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ABSTRACT
Merchant vessels travel across the ocean daily to deliver goods and transport cargo or passengers. 
Understanding the forecasted locations of these vessels is important for many reasons, includ-
ing collision avoidance. Currently, their captains rely on radar, a global positioning system (GPS) 
satellite fix, and the Automatic Identification System (AIS) to maintain timely awareness of their 
surroundings. This article describes a Johns Hopkins University Applied Physics Laboratory (APL) 
team’s research into using a Kalman filter to improve forecasts of vessels’ locations. When pro-
vided historical geospatial data that contain uncertainties, the Kalman filter algorithm provides a 
means to estimate future locations of moving objects. The APL team confirmed that when using 
GPS and AIS data, the Kalman filter forecasting tool can predict the future location of a vessel 90% 
of the time within 15 nautical miles for 12 h into the future.

APL team used to pull the necessary variables for updat-
ing the Kalman filter algorithm to predict the location 
of a vessel several hours into the future and how the 
team assessed the algorithm’s performance and viability.

KALMAN FILTERS
A Kalman filter is a common algorithm for estimating 

unknown variables that have inherent uncertainties or 
errors in their measurements and then using those data 
to predict future states of the system by estimating a joint 
probability distribution over time. Typically, the system 
in question involves a moving target, and the analyst has 
data from the moving object and equations that describe 
the motion of the object, known as a state space model.

INTRODUCTION
Thousands of vessels travel across the ocean every 

day to deliver goods ranging from fine cheese and wine 
to luxurious cars. Collecting and analyzing these vessels’ 
location and speed data enables a deeper understanding 
of their tracks. With a measurable understanding of ves-
sels’ movements, analysts can start to form future predic-
tions, with various levels of certainty, on where a ship 
could be several hours or days into the future. Predicting 
the future path of a vessel can be an important tool for 
preventing open-ocean collisions or aiding in the inter-
ception of potentially nefarious actors. One way to cal-
culate the future location of a vessel is with a Kalman 
filter. The Kalman filter provides a dynamic system and 
estimation approach to predict the future location of a 
vessel. This article discusses the data analysis method an 
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The prediction relies heavily on the understanding of 
the object’s movement (the state equations) and the his-
torical data. It is important to note that the state equa-
tions will not perfectly predict the next state and will 
thus contain errors in the estimate (referred to as the 
process error or the process noise). It is also important 
to note that the collected data will contain noisy mea-
surements that will not provide the precise location of 
the object (referred to as the measurement noise). The 
measurement noise typically comes from the inaccuracy 
of the tool used to measure the data. This could be the 
inaccuracy of a radar for positioning/velocity or the inac-
curacy of a global positioning system (GPS). The process 
noise results from how the dynamic system (the moving 
object) will not follow the exact movement expected in 
the state equations. The system will randomly deviate 
from the expected movement.

In its simplest form, the Kalman filter applies the best 
known data to the state equations to update the state 
estimate. From there, the model continues to update the 
state estimate, considering the measurement and process 
noise, until all the known data have been used. Then, 
the prediction portion begins, using the previously 
tuned state estimate to calculate the next state of the 
system for each time step thereafter.

Implementation for White Shipping Forecasting
A Kalman filter is a favorable tool to forecast white 

(nonmilitary commercial vessels) shipping because it 
does not require or assume uniform periodicity between 
samples. Automatic Identification System (AIS) signals 
report oceangoing vessel position every 10–30 s, but sat-
ellites and other vessels in the region do not necessarily 
receive all reported positions, leaving data gaps beyond 
5 h at sea. Vessels that receive satellite AIS have the 
advantage of knowing the location of vessels beyond 
their radar horizon but still have these data gaps.

Forecasting the future location of a vessel requires 
data fields for time, latitude, and longitude. Additional 
fields, such as course and speed, provide a more accurate 
noise calculation and therefore provide a better predic-
tion for the vessel’s location. When course and speed are 
not available, the values for time, latitude, and longitude 
are used to derive the course and average speed.

GPS and AIS data are collected and stored by 
the company MarineTraffic (www.marinetraffic.com). 
MarineTraffic’s global white shipping data can be viewed 
at no cost via graphics on its website or purchased for 
personal use. The company receives the satellite AIS 
data from multiple sources and compiles the data into its 
own database. The data contain columns of unique ship 
identifiers, time stamps, locations, courses, and speeds. 
The APL team used these data in the development of 
the Kalman filter algorithm described in this article to 
establish variables and to aid in the prediction of vessels.

Kalman Filter Setup
There are five steps to the Kalman filter process: 

(1) initialize/update the matrices and vectors, (2) extrap-
olate the next state, (3) calculate the measurement 
values, (4) update the next state estimate based on the 
measurement, and (5) update the estimate uncertainty.

There are three vectors and six matrices to initialize. 
The state vector (x) is the initial state of the system. 
The estimate of the state vector (

There are five steps to the Kalman filter process: (1) initialize/update the matrices and vectors, (2) 
extrapolate the next state, (3) calculate the measurement values, (4) update the next state estimate 
based on the measurement, and (5) update the estimate uncertainty. 

There are three vectors and six matrices to initialize. The state vector (x) is the initial state of the 
system. The estimate of the state vector (𝒙𝒙𝒙𝒙�) is the estimate of the initial state. The control vector 
(u) is a measurable input to the system. The observation matrix (H) transforms the state vector
values into measurement values. The measurement covariance matrix (R) is the covariance of the
measurement noise within the data. The process covariance matrix (Q) is the covariance of the
state equations and their relation to each other. The transition matrix (F) defines how much of the
next state and uncertainty values are related to each other. The control matrix (G) defines the
impact the control vector has on the next state. The estimate uncertainty matrix (P) defines the
uncertainties of the estimated state variables. Each value feeds into the calculations of the Kalman
filter (Becker 2018).

The Kalman filter extrapolates the next state and uncertainty by 

𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 = 𝑭𝑭𝑭𝑭𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝑭𝑭𝑭𝑭𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝑭𝑭𝑭𝑭𝑻𝑻𝑻𝑻 + 𝑸𝑸𝑸𝑸, 

where 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the uncorrected estimate of the state at time step n + 1; 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the estimate of the 
current state at time step n; 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the update of the uncertainty matrix; and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the current 
uncertainty matrix. 

This creates an uncorrected prediction of the next state. To correct the next state prediction, there 
a Kalman gain and the measurement value are required. The Kalman gain seeks to minimize the 
estimate variance (Becker 2018), 

𝑲𝑲𝑲𝑲 = 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻�𝑯𝑯𝑯𝑯𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻 + 𝑹𝑹𝑹𝑹𝑹𝒏𝒏𝒏𝒏𝒏,

where 𝑲𝑲𝑲𝑲 is the Kalman gain matrix, and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncertainty matrix (𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 
calculated above). 

The measurement value calculates the estimated output based on the actual or estimated input data, 

𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 = 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏, 

where 𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 is the measurement value at the current time step, and 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 is the actual state or estimated 
state at the current time step. 
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The measurement value calculates the estimated output based on the actual or estimated input data, 

𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 = 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏, 

where 𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 is the measurement value at the current time step, and 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 is the actual state or estimated 
state at the current time step. 

n, n is the estimate of the current state 
at time step n; Pn + 1, n is the update of the uncertainty 
matrix; and Pn, n is the current uncertainty matrix.

This creates an uncorrected prediction of the next 
state. To correct the next state prediction, a Kalman 
gain and the measurement value are required. The 
Kalman gain seeks to minimize the estimate variance,1

 K = Pn, n –1 HT(HPn, n –1 HT + R)–1, 

where K is the Kalman gain matrix, and Pn, n –1  is the 
updated uncertainty matrix (Pn + 1, n calculated above).

The measurement value calculates the estimated 
output based on the actual or estimated input data,

 

There are five steps to the Kalman filter process: (1) initialize/update the matrices and vectors, (2) 
extrapolate the next state, (3) calculate the measurement values, (4) update the next state estimate 
based on the measurement, and (5) update the estimate uncertainty. 

There are three vectors and six matrices to initialize. The state vector (x) is the initial state of the 
system. The estimate of the state vector (𝒙𝒙𝒙𝒙�) is the estimate of the initial state. The control vector 
(u) is a measurable input to the system. The observation matrix (H) transforms the state vector
values into measurement values. The measurement covariance matrix (R) is the covariance of the
measurement noise within the data. The process covariance matrix (Q) is the covariance of the
state equations and their relation to each other. The transition matrix (F) defines how much of the
next state and uncertainty values are related to each other. The control matrix (G) defines the
impact the control vector has on the next state. The estimate uncertainty matrix (P) defines the
uncertainties of the estimated state variables. Each value feeds into the calculations of the Kalman
filter (Becker 2018).

The Kalman filter extrapolates the next state and uncertainty by 

𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 = 𝑭𝑭𝑭𝑭𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝑭𝑭𝑭𝑭𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝑭𝑭𝑭𝑭𝑻𝑻𝑻𝑻 + 𝑸𝑸𝑸𝑸, 

where 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the uncorrected estimate of the state at time step n + 1; 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the estimate of the 
current state at time step n; 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the update of the uncertainty matrix; and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the current 
uncertainty matrix. 

This creates an uncorrected prediction of the next state. To correct the next state prediction, there 
a Kalman gain and the measurement value are required. The Kalman gain seeks to minimize the 
estimate variance (Becker 2018), 

𝑲𝑲𝑲𝑲 = 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻�𝑯𝑯𝑯𝑯𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻 + 𝑹𝑹𝑹𝑹𝑹𝒏𝒏𝒏𝒏𝒏,

where 𝑲𝑲𝑲𝑲 is the Kalman gain matrix, and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncertainty matrix (𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 
calculated above). 

The measurement value calculates the estimated output based on the actual or estimated input data, 

𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 = 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏, 

where 𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 is the measurement value at the current time step, and 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 is the actual state or estimated 
state at the current time step. 

n = Hxn, 

where 

There are five steps to the Kalman filter process: (1) initialize/update the matrices and vectors, (2) 
extrapolate the next state, (3) calculate the measurement values, (4) update the next state estimate 
based on the measurement, and (5) update the estimate uncertainty. 

There are three vectors and six matrices to initialize. The state vector (x) is the initial state of the 
system. The estimate of the state vector (𝒙𝒙𝒙𝒙�) is the estimate of the initial state. The control vector 
(u) is a measurable input to the system. The observation matrix (H) transforms the state vector
values into measurement values. The measurement covariance matrix (R) is the covariance of the
measurement noise within the data. The process covariance matrix (Q) is the covariance of the
state equations and their relation to each other. The transition matrix (F) defines how much of the
next state and uncertainty values are related to each other. The control matrix (G) defines the
impact the control vector has on the next state. The estimate uncertainty matrix (P) defines the
uncertainties of the estimated state variables. Each value feeds into the calculations of the Kalman
filter (Becker 2018).

The Kalman filter extrapolates the next state and uncertainty by 

𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 = 𝑭𝑭𝑭𝑭𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝑭𝑭𝑭𝑭𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝑭𝑭𝑭𝑭𝑻𝑻𝑻𝑻 + 𝑸𝑸𝑸𝑸, 

where 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the uncorrected estimate of the state at time step n + 1; 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the estimate of the 
current state at time step n; 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the update of the uncertainty matrix; and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the current 
uncertainty matrix. 

This creates an uncorrected prediction of the next state. To correct the next state prediction, there 
a Kalman gain and the measurement value are required. The Kalman gain seeks to minimize the 
estimate variance (Becker 2018), 

𝑲𝑲𝑲𝑲 = 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻�𝑯𝑯𝑯𝑯𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻 + 𝑹𝑹𝑹𝑹𝑹𝒏𝒏𝒏𝒏𝒏,

where 𝑲𝑲𝑲𝑲 is the Kalman gain matrix, and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncertainty matrix (𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 
calculated above). 

The measurement value calculates the estimated output based on the actual or estimated input data, 

𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 = 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏, 

where 𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 is the measurement value at the current time step, and 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 is the actual state or estimated 
state at the current time step. 

n is the measurement value at the current time 
step, and xn is the actual state or estimated state at the 
current time step.

The actual state is the received data at that time step, 
and the estimated input data is

 

The actual state is the received data at that time step, and the estimated input data is 

𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 = 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑵𝑵𝑵𝑵(𝑸𝑸𝑸𝑸), 

where 𝑵𝑵𝑵𝑵(𝑸𝑸𝑸𝑸) is the Gaussian distribution with variance Q. 

Now it is possible to correct the estimate and the estimate uncertainty by 

𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 + 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲�𝒏𝒏𝒏𝒏 − 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏� 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = (𝑰𝑰𝑰𝑰 − 𝑲𝑲𝑲𝑲𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯)𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝑰𝑰𝑰𝑰 − 𝑲𝑲𝑲𝑲𝑯𝑯𝑯𝑯)𝑻𝑻𝑻𝑻 + 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑻𝑻𝑻𝑻, 

where 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncorrected state estimate (𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏), and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the corrected 
uncertainty estimate. 

1) The observation matrix (H) for the output is the 3 × 3 identity matrix.

2) The control matrix (G) and the control vector (u) are set to zero.

3) The initialized estimation uncertainty 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎 is a 3 × 3 null matrix. This variable evolves as
the Kalman filter updates each iteration.

4) The initialized state vector (𝒙𝒙𝒙𝒙𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎) and corrected estimate vector (𝒙𝒙𝒙𝒙�𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎) values are the first
longitude, latitude, and speed values of the data set.

5) From calculations and assumptions, the measurement (R) and process variance (Q)
matrices are

𝑲𝑲𝑲𝑲 = �
3.2 × 10−5(°)2 0 0

0 1.3 × 10−5(°)2 0
0 0 9.7 × 10−4(° ℎ𝑟𝑟𝑟𝑟⁄ )2
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where N(Q) is the Gaussian distribution with variance Q.
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Now it is possible to correct the estimate and the estimate uncertainty by

 

The actual state is the received data at that time step, and the estimated input data is 

𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 = 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑵𝑵𝑵𝑵(𝑸𝑸𝑸𝑸), 

where 𝑵𝑵𝑵𝑵(𝑸𝑸𝑸𝑸) is the Gaussian distribution with variance Q. 

Now it is possible to correct the estimate and the estimate uncertainty by 

𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 + 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲�𝒏𝒏𝒏𝒏 − 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏� 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = (𝑰𝑰𝑰𝑰 − 𝑲𝑲𝑲𝑲𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯)𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝑰𝑰𝑰𝑰 − 𝑲𝑲𝑲𝑲𝑯𝑯𝑯𝑯)𝑻𝑻𝑻𝑻 + 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑻𝑻𝑻𝑻, 

where 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncorrected state estimate (𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏), and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the corrected 
uncertainty estimate. 

1) The observation matrix (H) for the output is the 3 × 3 identity matrix.

2) The control matrix (G) and the control vector (u) are set to zero.

3) The initialized estimation uncertainty 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎 is a 3 × 3 null matrix. This variable evolves as
the Kalman filter updates each iteration.

4) The initialized state vector (𝒙𝒙𝒙𝒙𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎) and corrected estimate vector (𝒙𝒙𝒙𝒙�𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎) values are the first
longitude, latitude, and speed values of the data set.

5) From calculations and assumptions, the measurement (R) and process variance (Q)
matrices are

𝑲𝑲𝑲𝑲 = �
3.2 × 10−5(°)2 0 0

0 1.3 × 10−5(°)2 0
0 0 9.7 × 10−4(° ℎ𝑟𝑟𝑟𝑟⁄ )2

� �
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

� 

𝑸𝑸𝑸𝑸 = �
3.2 × 10−6(°)2 0 0

0 1.3 × 10−6(°)2 0
0 0 9.7 × 10−5(° ℎ𝑟𝑟𝑟𝑟⁄ )2

� �
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

�. 

𝑭𝑭𝑭𝑭 = �
1 0 cos(𝜃𝜃𝜃𝜃) Δ𝐿𝐿𝐿𝐿 sec(𝑙𝑙𝑙𝑙𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−1)
0 1 sin(𝜃𝜃𝜃𝜃) Δ𝐿𝐿𝐿𝐿
0 0 1

� �
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

� 

, 

where 

There are five steps to the Kalman filter process: (1) initialize/update the matrices and vectors, (2) 
extrapolate the next state, (3) calculate the measurement values, (4) update the next state estimate 
based on the measurement, and (5) update the estimate uncertainty. 

There are three vectors and six matrices to initialize. The state vector (x) is the initial state of the 
system. The estimate of the state vector (𝒙𝒙𝒙𝒙�) is the estimate of the initial state. The control vector 
(u) is a measurable input to the system. The observation matrix (H) transforms the state vector
values into measurement values. The measurement covariance matrix (R) is the covariance of the
measurement noise within the data. The process covariance matrix (Q) is the covariance of the
state equations and their relation to each other. The transition matrix (F) defines how much of the
next state and uncertainty values are related to each other. The control matrix (G) defines the
impact the control vector has on the next state. The estimate uncertainty matrix (P) defines the
uncertainties of the estimated state variables. Each value feeds into the calculations of the Kalman
filter (Becker 2018).

The Kalman filter extrapolates the next state and uncertainty by 

𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 = 𝑭𝑭𝑭𝑭𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝑭𝑭𝑭𝑭𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝑭𝑭𝑭𝑭𝑻𝑻𝑻𝑻 + 𝑸𝑸𝑸𝑸, 

where 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the uncorrected estimate of the state at time step n + 1; 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the estimate of the 
current state at time step n; 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the update of the uncertainty matrix; and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the current 
uncertainty matrix. 

This creates an uncorrected prediction of the next state. To correct the next state prediction, there 
a Kalman gain and the measurement value are required. The Kalman gain seeks to minimize the 
estimate variance (Becker 2018), 

𝑲𝑲𝑲𝑲 = 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻�𝑯𝑯𝑯𝑯𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻 + 𝑹𝑹𝑹𝑹𝑹𝒏𝒏𝒏𝒏𝒏,

where 𝑲𝑲𝑲𝑲 is the Kalman gain matrix, and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncertainty matrix (𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 
calculated above). 

The measurement value calculates the estimated output based on the actual or estimated input data, 

𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 = 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏, 

where 𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 is the measurement value at the current time step, and 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 is the actual state or estimated 
state at the current time step. 

n, n –1 is the updated uncorrected state estimate (

There are five steps to the Kalman filter process: (1) initialize/update the matrices and vectors, (2) 
extrapolate the next state, (3) calculate the measurement values, (4) update the next state estimate 
based on the measurement, and (5) update the estimate uncertainty. 

There are three vectors and six matrices to initialize. The state vector (x) is the initial state of the 
system. The estimate of the state vector (𝒙𝒙𝒙𝒙�) is the estimate of the initial state. The control vector 
(u) is a measurable input to the system. The observation matrix (H) transforms the state vector
values into measurement values. The measurement covariance matrix (R) is the covariance of the
measurement noise within the data. The process covariance matrix (Q) is the covariance of the
state equations and their relation to each other. The transition matrix (F) defines how much of the
next state and uncertainty values are related to each other. The control matrix (G) defines the
impact the control vector has on the next state. The estimate uncertainty matrix (P) defines the
uncertainties of the estimated state variables. Each value feeds into the calculations of the Kalman
filter (Becker 2018).

The Kalman filter extrapolates the next state and uncertainty by 

𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 = 𝑭𝑭𝑭𝑭𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝑭𝑭𝑭𝑭𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝑭𝑭𝑭𝑭𝑻𝑻𝑻𝑻 + 𝑸𝑸𝑸𝑸, 

where 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the uncorrected estimate of the state at time step n + 1; 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the estimate of the 
current state at time step n; 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the update of the uncertainty matrix; and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the current 
uncertainty matrix. 

This creates an uncorrected prediction of the next state. To correct the next state prediction, there 
a Kalman gain and the measurement value are required. The Kalman gain seeks to minimize the 
estimate variance (Becker 2018), 

𝑲𝑲𝑲𝑲 = 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻�𝑯𝑯𝑯𝑯𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻 + 𝑹𝑹𝑹𝑹𝑹𝒏𝒏𝒏𝒏𝒏,

where 𝑲𝑲𝑲𝑲 is the Kalman gain matrix, and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncertainty matrix (𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 
calculated above). 

The measurement value calculates the estimated output based on the actual or estimated input data, 

𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 = 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏, 

where 𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 is the measurement value at the current time step, and 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 is the actual state or estimated 
state at the current time step. 

n + 1, n), and Pn, n is the cor-
rected uncertainty estimate.

Variables and Assumptions
The general flow of the white shipping Kalman filter forecast is shown in Figure 1. 

Some assumptions and calculations are necessary to generate the forecast.

1. The observation matrix (H) for the output is the 3 × 3 identity matrix.

2. The control matrix (G) and the control vector (u) are set to zero.

3. The initialized estimation uncertainty P0,0 is a 3 × 3 null matrix. This variable 
evolves as the Kalman filter updates each iteration.

4. The initialized state vector (x0,0) and corrected estimate vector (

There are five steps to the Kalman filter process: (1) initialize/update the matrices and vectors, (2) 
extrapolate the next state, (3) calculate the measurement values, (4) update the next state estimate 
based on the measurement, and (5) update the estimate uncertainty. 

There are three vectors and six matrices to initialize. The state vector (x) is the initial state of the 
system. The estimate of the state vector (𝒙𝒙𝒙𝒙�) is the estimate of the initial state. The control vector 
(u) is a measurable input to the system. The observation matrix (H) transforms the state vector
values into measurement values. The measurement covariance matrix (R) is the covariance of the
measurement noise within the data. The process covariance matrix (Q) is the covariance of the
state equations and their relation to each other. The transition matrix (F) defines how much of the
next state and uncertainty values are related to each other. The control matrix (G) defines the
impact the control vector has on the next state. The estimate uncertainty matrix (P) defines the
uncertainties of the estimated state variables. Each value feeds into the calculations of the Kalman
filter (Becker 2018).

The Kalman filter extrapolates the next state and uncertainty by 

𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 = 𝑭𝑭𝑭𝑭𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝑭𝑭𝑭𝑭𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝑭𝑭𝑭𝑭𝑻𝑻𝑻𝑻 + 𝑸𝑸𝑸𝑸, 

where 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the uncorrected estimate of the state at time step n + 1; 𝒙𝒙𝒙𝒙�𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛 is the estimate of the 
current state at time step n; 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the update of the uncertainty matrix; and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the current 
uncertainty matrix. 

This creates an uncorrected prediction of the next state. To correct the next state prediction, there 
a Kalman gain and the measurement value are required. The Kalman gain seeks to minimize the 
estimate variance (Becker 2018), 

𝑲𝑲𝑲𝑲 = 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻�𝑯𝑯𝑯𝑯𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯𝑻𝑻𝑻𝑻 + 𝑹𝑹𝑹𝑹𝑹𝒏𝒏𝒏𝒏𝒏,

where 𝑲𝑲𝑲𝑲 is the Kalman gain matrix, and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncertainty matrix (𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏𝑛𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 
calculated above). 

The measurement value calculates the estimated output based on the actual or estimated input data, 

𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 = 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏, 

where 𝒚𝒚𝒚𝒚�𝒏𝒏𝒏𝒏 is the measurement value at the current time step, and 𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 is the actual state or estimated 
state at the current time step. 

0,0) values are 
the first longitude, latitude, and speed values of the data set.

5. From calculations and assumptions, the measurement (R) and process variance 
(Q) matrices are

 

The actual state is the received data at that time step, and the estimated input data is 

𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 = 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑵𝑵𝑵𝑵(𝑸𝑸𝑸𝑸), 

where 𝑵𝑵𝑵𝑵(𝑸𝑸𝑸𝑸) is the Gaussian distribution with variance Q. 

Now it is possible to correct the estimate and the estimate uncertainty by 

𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 + 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲�𝒏𝒏𝒏𝒏 − 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏� 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = (𝑰𝑰𝑰𝑰 − 𝑲𝑲𝑲𝑲𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯)𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝑰𝑰𝑰𝑰 − 𝑲𝑲𝑲𝑲𝑯𝑯𝑯𝑯)𝑻𝑻𝑻𝑻 + 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑻𝑻𝑻𝑻, 

where 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncorrected state estimate (𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏), and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the corrected 
uncertainty estimate. 

1) The observation matrix (H) for the output is the 3 × 3 identity matrix.

2) The control matrix (G) and the control vector (u) are set to zero.

3) The initialized estimation uncertainty 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎 is a 3 × 3 null matrix. This variable evolves as
the Kalman filter updates each iteration.

4) The initialized state vector (𝒙𝒙𝒙𝒙𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎) and corrected estimate vector (𝒙𝒙𝒙𝒙�𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎) values are the first
longitude, latitude, and speed values of the data set.

5) From calculations and assumptions, the measurement (R) and process variance (Q)
matrices are

𝑲𝑲𝑲𝑲 = �
3.2 × 10−5(°)2 0 0

0 1.3 × 10−5(°)2 0
0 0 9.7 × 10−4(° ℎ𝑟𝑟𝑟𝑟⁄ )2
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  The calculations for the noise are described in the next section.

6. Each Kalman filter iteration updates the transition matrix (F) based on the most 
recent reported course (Csen – 1) and the elapsed time (t),
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Figure 1. Kalman filter forecasting diagram.
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The actual state is the received data at that time step, and the estimated input data is 

𝒙𝒙𝒙𝒙𝒏𝒏𝒏𝒏 = 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 + 𝑵𝑵𝑵𝑵(𝑸𝑸𝑸𝑸), 

where 𝑵𝑵𝑵𝑵(𝑸𝑸𝑸𝑸) is the Gaussian distribution with variance Q. 

Now it is possible to correct the estimate and the estimate uncertainty by 

𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 + 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲�𝒏𝒏𝒏𝒏 − 𝑯𝑯𝑯𝑯𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏� 

𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 = (𝑰𝑰𝑰𝑰 − 𝑲𝑲𝑲𝑲𝒏𝒏𝒏𝒏𝑯𝑯𝑯𝑯)𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝑰𝑰𝑰𝑰 − 𝑲𝑲𝑲𝑲𝑯𝑯𝑯𝑯)𝑻𝑻𝑻𝑻 + 𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑲𝑻𝑻𝑻𝑻, 

where 𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 is the updated uncorrected state estimate (𝒙𝒙𝒙𝒙�𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏), and 𝑷𝑷𝑷𝑷𝒏𝒏𝒏𝒏,𝒏𝒏𝒏𝒏 is the corrected 
uncertainty estimate. 

1) The observation matrix (H) for the output is the 3 × 3 identity matrix.

2) The control matrix (G) and the control vector (u) are set to zero.

3) The initialized estimation uncertainty 𝑷𝑷𝑷𝑷𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎 is a 3 × 3 null matrix. This variable evolves as
the Kalman filter updates each iteration.

4) The initialized state vector (𝒙𝒙𝒙𝒙𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎) and corrected estimate vector (𝒙𝒙𝒙𝒙�𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎) values are the first
longitude, latitude, and speed values of the data set.

5) From calculations and assumptions, the measurement (R) and process variance (Q)
matrices are

𝑲𝑲𝑲𝑲 = �
3.2 × 10−5(°)2 0 0

0 1.3 × 10−5(°)2 0
0 0 9.7 × 10−4(° ℎ𝑟𝑟𝑟𝑟⁄ )2
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
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𝑭𝑭𝑭𝑭 = �
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
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𝜃𝜃𝜃𝜃 = �

90 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−1, 0 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 < 90, 0 ≤ 𝜃𝜃𝜃𝜃 < 90
450 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−1, 270 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 < 360, 90 ≤ 𝜃𝜃𝜃𝜃 < 180

|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−1 − 450|, 180 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 < 270, 180 ≤ 𝜃𝜃𝜃𝜃 < 270
|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−1 − 450|, 90 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿 < 180, 270 ≤ 𝜃𝜃𝜃𝜃 < 360

 

Δ𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛 − 𝐿𝐿𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛,  

where Csen – 1 is the course from the previous time stamp where North is 0°, and latn – 1 
is the previous recorded latitude.

To keep the calculations simple, latitude and longitude were calculated using polar 
calculations and a basic first-order approximation.

Calculating Uncertainties
As previously mentioned, the Kalman filter prediction algorithm relies on under-

standing both the measurement noise and the process noise. The measurement noise 
values determine the uncertainties contained within the MarineTraffic recorded 
data. The process noise determines the uncertainty in the model. Thus, the first step 
involves calculating the variance of the error in speed and the variance of the error 
in location.

Using the data provided and the structure above, these calculated errors account 
for three noise value inputs to the Kalman filter: speed, longitude, and latitude.

Speed Uncertainty
First, the speed error calculation uses the recorded location and time data. Dis-

tance and delta time were calculated from one data point to the next. Then, the 
expected speed at each location is derived from these distances and times. The error 
in speed is the absolute value of the stored speeds in the White Shipping data file 
(spd) minus the calculated expected list of speeds.

It is important to note that this method only applies to n – 1 speeds when there 
are n total posits, individual reported vessel positions, because two sets of locations 
and times are needed to calculate the approximate arrival speed at the second point. 
Thus, an error cannot be calculated for the first posit in the list.

This process creates a list of errors for the expected calculated speed and the 
observed recorded speed. These lists can break down per track, per region, etc. to 
enable calculation of the overall variance in these errors for specific regional or vessel 
interests. Ultimately, the variance in the list of speed errors for a given track is the 
input to the process noise matrix for speed.

The speed measurement noise value is 9.7 × 10–4 (degree⁄h)2; this has a stan-
dard deviation of 1.9 knots. By trial and error, the selected process noise for speed is 
4.8 × 10–5 (degree⁄h)2, which is a standard deviation of 2.3 knots.

Latitude and Longitude Uncertainty
One way to calculate locational errors is by calculating the speed when the records 

are zero in the data. This implies that the vessel is not moving or no speed data exist 
for this time step. The assumption is that the speed recorded at time t is the speed 
of the vessel at time t when it arrived at the recorded location. This understanding 
is necessary because, similarly to the speed error calculations, computed locational 
errors exist for n – 1 recorded locations for n total posits.

The analysis evaluates all latitude and longitude distances separately and identi-
fies when the observed recorded speed is zero. Ultimately, there are two lists that rep-
resent the error in latitude and longitude, separately, of a GPS fix. Then, the variance 
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calculated for each list is used as the representative input 
to the process noise matrix for latitude and longitude.

The latitude and longitude measurement noise values 
are 1.3 × 10–5 (degree)2 and 3.2 × 10–5 (degree)2, respec-
tively. The standard deviations are 0.22 nautical miles 
and 0.34 nautical miles, respectively.

Another option for calculating the locational error 
requires projecting forward a proposed location based 
on known course and speed and comparing this with 

the recorded location; however, 
this would incorporate the mea-
surement errors of both course and 
speed. Thus, by trying to determine 
the potential error of either a lati-
tude measurement or a longitude 
measurement, the distance trav-
eled between posits is recorded as 
an individual error in just longitude 
or latitude and only incorporates 
potential errors in recorded speed.

The process noise for the lati-
tude and longitude selected by trial 
and error is 2 × 10–5 and 4.8 × 10–5, 
respectively. The standard deviation 
is 0.27 nautical miles and 0.42 nau-
tical miles, respectively.

RESULTS
The metric used to determine 

the accuracy of the forecast for this 
analysis is the median (50th percen-
tile) and the 90th percentile posi-
tional track error. Positional track 
error is the distance between the 

forecasted value and the nearest interpolated track point 
shown as an absolute error. The data used in this analy-
sis are from two different MarineTraffic data sets. The 
first includes data from February 1 to 4, 2019, and the 
second is from October 1 to 4, 2019. The data sets have 
a track sample size of 138 and 118, respectively. Both sets 
include data for oceangoing vessels that are more than 
400 nautical miles from land, with tracks that have a 
minimum of at least 2 days of data at sea, and have a 

Table 1. February 1–4, 2019, median distance error

Data 
Resolution 

(h)
Total 
posits

Median Distance Error (Nautical Miles) 
at Forecast to Future (h)

1 2 4 8 12 24

1 23 0.51 0.80 1.16 2.08 2.99 7.77

2 13 0.46 0.80 1.35 2.00 2.97 7.05

4 5 0.54 0.85 1.25 2.24 2.92 7.42

8 3 0.65 0.86 1.19 2.07 2.27 6.72

12 2 0.89 1.06 1.49 2.65 3.57 7.51

Table 2. October 1–4, 2019, median distance error

Data 
Resolution 

(h)
Total 
posits

Median Distance Error (Nautical Miles) 
at Forecast to Future (h)

1 2 4 8 12 24

1 23 0.31 0.51 1.09 2.35 3.89 10.12

2 13 0.35 0.51 1.07 2.44 3.90 10.13

4 5 0.33 0.54 0.97 2.38 3.74 9.45

8 3 0.38 0.66 0.95 2.24 3.55 10.92

12 2 0.47 0.78 1.44 2.41 4.29 10.77
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Figure 2.  February 1–4, 2019, 50th percentile distance error of 
track from forecasted position.

October median distance errors (nautical miles)
12

11

10

9

8

7

6

5

4

3

2

1

Da
ta

 re
so

lu
tio

n 
(h

)

11

10

9

8

7

6

5

4

3

2

1

5  10     15      20
Forecast (h)

Figure 3.  October 1–4, 2019, 50th percentile distance error of 
track from forecasted position.
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time difference between all positions of 2 h or less. Only 
1 day of data is used for the actual state (x), and the fore-
cast is compared with some time into the future within 
the time frame.

Calculations of the median (50th percentile) posi-
tional track error are shown in Tables 1 and 2 and Fig-
ures 2 and 3, and calculations of the 90th percentile 
positional error are shown in Tables 3 and 4 and Fig-
ures 4 and 5. The leftmost columns of the tables are the 

data resolution (time between each 
time stamp) and the total number of 
posits available. The top row indi-
cates the number of hours that the 
filter attempted to forecast into the 
future. The more available posits in 
the data set, the more accurate the 
near-term forecast. As expected, the 
further into the future the forecast 
attempted to predict, the greater the 
error across individual data resolu-
tions. As the Kalman filter forecast 
projects further into the future, the 
noisiness of the data and the update 
methods start to influence the accu-
racy of the forecast. A surprising 
outcome from this analysis is that 
the positional error for forecasts of 
12 and 24 h were not always linearly 
increasing as the number of posits 
available decreased.

FUTURE WORK
The team identified two poten-

tial ways to improve this algorithm 
by incorporating either a great circle or haversine cal-
culation for the forecast. Either of these may provide a 
more accurate open-ocean forecast since the great circle 
route provides the shortest route for a line on a sphere. 
This differs from the implementation in this article, 
which assumes that distance globe calculations work 
within the Cartesian environment with a cosine adjust-
ment for the longitudinal values. Additionally, the team 
discussed using this data set to perform the Kalman 

Table 3. February 1–4, 2019, 90th percentile error

Data 
Resolution 

(h)
Total 
posits

90% Distance Error (Nautical Miles) 
at Forecast to Future (h)

1 2 4 8 12 24

1 23 1.65 2.10 3.65 9.20 14.00 36.90

2 13 1.35 2.15 3.60 8.45 13.25 29.35

4 5 2.00 2.30 3.65 8.30 13.45 29.95

8 3 2.15 2.55 3.70 8.20 13.85 38.80

12 2 2.45 2.65 4.20 9.00 14.15 31.25

Table 4. October 1–4, 2019, 90th percentile error

Data 
Resolution 

(h)
Total 
posits

90% Distance Error (Nautical Miles) 
at Forecast to Future (h)

1 2 4 8 12 24

1 23 0.75 1.40 2.95 6.25 10.70 37.80

2 13 0.80 1.45 3.10 6.50 10.65 37.40

4 5 0.85 1.60 2.95 6.00 10.75 37.85

8 3 1.05 1.80 2.70 7.40 11.95 39.75

12 2 1.30 2.05 3.45 7.00 11.95 40.50
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Figure 4.  February 1-4, 2019 90th percentile distance error of 
track from forecasted position.
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Figure 5.  October 1–4, 2019, 90th percentile distance error of 
track from forecasted position.
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filter to calculate the process noise. This involves using 
the state equation to project forward the positions and 
compare with the data to determine the process noise. 
The desired outcome would be finding different “sets” 
of process noise matrices that represent the different 
movement patterns expected from various vessel types 
or indicate whether or not the vessel is moving near/
farther from shore. Ultimately, the process noise could 
be backed out to determine a relative pattern of life for 
different clusters of vessels.

CONCLUSION
With an increase in data availability, implementa-

tion of a Kalman filter can help determine the future 

location of a vessel 90% of the time within 15 nautical 
miles 12 h into the future. The Kalman filter algorithm 
may be improved by using either a great circle or haver-
sine calculation for the forecast. The Kalman filter algo-
rithm forecasts the future location of a vessel using the 
data of the ship track by extrapolating vessel movement 
characteristics by using state equations, estimating the 
uncertainties, and updating the variables in the algo-
rithm to calculate the next state.
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