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Biomarkers to Registration Error
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Andrew S. Gearhart

ABSTRACT
Computed tomography (CT) scans, because of their ability to differentiate tissue densities, have 
been widely used to evaluate lung health. Recent studies such as COPDGene have collected inha-
lation and exhalation CT scans from thousands of subjects, promising insight into the mechani-
cal properties of lung tissue. These paired scans must often be spatially aligned (i.e., registered) 
to extract biomarkers describing the movement of lung tissue that may correlate with disease. 
Unfortunately, the relationship between registration and biomarker error is poorly characterized, 
a challenge that must be addressed before registration-based biomarkers can be used in clinical 
practice. In our analysis, we consider three registration-based biomarkers (Jacobian determinant, 
anisotropic deformation index, and slab-rod index) and demonstrate their sensitivity to modeled 
registration error. We provide a range of errors for a given biomarker, highlighting how both the 
magnitude of registration error and correlations between vectors in the registration error field can 
influence biomarker error. We then describe a method to measure the error field for a particular 
registration algorithm and compare it with modeled registration error. These estimates enable 
selection of an appropriate registration error model, which improves understanding of biomarker 
uncertainty. Quantifying the relationship between registration and biomarker error is crucial 
because it may inform the selection of a registration algorithm to reduce error in new research 
studies, and in turn, result in robust imaging biomarkers for disease characterization.

typically composed of millions of 3-D pixels, or voxels, 
that represent cuboids of tissue or air that are ~1 mm on 
a side. Because of CT’s ability to differentiate tissue den-
sity, it has been used to evaluate lung health for many 

INTRODUCTION
Computed tomography (CT) is a medical imaging 

technique that uses x-rays to determine tissue density—
allowing physicians to obtain 3-D representations of 
patients’ soft tissues and bones. Chest CT scans are 
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disorders—for example, chronic obstructive pulmonary 
disease (COPD),2 asthma,3 and coronavirus disease 2019 
(COVID-19).4

Recent studies such as COPDGene move beyond 
analyzing individual CT scans to collecting paired inha-
lation and exhalation scans from thousands of subjects,5 
capturing the state of the lung tissue at the transition 
points of a respiratory cycle. As the lungs are inherently 
dynamic organs, these paired scans have the potential 
to indicate changes in the mechanical properties of 
diseased lung tissue, which may inform patient treat-
ment. In particular, two classes of biomarkers have been 
derived from inhalation/exhalation scan pairs: those that 
use raw tissue density values at voxels (e.g., parametric 
response mapping6) and those that use the displacement 
between voxels within a scan pair (e.g., Jacobian deter-
minant [JD], anisotropic deformation index [ADI],7 and 
slab-rod index [SRI]8). Our work focuses on this latter 
class of biomarkers. Specifically, JD is a measure of voxel-
wise volume change in the lungs, while ADI and SRI 
measure the magnitude and orientation of directional 
preference in volume change, respectively.8 Figure  1 
illustrates these concepts by showing JD as the volume 
change in a voxel (orange region, left), increasing ADI 
as increased stretching in one direction (green), and SRI 
as a transition from thin/flat “slabs” to long “rods” (blue).

Both classes of imaging biomarkers rely on registration, 
or the process of aligning voxels between scan pairs, to 
estimate changes between inhalation and exhalation (i.e., 
estimate the motion of the lungs during respiration). Spe-
cifically, registration produces a set of per-voxel vectors (a 
deformation field) that approximates the transformation 
from one paired scan to the other (Figure 2). In general, 
algorithmic errors can occur when registering these scans 
because of the complex nature of lung motion. Unfor-
tunately, the relationship between registration error and 
biomarker variation is not well understood—making it 
difficult to control the quality of imaging data sets. There 
are at least two components to this problem: (1) measur-
ing (or modeling) registration error and (2) characterizing 
its effect on downstream biomarkers. Recent approaches 
to understanding registration error use machine learning 
models to identify regions of poor registration quality9–12 
and to adaptively refine registrations.13 Existing work 
that explores the link between registration error and bio-
marker variation focuses on JD.14–16 Our work discusses 
an approach to both modeling and measuring registra-
tion error and analyzes the impact of registration error on 
JD, ADI, and SRI.

This article quantifies the relationship between errors 
in registration and imaging biomarkers. In the next 
section, we analyze the sensitivity of three biomarkers 
(JD, ADI, and SRI) to modeled registration error. We 
highlight that the magnitude of this error and the cor-
relations between the vectors in the registration error 
field can influence the resulting biomarkers. Then we 
describe a strategy to measure registration error and 
compare it with modeled error for a pair of algorithms. 
These measurements enable the selection of an appropri-
ate registration error model, which can improve down-
stream biomarker uncertainty characterization. This, in 
turn, may guide selection and tuning of a registration 
algorithm to reduce biomarker error in new imaging 
studies. Finally, we discuss future directions. This work 
highlights the need for estimating error in registration-
based biomarkers, which is crucial when using these bio-
markers to characterize disease.

In
cr

ea
si

ng
 A

D
I

In
cr

ea
si

ng
 S

R
I

Figure 1.  Intuition of JD (orange), ADI (green), and SRI (blue) 
values. Increasing JD is shown by the volume expansion of a 
voxel, increasing ADI is shown by increased stretching in one 
direction, and increasing SRI is shown by the transition from thin/
flat “slabs” to long “rods.”
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Figure 2.  Intuition behind registration. The voxels in the inhalation scan (a) are spatially aligned with those in the exhalation scan (b; red 
arrow). The output is a deformation field representing the per-voxel vectors that approximate the transformation from the inhalation to 
exhalation scan. (c) The inverse deformation field (from exhalation to inhalation).
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SENSITIVITY ANALYSIS
Methodology

In this section, we analyze the sensitivity of JD, 
ADI, and SRI in the presence of simulated registration 
error. To extract these biomarkers from paired scans, 
we first preprocess the scans and identify the voxels 
in the lung regions. This latter step, segmentation, is 
conducted using the Chest Imaging Platform (CIP).17 
These segmented lung regions are then registered to 
determine spatial correspondence between the voxels in 
the inhalation/exhalation scan pair. The registration is 
performed using the Advanced Normalization Tools18 
(ANTs) library and consists of three stages: rigid (ori-
ents the scans through rotating and translating), affine 
(matches the scans in size through shearing and scal-
ing), and deformable (determines the local voxel level 
displacements by nonlinearly warping voxels).19 For 
extracting biomarkers from the displacement field, only 
the deformable field—computed using the Symmetric 
Normalization (SyN) algorithm20—is used because it 
captures local deformations. After extraction, these bio-
markers are ready for use in downstream imaging studies 
to characterize lung diseases (Figure 3).

While both segmentation and registration may result 
in downstream biomarker errors, our analysis focuses on 
registration error and leaves segmentation error analy-
sis to future work. Since computing the true registra-
tion is infeasible because of the complexity of knowing 
the precise movement of each lung voxel, we treat the 
deformation field () from SyN as the ground truth. To 
simulate registration error, a synthetic perturbation field, 
H, is added to this ground-truth registration to create a 
perturbed deformation field,   

, represented by

	   
 =  + H,	

where  is a set scalar that controls the magnitude of the 
synthetic error. Following the work of Shao et al.,16 the 
synthetic perturbation fields, H, are generated using a 
cubic B-spline model. This approach ensures a smooth 
perturbation field that preserves the invertibility of 
the perturbed deformation and avoids situations where 
portions of the transformed scans appear to fold over 

themselves. (Having a single smooth deformation field 
for all lung tissue assumes that neighboring voxels influ-
ence each other locally. Anatomically, this assumption 
breaks down when registering voxels in a region with 
sliding motion—for example, along lung lobes boundar-
ies during the breathing cycle.21 Future work may explore 
this behavior further.) The cubic B-spline model can be 
interpreted as interpolating between randomly distrib-
uted weight vectors located at specific coordinates in the 
perturbation field, known as control points (Figure 4). In 
their analysis, Shao et al. assumed that control points 
were spaced every four voxels.

The selection of control point spacing (CPS), how-
ever, is an important decision that we believe directly 
relates to biomarker error (Figure 5). Registration-based 
biomarkers at a given voxel are computed using the vec-
tors in the deformation field immediately neighboring 
that voxel. The similarity in the direction of these vec-
tors directly impacts the biomarker value. We refer to 
this similarity as local correlation, or the average cosine 
similarity of vectors within a volume surrounding a 
particular deformation field coordinate. Our sensitiv-
ity analysis varies both the magnitude (controlled by 
) and local correlation (controlled by the CPS) of the 
synthetic perturbation field to simulate different levels 
of registration error and measure the resulting percent 
change in each biomarker.

Preprocessing Segmentation Registration Biomarker extraction

Downstream
studies

Figure 3.  Processing pipeline to compute registration-based lung biomarkers. Our analysis focuses only on two of these stages: 
registration and biomarker extraction.

Figure 4.  Visualization of cubic B-spline perturbation field gen-
eration. Interpolation (black arrows) using a cubic B-spline model 
occurs between randomly distributed weight vectors at control 
points (red arrows). Note that this is strictly an illustrative depic-
tion and is not generated from actual splines.
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To calculate the biomarker error, we compute the 
mean percent change of the original biomarker values 
(obtained from the SyN-generated “ground truth” defor-
mation field, ) and the perturbed biomarker values 
(obtained from   

). This can be expressed as

% error =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 = 1
𝑁𝑁𝑁𝑁
∑ |𝐵𝐵𝐵𝐵 𝚽𝚽𝚽𝚽� (𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧)− 𝐵𝐵𝐵𝐵𝚽𝚽𝚽𝚽(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧)|

𝐵𝐵𝐵𝐵𝚽𝚽𝚽𝚽(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧)∀(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦,𝑧𝑧𝑧𝑧)∈𝑺𝑺𝑺𝑺  * 100,� (1)

where B(x, y, z) and B  
~ (x, y, z) are the original and 

perturbed biomarker values at voxel coordinate (x, y, z), 
S represents the set of voxels inside the lung region 
(obtained via segmentation), and N is the total number 
of lung voxels.

The steps of the sensitivity analysis can be summa-
rized as follows. For each scan pair:

1.	 Register the segmented pair to compute the ground-
truth deformation field, .

2.	 Add a cubic B-spline perturbation field to the 
ground-truth deformation, generating a perturbed 
deformation field,   

.

3.	 Compute the biomarker values for the original and 
perturbed deformation fields.

4.	 Compute the mean percent error between the origi-
nal and perturbed biomarker values.

5.	 Repeat steps 2–4 while varying the magnitude and 
CPS of the B-spline field to simulate different levels 
of registration error.

Results
The sensitivity analysis was conducted using 10 COP-

DGene inhalation/exhalation scan pairs from the DIR-
Lab data set,22 each with voxel side lengths of 2.5 mm, 
0.625 mm, 0.625 mm. We generated 100 synthetic 

perturbation fields for each CPS (4, 8, 12, and 16 voxels) 
and ground-truth deformation field (10 scans), resulting 
in a total of 4  10  100 = 4,000 perturbation fields. The 
perturbation fields were scaled by constant factor  such 
that the average magnitude of registration error ranged 
from 0.19 to 0.94 mm. Each perturbation field was added 
to a ground-truth deformation field, and the resulting 
mean biomarker error for JD, ADI, and SRI was com-
puted (Eq. 1).

Our results suggest that for all three biomarkers, 
small magnitudes of registration error (<1  mm) can 
significantly impact error in downstream biomark-
ers (Figure  6). For JD, the percent error can reach up 
to 43.8% at the largest magnitude of error considered 
(0.94  mm) and the lowest CPS (4 voxels). For ADI 
and SRI, these errors are even larger, reaching 468.1% 
and 123.1%, respectively. Additionally, percent error is 
dependent on both the registration error magnitude and 
CPS. Specifically, biomarker error varies directly with 
registration error magnitude and inversely with CPS, 
supporting our original hypothesis that CPS impacts the 
biomarker error. Smaller CPS also changes the distribu-
tion of biomarkers—an observation that may bias down-
stream statistical tests. This trend holds for JD, ADI, and 
SRI, suggesting that a robust understanding of the local 
correlation of actual registration error is required to 
characterize its impact on biomarkers.

To visualize the impact that the CPS has on biomarker 
values, Figure 7 shows an example of a unit volume cube 
(representing a voxel) deformed by two cubic B-spline 
perturbation fields of equal magnitude, one with a CPS of 
4 voxels and the other with a CPS of 16 voxels. The cube 
deformed by the perturbation field with CPS of 4 voxels 
has a volume change that is greater in certain directions 
than others (i.e., anisotropic change), highlighting the 
fact that the local correlation of the registration error 
vector field impacts the nature of volume change of a 
given voxel, and thus, the biomarker values themselves.

Figure 5.  Examples of synthetic perturbation fields. Two-dimensional slices of a normally distributed random perturbation field (left) 
and cubic B-spline perturbation fields with CPS of 4 (center) and CPS of 16 (right). Neighboring vectors in the B-spline fields are more 
correlated with increased CPS, highlighting the impact of this parameter.
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Figure 6.  Example biomarker distributions (computed with kernel density estimation) and mean percent errors (computed using 100 
perturbations on a single scan pair) as a function of average registration error and CPS. (a) Empirical JD distribution; (b) empirical ADI 
distribution; (c) empirical SRI distribution; (d) JD percent error; (e) ADI percent error; (f) SRI percent error. For all three biomarkers, the 
biomarker error decreases as the magnitude of registration error decreases or as the CPS increases.

Figure 7.  Unit volume voxel (orange) deformed by a 2 × 2 × 2 slice 
of a B-spline perturbation field with a CPS of 4 (left) and a CPS of 
16 (right). All voxels have been centered on the origin to show 
relative volume change rather than spatial shifts. The deformed 
voxel (blue) corresponding to the CPS of 4 has a volume change 
that is greater in certain directions than others, highlighting the 
fact that the local correlation of the registration error vector field 
impacts the nature of volume change.
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LOCAL CORRELATION ANALYSIS
Methodology

The results in the preceding section show that bio-
marker error is sensitive to both the magnitude and 
local correlation of modeled registration error. Although 
these results provide an understanding of the relation-
ship between errors in registration and biomarkers, they 
alone are not useful for estimating the biomarker uncer-
tainty for a particular clinical application because of the 
large spread in biomarker error that is dependent on 
the specific parameters used to model registration error. 
Therefore, to truly estimate the uncertainty in biomarker 
values for a particular registration algorithm and data set, 
it is necessary to estimate both the magnitude and local 
correlation of actual registration error to understand the 
model parameters that should be used to simulate realis-
tic registration error (i.e., determine the most appropri-
ate row and column in the heatmaps in Figure  6). To 
estimate the registration error magnitude, one common 
approach is to compute the average displacement 
between a set of annotated landmark points in the lungs 
and landmark points that have been transformed via the 
registration field. Our work focuses on local correlation 
estimation since the methodology for estimating this is 
less defined.

To estimate the local 
correlation of actual reg-
istration error, we gener-
ated synthetic CT scans 
in which the ground-truth 
deformation field was 
known. To generate these 
synthetic scans, we first 
registered the inhalation 
and exhalation scans for 
each of the 10 DIR-Lab 
COPDGene scan pairs and 
treated the deformation 
field output as the ground-
truth registration field. 
Each scan pair was regis-
tered with two different 

registration algorithms, SyN and Time Varying Veloc-
ity (TVV) (both available through the ANTs library), 
to understand the generalizability of results to differ-
ences in the ground-truth deformation field. We then 
scaled the deformation field by a factor of ½ and used 
this deformation field to transform the inhalation scan, 
creating a synthetic scan representing a state halfway 
between inhalation and exhalation (Figure 8). This 
resulted in a total of 20 synthetic scan pairs (10 pairs 
using SyN for the ground truth and 10 pairs using TVV 
for the ground truth). We then registered the inhala-
tion scans to their corresponding synthetic exhalation 
scans, repeating the process for both the SyN and TVV 
registration algorithms (Figure 9). As the ground-truth 
deformation field is known for these registrations, we 
used the difference between these observed deforma-
tion fields and the ground-truth deformation fields to 
calculate the field of registration errors. Lastly, to com-
pute the local correlation of the resulting registration 
error vector field, we calculated the local correlation 
(i.e., average pairwise cosine similarity between vectors 
around a particular point) averaged across 300 win-
dows of a given size within the lungs (as indicated by a 
segmentation mask).

Ground truth algorithm Registration algorithm

10 inhalation
images

10 synthetic
scan pairs

10 synthetic
scan pairs 10 registration

error �elds

10 registration
error �elds

10 registration
error �elds

10 registration
error �elds

10 exhalation
images

SyN

TVV

SyN

TVV

SyN

TVV

Figure 9.  Experimental protocol for generating synthetic scans and registration error fields. Each 
of the 10 scan pairs is registered with both SyN and TVV, resulting in 10 synthetic scan pairs for each 
algorithm (20 total). Each synthetic scan pair is then registered with both SyN and TVV, resulting in 
10 registration error fields for each unique combination of ground-truth algorithm and registration 
algorithm (40 total registration error fields).

(b)(a) (c)

Figure 8.  Visualization of synthetic CT scans. The individual scans show two-dimensional slices of original inhalation (a) and exhala-
tion (b) scans, with a synthetic slice (c) representing a state halfway between inhalation and exhalation (DIR-Lab COPDGene patient 10).
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The steps for the local correlation analysis can be 
summarized as follows for each scan pair:

1.	 Register the inhalation image to the exhalation 
image with algorithm A (either SyN or TVV) to 
compute the ground-truth registration field.

2.	 Scale the ground-truth registration field by a factor of 
1/2 and use this vector field to transform the inhala-
tion image, generating a synthetic image representing 
a state halfway between inhalation and exhalation.

3.	 Register the inhalation image to the synthetic exha-
lation image with algorithm B.

4.	 Compute the registration error field by subtracting 
the deformation field from step 3 from the ground-
truth deformation field from step 1.

5.	 Calculate the local correlation of the resulting reg-
istration error vector field averaged across 300 win-
dows for a range of window sizes (e.g., 4 × 4 × 4 to 
20 × 20 × 20 voxels).

6.	 Repeat steps 1–5 for all combinations of SyN and 
TVV used for algorithms A and B.

Results
For each of the 40 registration error vector fields (20 

synthetic scan pairs, 2 registration algorithms), we com-
puted the local correlation for window sizes ranging from 
4 × 4 × 4 voxels to 20 × 20 × 20 voxels, generating a local 
correlation curve. These curves were averaged across 
the 10 registration error vector fields from each unique 
combination of ground-truth algorithm and registration 
algorithm (Figure 10). The figure also shows local cor-
relation curves for several B-spline perturbations with 
different CPS. Optimally, the actual local correlation 
curve should match the curve for a particular B-spline 
perturbation to determine the most appropriate CPS to 
model registration error for a given algorithm, enabling a 
more accurate characterization of biomarker error.

In our results, the choice of registration algorithm 
had a significant effect on local correlation. The SyN 
algorithm produced output deformation fields that have 
similar local correlations to B-spline models with a CPS 
of 4. TVV, however, produced deformation fields that are 
typically between the curves for B-spline perturbations 
with spacings of 8 and 12. Choice of algorithm used 
for producing a ground-truth registration field did not 
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Figure 10.  Local correlations (ground-truth algorithm, registration algorithm) for observed registration error and B-spline perturbation 
fields. The SyN algorithm produced deformation fields that have similar local correlations to B-spline models with a CPS of 4. TVV pro-
duced deformation fields that are typically between the curves for B-spline perturbations with spacings of 8 and 12.
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appear to have a major effect on the local correlation of 
the registration error. This suggests that the local cor-
relation is primarily a function of the registration algo-
rithm itself, but we note that additional experimental 
evidence is needed to validate this conjecture. Compar-
ing these local correlation curves with those of B-spline 
perturbations with different CPS allows us to combine 
these results with those in the sensitivity analysis sec-
tion to characterize the biomarker uncertainty for a 
particular registration algorithm. This consequently 
may inform the choice of registration algorithm since 
it enables one to determine which algorithms have the 
lowest biomarker error.

CONCLUSION
In this work, we analyzed the effect of registration 

error magnitude and local correlation on registration-
based biomarkers such as JD, ADI, and SRI. Specifically, 
we first measured the sensitivity of each biomarker to 
registration error by modeling registration error with a 
cubic B-spline perturbation field, varying both the mag-
nitude and local correlation of the synthetic error to 
simulate different levels of registration error. We showed 
that biomarker error decreases as either the magnitude 
of registration error decreases or the local correlation of 
registration error increases, highlighting that even small 
magnitudes of registration error (<1 mm) can signifi-
cantly impact biomarker error. Since biomarker error is 
directly dependent on the local correlation of registra-
tion error, we investigated the local correlation of actual 
registration error, introducing a method to estimate this 
for a particular registration algorithm. We did this by 
generating synthetic scans in which the ground-truth 
deformation field was known and then registering the 
synthetic scan pairs, resulting in a registration error 
vector field. The local correlation of the registration 
error vector field was compared with that of B-spline 
perturbation fields with different CPS to determine the 

most accurate model for registration error for a given 
algorithm. Determining an accurate model for registra-
tion error was critical to ensure a meaningful estimate of 
biomarker uncertainty (i.e., determine the most relevant 
row in Figure 6).

To extend this analysis to future imaging protocols, 
one can do the following (Figure 11):

1.	 Conduct the sensitivity analysis using inhalation/
exhalation scan pairs in the data set of interest. 
Apply different levels of modeled registration error 
(i.e., B-spline perturbation fields with varying mag-
nitudes and CPS) to the ground-truth deformation 
fields and measure the mean biomarker error (gener-
ate heatmaps in Figure 6).

2.	 Estimate the magnitude of registration error by com-
puting the average displacement between a set of 
annotated landmark points in the lungs and land-
mark points that have been transformed via the reg-
istration field.

3.	 Estimate the local correlation of registration error 
by generating synthetic scans in which the ground-
truth deformation field is known and computing the 
local correlation of the registration error vector field. 
Compare this with the local correlation of different 
B-spline perturbations to determine the most similar 
B-spline model for registration error.

4.	 Using the estimated magnitude and local correla-
tion of registration error, determine the most rea-
sonable estimate for biomarker uncertainty for a 
given algorithm/data set (i.e., select a particular row/
column in the heatmaps in Figure 6).

5.	 Using the uncertainty estimates, select the algo-
rithm with the lowest biomarker error.

There are limitations to this pipeline. First, the 
impact of registration error magnitude is dependent on 

Conduct sensitivity
analysis using

data set of interest

Estimate the magnitude
of registration error

Estimate the local
correlation of

registration error

Estimate biomarker
uncertainty for given
algorithm/data set

Figure 11.  Proposed pipeline for estimating biomarker uncertainty for new imaging protocols. First, the sensitivity analysis is con-
ducted to determine the biomarker error to modeled registration error. Then both the magnitude and local correlation of registration 
error are estimated using synthetic CT scans. Lastly, using both these estimates, the most reasonable estimate for biomarker uncertainty 
is determined for a given algorithm/data set.
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the voxel size in the CT scans—for example, a 0.25-
mm error has more of an impact on a 0.5 mm, 0.5 mm, 
0.5  mm voxel than it does on a 1 mm, 1 mm, 1 mm 
voxel. To generalize this to data sets with different voxel 
sizes, the registration error magnitudes should be nor-
malized by voxel size. Second, the method to estimate 
registration error magnitude is prone to human errors. 
The proposed method requires human annotation of key 
landmark points that may have labeling errors and may 
not be representative of the error at other regions in the 
scans. Lastly, the method to estimate the local correla-
tion error may be biased to a particular algorithm. Since 
in some cases the same algorithm is used to first generate 
the synthetic scans and then register the synthetic scan 
pairs, the resulting registration error field may not be 
representative of the error in the original scan pairs. We 
attempted to mitigate this bias by considering two dif-
ferent registration algorithms (SyN and TVV). We com-
pared the results between the case in which the same 
algorithm was used for generating the synthetic scans 
and registering the synthetic scan pairs and the case in 
which different algorithms were used. Our initial find-
ings suggest that the results are generalizable since the 
local correlation did not vary between the two ground-
truth registration algorithms (Figure 10). However, a 
more comprehensive analysis should be conducted in 
which the local correlation is compared with existing 
methods for estimating registration error.9–12

The ability to estimate the biomarker uncertainty for 
a particular registration algorithm may inform the choice 
of algorithm in certain clinical studies since it allows 
one to compare algorithms in terms of biomarker error. 
Furthermore, our results suggest that registration-based 
lung biomarkers such as JD, ADI, and SRI have a com-
plex relationship with registration error that is depen-
dent on both the magnitude and local correlation of the 
error field. This relationship needs to be well understood 
before such biomarkers can be used in the clinical space 
for disease characterization. This is a rich space for fur-
ther exploration—especially with the increasing avail-
ability of large imaging cohorts and the development 
of data-driven registration-characterization9–12 models 
(e.g., deep neural networks) that promise to greatly 
increase processing throughput.
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