofactor molecule (flavin adenine dinucleotide 
[FAD]), and the surrounding “wet” chemical environ-
ment, as illustrated in Figure  4. Electron transfer can 
occur among these three subsystems when an incident 
photon creates a photoexcitation in the FAD. The elec-
tron transfer creates a pair of radicals, leading to the 
phenomenon of “spin chemistry,” where the quantum 
spin state of the radical pair affects the resulting reaction 
products. The shift in the reaction products from one 
species to another depends on orientation within the 
earth’s magnetic field and is believed to give birds the 
measurement needed to guide flight. Researchers hope 
this novel sensing mechanism could prove to be tunable 
in the lab and exploitable in future devices.

Currently, APL is developing protein samples to test 
their magnetosensitivity. At the same time, MD simu-
lations have pinpointed several molecule positions and 
orientations where radical pair formation may occur. 
These candidate molecular configurations are passed 
to DFT calculations of electron transfer that results in 
magnetically sensitive radical pairs. Current work in the 
multiscale modeling of quantum biomolecular phenom-
ena is supported both through internal research and 
development funds at APL and through funding from 
the National Science Foundation, which also provides 
high-performance computing resources.

Understanding Fabrication Quality of Inorganic 
Thin Films

MD simulations are also used frequently outside 
of biological systems to model materials in different 
thermo dynamic conditions or nonequilibrium pro-
cesses. One such process is molecular beam epitaxy 
(MBE), which is used to grow extremely high-quality 
thin films one atomic layer at a time. The high quality 
of these thin films is critical for application areas like 
thermoelectrics27 and inorganic phase change materi-
als.28 Successful MBE growth requires optimizing mul-
tiple process parameters. One important parameter is 
the temperature of the substrate onto which the film is 
deposited. In Figure 5, simulation snapshots show the 
growth of bismuth (Bi) on substrates of gallium arsenide 
(GaAs). These results show a transition from the growth 
of an amorphous Bi film at low substrate temperature 
(Figure 5a) to a crystalline Bi film at higher tempera-
tures (Figure 5b), an effect that is seen experimentally 
in other material systems.29 The results highlight the 
utility of using MD to model and understand nonequi-
librium, dynamic phenomena relevant to experiments or 
materials processing.

Designing Novel Materials
There is great potential in coupling machine learn-

ing (ML) methods with atomistic modeling. At APL, we 
attempt to address this through an ongoing internally 
funded initiative known as Material Invention Through 
Hypothesis-unbiased, Real-time, Interdisciplinary 
Learning (MITHRIL). The overall goal of MITHRIL is 
to link ML, experimental synthesis and characterization, 
and atomistic-scale modeling to accelerate materials dis-
covery, a process that currently takes many years. The 
approach aims to (1) use ML to better guide searches of 

Figure 4. Common protein model with embedded cofactor 
molecule in “wet” biological environment (solvent not shown). 
The backbone of the electron-transfer flavoprotein molecule 
(translucent multicolored) surrounds the FAD molecule (bottom 
center, thick bonds) and oxygen molecule (red). The oxygen mol-
ecule is caged by the side-chain atoms (thick bonds) of the amino 
acid residues at a potential electron-transfer reaction site. Each 
amino acid residue is uniquely colored.

More
amorphous

growth

(a) Low Tsubstrate (b) High Tsubstrate

Ga
As

 (1
11

)A
Bi

 d
ep

os
iti

on More
crystalline

growth

Figure 5. Snapshots from MD simulations of thin film growth to 
complement experimental MBE. Simulations at low temperature 
(a) exhibit more amorphous growth while high temperatures 
(b)  exhibit more crystalline growth. Such simulations can help 
assess hypotheses explaining experimental observations and 
guide further process development.
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materials space and suggest material that satisfies require-
ments for a specific application, (2) experimentally syn-
thesize and test those suggestions, and (3)  incorporate 
new data to enable further design iterations. Example 
roles of atomistic modeling are to predict stable crys-
tal structures and to predict the physical properties of 
materials that have not yet been synthesized. MITHRIL 
leverages existing databases of computational materials 
data in the form of DFT results, as shown schematically 
in Figure 6, to generate models for property prediction. 
Because of the sizes of the databases (~800,000 mate-
rials), ML methods are obvious candidates to help effi-
ciently explore the vast and complex spaces of possible 
new materials.

The DFT-generated data provides the ML models 
with structure and property relationships governed by 
the laws of physics and chemistry and at lower cost than 
running full-fledged physical experiments. The cur-
rent properties of interest in MITHRIL are related to 
superconductivity (e.g., critical temperature [Tc]), but the 
approach is transferable to any field. Leveraging resources 
developed via ML and experiments, MITHRIL seeks to 
enable closed-loop materials discovery through the opti-
mal exploitation of well-mapped materials spaces and 
efficient exploration of poorly understood regions. This 
is where potential novel and impactful discovery occurs.

FUTURE DIRECTIONS
What does the future hold for atomic-scale model-

ing methods? Hardware and software will certainly 
continue to improve, meaning that researchers will be 
able to apply DFT and MD to capture larger length 
and time scales in more complex systems. In addition, 

new modeling approaches will emerge as a result of 
integrating DFT and MD with other methods—both 
physics-based approaches such as finite element analy-
sis (FEA) and computational fluid dynamics (CFD), and 
data-driven approaches such as ML models.

Researchers have devised many strategies for combin-
ing physics-based modeling methods at different scales, 
but much remains to be done to increase their compu-
tational efficiency and transferability among different 
material systems. Two examples within atomistic meth-
ods are ab initio MD, in which forces calculated from 
DFT (rather than classical force fields) are used to drive 
MD simulations30 and spatially decomposed multifidel-
ity methods such as QM/MM (“quantum mechanics/
molecular mechanics”) and ONIOM.31 At larger scales, 
the quasicontinuum method32 and heterogeneous mul-
tiscale method33 are examples of approaches for bridg-
ing atomic-scale and continuum methods such as FEA 
and CFD. These methods remain highly application 
specific at present, but we envision exciting progress 
toward more robust multiscale models in the near future, 
as technologies rely on increasingly advanced materials 
with tailored structure and properties at multiple scales.

Clever application of data-driven ML methods could 
provide one path to better integration of atomistic meth-
ods with other modeling approaches and with experi-
ments. One view of scientific progress counts data-driven 
discovery as the “fourth paradigm” of science,34 arriving 
now after the empirical, theoretical, and computational 
paradigms. Applying ML techniques is a natural next 
step because of the vast space of possible materials or 
molecules, which is impractical to search completely 
through experiments alone. ML techniques are being 
used to rapidly map a molecule or material’s structure to 
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Figure 6. Role of DFT within the scope of MITHRIL. Databases of DFT-generated structure and property data are bootstrapped with 
relevant experimental (Exp) data and used to feed ML models to make property predictions.

http://www.jhuapl.edu/techdigest


N. Q. Le et al.

Johns Hopkins APL Technical Digest, Volume 36, Number 4 (2023), www.jhuapl.edu/techdigest438    

its properties and require a sufficient amount of gener-
ated data as training data. But an ML model is only as 
good as its data, and for this field to advance, research-
ers need findable, accessible, interoperable, and reusable 
data. Further, ML algorithms applied so far have not 
deeply incorporated chemical theory, which would help 
accelerate our understanding. We expect developments 
in chemistry-informed ML to decrease the time to solu-
tion, facilitated by a push toward open chemistry that is 
generating more openly available chemical and materi-
als data. It is important to note that ML is not going to 
replace computation, but rather augment and expedite it 
while enhancing understanding.

SUMMARY
The field of atomistic modeling is a product of the 

corresponding development of the fields of chemical and 
physical theory and computing, and since its nascence 
in the mid-20th century, it has become a key component 
of materials, chemical, and biological sciences. These 
tools are being increasingly integrated into projects at 
APL to validate and drive experimental measurements 
or designs and to predict properties of molecules and 
materials. As these tools become more widespread at 
APL, there is great opportunity to make key contribu-
tions across the fields of biology, chemistry, and mate-
rials science, and to incorporate these tools into the 
process of discovering new defining innovations.
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