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A Transferable Belief Model Approach to 
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ABSTRACT
Combat identification (CID) is the process of accurately characterizing battle space entities to 
enable high-confidence, real-time application of tactical options, such as engagement. Evidence 
to support CID estimates is often sparse, latent in the battlefield, or both, raising the risk of associa-
tion ambiguity and potential loss of CID custody. Therefore, an automated CID estimation meth-
odology must properly account for and convey its results’ uncertainty, ambiguity, and ignorance 
to the war fighter to support timely, well-informed decision-making. The automated CID estima-
tion process presented in this article is a computationally scalable approach to achieve robust CID 
custody in over-the-horizon targeting applications. Novel aspects of this approach include (1) a 
compact representation of track histories as tracking segments (vice measurements); (2) a tempo-
ral history of kinematic ambiguities between tracks; and (3) a transferable belief model for open-
world evidential reasoning under uncertainty, ambiguity, and conflict. The result is an actionable, 
informative CID estimation process that accounts for real-world challenges and constraints.

associated CID evidence can be attributed to a potential 
target at the time of an engagement decision. A credible 
and trustworthy automated CID estimation decision aid 
must address these challenges.

This article presents a mathematically rigorous 
approach for producing actionable CID estimates in 
the presence of uncertainty, ambiguity, conflict, and an 
open-world assumption. Specifically, this article pres-
ents an evidence fusion and inference methodology that 
provides actionable track identification estimates using 
associated CID evidence from multiple heterogeneous 

INTRODUCTION AND BACKGROUND
Combat Identification Evidence for Targeting Decisions

The targeting process requires the war fighter to 
identify a battle space entity, at a confidence level deter-
mined by rules of engagement, in order to make an 
engagement decision. This combat identification (CID) 
process often requires the war fighter to manually assess 
evidence accrued on the target. Because of the sparsity 
and/or latency of highly informative CID evidence (e.g., 
imagery), it may be difficult to uniquely associate this 
evidence with tracked battle space objects. Additionally, 
when tracks of battle space objects experience gaps or 
become closely spaced, it is unclear whether previously 
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intelligence (INT) sources. This approach accounts for 
the four key challenges of information fusion:

1. Imprecise CID evidence about battle space objects 
(uncertainty)

2. Imprecise association of CID evidence with a single 
battle space object (ambiguity)

3. Associated CID evidence from multiple sources that 
may not be completely consistent (conflict)

4. Ignorance of the universe of possible target identity 
hypotheses (open-world assumption)

In addition to addressing these four challenges, the 
methodology offers features that make for a practical 
implementation of CID estimation:

•	 The ability to reason over a taxonomy of possible 
target identity hypotheses in lieu of a simple set of 
hypotheses (hierarchical reasoning)

•	 The ability to adapt the reported CID estimate to an 
appropriate level of a hypothesis taxonomy (action-
able)

•	 The ability to incorporate evidence from multiple 
heterogeneous INT sources whose feature spaces do 
not overlap (multi-INT)

The CID estimation approach is then extended to 
accommodate latent CID evidence by (1) introducing a 
computationally scalable method for latent data associa-
tion of evidence with tracks and (2) combining CID evi-
dence to account for tracking ambiguities (e.g., closely 
spaced tracks) that may have occurred after the time of 
evidence association. The latter capability is critically 
important to the war fighter. Imagine a scenario where 
CID evidence is associated with an adversary track that 
subsequently becomes ambiguous with the track of a 
civilian (i.e., neutral) platform. If the war fighter is not 
aware that an ambiguity occurred after associating evi-
dence, their assessment of the CID evidence will not 
have proper context, which could lead to a catastrophi-
cally erroneous decision. Thus, any CID estimation deci-
sion aid must properly account for tracking ambiguities 
occurring after CID evidence is associated.

CID Evidence for Improved Track Custody
In addition to fulfilling the primary need to accurately 

estimate CID when information is latent, CID evidence 
can also be used to enhance track custody in the presence 
of tracking gaps (track stitching) and to reestablish CID 
after periods of tracking ambiguity (CID disambiguation).

Track stitching is the process of associating newly 
formed tracks with previously dropped tracks. It is difficult 
to stitch tracks using only kinematic comparisons when 
there are significant tracking gaps, but comparing CID 

estimates to eliminate incompatible tracks can improve 
the process. The benefit of track stitching is that once 
the new track is stitched, it can inherit important previ-
ously derived contextual information from the stitched 
dropped track, such as intent, point of origin, pattern of 
life assessments, and other historical attributes that may 
support an engagement decision. The process of track 
stitching is conceptually straightforward. First, newly 
established tracks are evaluated against dropped tracks 
for kinematic feasibility to obtain candidates for stitch-
ing. Second, once CID evidence is associated with the 
new track, this evidence is compared to the CID estimate 
for all candidate stitched tracks obtained from the kine-
matic feasibility assessment. With sufficiently consistent 
CID evidence, tracks may be determined to represent the 
same battle space object. A statistical hypothesis test can 
help the war fighter make a decision to stitch tracks.

When tracks become ambiguous, a trustworthy CID 
estimation algorithm must acknowledge that it can no 
longer determine which track holds which CID esti-
mate, and the fused, ambiguous CID estimate must be 
attributed to both ambiguous tracks (CID entanglement). 
However, CID evidence that is unambiguously associated 
with a track after an ambiguity has occurred can be used 
to estimate the CID of the associated track as well as the 
CID of tracks that were entangled with it. Consider an 
example of two crossing tracks, each with unique unam-
biguous CID estimates (adversary and civilian, respec-
tively) before they cross. As the tracks cross, their CID 
estimates become entangled, and it is not clear which 
track is an adversary and which is a civilian after they 
separate. Once one of the track’s associated CID evidence 
indicates that it is a civilian platform, we can deduce that 
the other track must be an adversary. An automated 
system can make this powerful deduction on behalf of 
the war fighter to shorten the targeting decision timeline.

Article Organization
This article is broken into two main sections: (1) CID 

estimation and (2) latent CID evidence association.
In the CID Estimation section, first the core CID 

estimation mathematical framework, the transferable 
belief model (TBM), is justified and presented. Second, 
the TBM mathematics are applied to a taxonomy of 
classification hypotheses, and example calculations 
are presented. Third, a computationally efficient TBM 
implementation is presented using a BitSet encoding 
of the hypothesis taxonomy. Fourth, a methodology for 
defining multi-INT CID features and evidence evalua-
tion is presented. Last, an information theoretic algo-
rithm is derived to determine the best level to report the 
CID estimate within a taxonomy of hypotheses.

The second major section addresses the specific 
challenges of associating latent CID evidence with his-
torical tracks in a computationally scalable way. First it 
presents the concept of the track segment graph (TSG) 
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for an efficient and compact representation of histori-
cal track kinematics and periods of ambiguity. Then it 
presents the use of an interval binary search tree (IBST) 
for retrospective search of candidate track associations. 
The section concludes with details on an algorithm for 
propagating CID estimates from the time of associated 
evidence to the current time while accounting for ambi-
guities that may have occurred.

CID ESTIMATION
Problem Statement

This article considers CID estimation as a special 
case of the more general problem of estimating the belief 
distribution across a large set of discrete hypotheses rep-
resenting the type of an object being observed in the 
battle space. More generally, this hypothesis space can be 
hierarchical and represented as a taxonomy of possible 
object types. Real-world examples of taxonomies related 
to targeting include those defined by Link 16,1 MIL-
STD-2525D,2 and Cursor on Target (CoT).3 The Link 16 
taxonomy represents battle space objects at three hierar-
chical levels: category (air, land, surface, etc.), platform 
(carrier, destroyer, fighter, etc.), and specific type (CVN, 
DDG, F-18, F-16, etc.). The MIL-STD-2525D taxonomy 
was defined for display symbology, and its hierarchical 
depth varies across the taxonomy. Finally, the CoT tax-
onomy is similar to that of MIL-STD-2525D and is used 
in the examples throughout this article.

In addition to supporting a hierarchical hypothesis 
space, the CID estimation approach must provide a 
framework for reasoning under uncertainty, ambiguity, 
conflict, and an open-world assumption. Uncertainty is 
due to imprecise CID evidence that reflects ignorance 
about a battle space object’s observed features. Ambigu-
ity is the result of imprecise association or attribution 
of evidence to a single battle space object. Conflict can 
arise when different sensing modalities (multiple INTs) 
have different degrees of ignorance or there is associa-
tion ambiguity, which is common when reasoning over 
sensing modalities with heterogeneous feature spaces. 
Finally, the open-world assumption accommodates the 
reality that the hypothesis space may be incomplete.

The TBM
The two most commonly used mathematical frame-

works for reasoning under uncertainty are Bayesian 
inference4 and Dempster–Shafer (D-S) evidence combi-
nation.5 However, neither framework employs the open-
world assumption, as indicated by their renormalization 
of probability/belief over the defined hypothesis space. 
As a result, these frameworks assign probability/belief to 
the hypotheses that are most consistent with the evi-
dence, even if no hypothesis is significantly consistent, 
which can be misleading to a decision-maker.

To illustrate the value of employing the open-world 
assumption, consider the so-called Zadeh counterexam-
ple problem.6 A patient is experiencing headaches and 
visits a doctor who assesses that the symptoms are 99% 
likely the result of a migraine and 1% likely the result of 
a stroke. Seeking a second opinion, the patient visits a 
second doctor who assesses that the symptoms are 99% 
likely the result of allergies and 1% likely the result of a 
stroke. Using Bayesian inference or D-S evidence com-
bination, combining the evidence from both doctors 
results in a definitive explanation (with 100% likelihood) 
that the patient is experiencing a stroke (a conclusion 
that both doctors found highly unlikely, at only 1%). 
Alternatively, an evidence combination approach called 
the transferable belief model (TBM), first published by 
Smets in 1990,7 declares that it is 0.01% likely that the 
patient is experiencing a stroke and 99.99% likely that 
the patient is suffering from something else that neither 
doctor considered as a possibility. Both doctors are rea-
soning over the same hypothesis space (i.e., migraine, 
allergies, and stroke); however, this hypothesis space is 
incomplete. Therefore, Zadeh’s counterexample exposes 
the inability of Bayesian and D-S frameworks to deal 
with ignorance of the complete hypothesis space. The 
TBM’s explanation of the patient’s encounter with both 
doctors is more aligned with a common-sense inference 
and justifies employing the TBM evidence combination 
approach for CID estimation.

To formalize the TBM framework, the following defi-
nitions and notations are introduced:

•	 Frame	of	discernment	(FOD): Denoted by Ω, this 
is a finite set of mutually exclusive elements of a 
hypothesis space. Because of the open-world assump-
tion, the FOD may not be exhaustive.

•	 Basic	belief	assignment	(BBA): A mapping mΩ from 
the power set 2Ω over the FOD to a value between 0 
and 1, 2Ω � [0,1], that satisfies

 ∑A2Ω mΩ(A) = 1. (1)

•	 Focal	elements: Elements A  2Ω where mΩ(A) > 0.

•	 Vacuous	belief	function	(VBF): The belief function 
that represents total ignorance over the hypothesis 
space, mΩ(Ω) = 1.

Of particular note, the VBF is reminiscent of the so-
called diffuse prior used in Bayesian inference. However, 
there is a key conceptual difference. In the Bayesian 
framework, a diffuse prior yields an initial probability of 
1/N across a hypothesis space of size N. Within the TBM 
framework, a vacuous prior is a set theoretic statement 
assigning all the initial belief to the entire set of hypoth-
eses with no assertion of how it is divided among that 
set. In contrast to D-S, the TBM allows for the empty set 
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to be a focal element (i.e., to have non-zero belief mass 
explicitly representing the open-world assumption).

The TBM framework defines evidence combination 
rules for conjunctive (logical AND) and disjunctive 
(logical OR) reasoning. Within the TBM framework,6 
the conjunctive rule is based on the assumption that the 
belief functions to be combined are induced by reliable 
sources of information, whereas the disjunctive rule only 
assumes that at least one source of information is reli-
able, but we do not know which one. Within the context 
of tracking systems, conjunction is used when we have 
high confidence that the CID evidence to be combined 
has been associated with the correct track, whereas dis-
junction is used when there is ambiguity as to which 
CID evidence is associated with a track. Mathematically, 
these combination rules are as follows8:

•	 Conjunctive	combination	rule for two BBAs, 1 and 
2, over the same FOD:

𝑚𝑚𝑚𝑚1⋂2
𝛺𝛺𝛺𝛺 (𝐴𝐴𝐴𝐴) = � 𝑚𝑚𝑚𝑚1

𝛺𝛺𝛺𝛺(𝑋𝑋𝑋𝑋) 𝑚𝑚𝑚𝑚2
𝛺𝛺𝛺𝛺(𝑌𝑌𝑌𝑌)

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

  ∀𝐴𝐴𝐴𝐴 𝐴 𝐴 𝐴 2Ω (𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌 𝐴 2Ω) 

(2) 

𝑚𝑚𝑚𝑚1⋂2
𝛺𝛺𝛺𝛺 (𝐴) = 1 − � 𝑚𝑚𝑚𝑚1⋂2

𝛺𝛺𝛺𝛺 (𝐴𝐴𝐴𝐴)
𝑋𝑋𝑋𝑋𝐴2Ω,𝑋𝑋𝑋𝑋𝐴𝐴 

 

•	 Disjunctive	combination	rule for two BBAs, 1 and 
2, over the same FOD Ω:

𝑚𝑚𝑚𝑚1⋃2
𝛺𝛺𝛺𝛺 (𝐴𝐴𝐴𝐴) = � 𝑚𝑚𝑚𝑚1

𝛺𝛺𝛺𝛺(𝑋𝑋𝑋𝑋) 𝑚𝑚𝑚𝑚2
𝛺𝛺𝛺𝛺(𝑌𝑌𝑌𝑌)

𝑋𝑋𝑋𝑋⋃𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌

  ∀𝐴𝐴𝐴𝐴 𝐴 𝐴

∈ 2Ω (𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌 ∈ 2Ω) 
      (3) 

𝑚𝑚𝑚𝑚1⋃2
𝛺𝛺𝛺𝛺 (𝐴) = 1 − � 𝑚𝑚𝑚𝑚1⋃2

𝛺𝛺𝛺𝛺 (𝐴𝐴𝐴𝐴)
𝑌𝑌𝑌𝑌∈2Ω,𝑌𝑌𝑌𝑌𝐴𝐴

 

The conjunctive combination rule creates a BBA over 
the subsets of 2Ω that result from the intersection of the 
BBAs 1 and 2. The value of belief assigned to each of 
these subsets A is given by the sum of the products of the 
BBAs 1 and 2 where an intersection results in A. A similar 
interpretation using a set union is applicable to the dis-
junctive combination rule. One key distinction between 
the TBM and D-S is that the TBM does not renormal-
ize over conflict between combined belief masses and 
explicitly assigns belief mass to the empty set equal to 
the conflict between the combined belief masses.

The D-S conjunctive combination rule does not 
assign mass to the empty set and instead renormalizes 
the beliefs over the FOD as follows5:

 

  The conjunctive combination rule creates a BBA over the 
subsets of 2Ω that result from the intersection of the BBAs 1 
and 2. The value of belief assigned to each of these subsets A is 
given by the sum of the products of the BBAs 1 and 2 where an 
intersection results in A. A similar interpretation using a set 
union is applicable to the disjunctive combination rule. One key 
distinction between TBM and D-S is that TBM does not 
perform re-normalization over conflict between combined 
belief masses and explicitly assigns belief mass to the empty set 
equal to the conflict between the combined belief masses. 
  The D-S conjunctive combination rule does not assign mass to 
the empty set and instead re-normalizes the beliefs over the 
FOD as follows (Dempster, 1968): 

𝑚𝑚𝑚𝑚1⊕2
𝛺𝛺𝛺𝛺 (𝐴𝐴𝐴𝐴) =

�
∑ 𝑚𝑚𝑚𝑚1

𝛺𝛺𝛺𝛺(𝑋𝑋𝑋𝑋) 𝑚𝑚𝑚𝑚2
𝛺𝛺𝛺𝛺(𝑌𝑌𝑌𝑌)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

1−∑ 𝑚𝑚𝑚𝑚1
𝛺𝛺𝛺𝛺(𝑋𝑋𝑋𝑋) 𝑚𝑚𝑚𝑚2

𝛺𝛺𝛺𝛺(𝑌𝑌𝑌𝑌)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋
   ∀𝐴𝐴𝐴𝐴 𝐴 2Ω,   𝐴𝐴𝐴𝐴 𝐴 𝑋, (𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌 𝐴 2Ω)

0      𝐴𝐴𝐴𝐴 = 𝑋
      (4) 

The final piece of the TBM framework, which dif-
fers from the D-S approach, is the decision-making 
procedure. In the TBM, decisions are not made based 
on BBAs resulting from Eqs. 2 and 3, but rather from a 
probability transformation called the pignistic probabil-
ity transformation (PPT), which Smets defines as6

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝛺𝛺𝛺𝛺(𝐴𝐴𝐴𝐴) = ∑ |𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴|
|𝐴𝐴𝐴𝐴|

𝑚𝑚𝑚𝑚𝛺𝛺𝛺𝛺(𝐴𝐴𝐴𝐴)
1−𝑚𝑚𝑚𝑚𝛺𝛺𝛺𝛺(∅)𝐴𝐴𝐴𝐴𝐵𝐵Ω   ∀𝐴𝐴𝐴𝐴 𝐴 𝛺𝛺𝛺𝛺     (5) 

where |X | is the number of elements of Ω in set X  2Ω.

The Zadeh Counterexample
Returning to the Zadeh counterexample, a com-

parison between D-S and the TBM can be presented in 
detail by evaluating Eqs. 5 and 2 for the Zadeh problem 
presented above. Both D-S and the TBM use BBAs to 
express evidence, which in the Zadeh problem is given 
by, excluding all zero masses, the following6:

 

D-S and TBM use BBAs to express evidence, which in the
Zadeh problem is given by, excluding all zero masses, the
following (Smets, 2007):

𝑚𝑚𝑚𝑚1
𝛺𝛺𝛺𝛺(𝑎𝑎𝑎𝑎) = 0.99,  𝑚𝑚𝑚𝑚1

𝛺𝛺𝛺𝛺(𝑏𝑏𝑏𝑏) = 0.01 
 𝑚𝑚𝑚𝑚2

𝛺𝛺𝛺𝛺(𝑐𝑐𝑐𝑐) = 0.99,   𝑚𝑚𝑚𝑚2
𝛺𝛺𝛺𝛺(𝑏𝑏𝑏𝑏) = 0.01 

where 1 and 2 subscripts are used for the evidence obtained 
from the first and second doctor and we have the Frame of 
Discernment (diagnoses) a=migraine, b=stroke, c=allergies. 
For D-S, the result of combining these two BBAs is: 

𝑚𝑚𝑚𝑚1⊕2
𝛺𝛺𝛺𝛺 (𝑏𝑏𝑏𝑏) =

∑ 𝑚𝑚𝑚𝑚1
𝛺𝛺𝛺𝛺(𝑋𝑋𝑋𝑋) 𝑚𝑚𝑚𝑚2

𝛺𝛺𝛺𝛺(𝑌𝑌𝑌𝑌)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

1 − ∑ 𝑚𝑚𝑚𝑚1
𝛺𝛺𝛺𝛺(𝑋𝑋𝑋𝑋) 𝑚𝑚𝑚𝑚2

𝛺𝛺𝛺𝛺(𝑌𝑌𝑌𝑌)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋

=
(. 01)(.01)

1 − ((. 99)(. 01) + (. 99)(. 99) + (. 99)(. 01))

=
. 0001

1 − .9999
=

. 0001

. 0001
= 1 

𝑚𝑚𝑚𝑚1⋂2
𝛺𝛺𝛺𝛺 (𝑏𝑏𝑏𝑏) = ∑ 𝑚𝑚𝑚𝑚1

𝛺𝛺𝛺𝛺(𝑋𝑋𝑋𝑋) 𝑚𝑚𝑚𝑚2
𝛺𝛺𝛺𝛺(𝑌𝑌𝑌𝑌)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 = 

 (. 01)(. 01) = .0001 

𝑚𝑚𝑚𝑚1⋂2
𝛺𝛺𝛺𝛺 (𝑋) = 1 − � 𝑚𝑚𝑚𝑚𝛺𝛺𝛺𝛺(𝐴𝐴𝐴𝐴)

𝐴𝐴𝐴𝐴𝐴𝐴𝑋2Ω
= .9999 

which yields the more sensible result that there is a high 
confidence that the true diagnosis is not within the set of 
migraine, stroke, or allegories. That is, mathematically, the true 
diagnosis is in the empty set 𝑋 with 99.99% belief. 

TBM with a Taxonomy of Hypotheses 
  Closer inspection of the TBM equations 2 and 3 (and indeed 
the D-S combination rules) reveal that evidence combination, 
apart from simple multiplication and summation, reduces to set 
operations of intersections and unions. Comparatively, a 
taxonomy is, by definition, structured in a way that makes these 
operations trivial. For example, consider the classification 
taxonomy in Figure 1 with a 3-level hierarchy (e.g., the Link 16 
standard taxonomy), a root node representing the set 𝛺𝛺𝛺𝛺 and the 
open world assumption modeled by an empty set. 

, 

where 1 and 2 subscripts are used for the evidence obtained 
from the first and second doctor, and we have the FOD 
(diagnoses) a = migraine, b = stroke, c = allergies. For 
D-S, the result of combining these two BBAs is
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𝛺𝛺𝛺𝛺 (𝑏𝑏𝑏𝑏) =

∑ 𝑚𝑚𝑚𝑚1
𝛺𝛺𝛺𝛺(𝑋𝑋𝑋𝑋) 𝑚𝑚𝑚𝑚2

𝛺𝛺𝛺𝛺(𝑌𝑌𝑌𝑌)𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋
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=
(. 01)(.01)

1 − ((. 99)(. 01) + (. 99)(. 99) + (. 99)(. 01))

=
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=
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= 1 

𝑚𝑚𝑚𝑚1⋂2
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𝛺𝛺𝛺𝛺 (𝑋) = 1 − � 𝑚𝑚𝑚𝑚𝛺𝛺𝛺𝛺(𝐴𝐴𝐴𝐴)

𝐴𝐴𝐴𝐴𝐴𝐴𝑋2Ω
= .9999 

which yields the more sensible result that there is a high 
confidence that the true diagnosis is not within the set of 
migraine, stroke, or allegories. That is, mathematically, the true 
diagnosis is in the empty set 𝑋 with 99.99% belief. 

TBM with a Taxonomy of Hypotheses 
  Closer inspection of the TBM equations 2 and 3 (and indeed 
the D-S combination rules) reveal that evidence combination, 
apart from simple multiplication and summation, reduces to set 
operations of intersections and unions. Comparatively, a 
taxonomy is, by definition, structured in a way that makes these 
operations trivial. For example, consider the classification 
taxonomy in Figure 1 with a 3-level hierarchy (e.g., the Link 16 
standard taxonomy), a root node representing the set 𝛺𝛺𝛺𝛺 and the 
open world assumption modeled by an empty set. 

.
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which yields the more sensible result that there is a high 
confidence that the true diagnosis is not within the set of 
migraine, stroke, or allegories. That is, mathematically, the true 
diagnosis is in the empty set 𝑋 with 99.99% belief. 

TBM with a Taxonomy of Hypotheses 
  Closer inspection of the TBM equations 2 and 3 (and indeed 
the D-S combination rules) reveal that evidence combination, 
apart from simple multiplication and summation, reduces to set 
operations of intersections and unions. Comparatively, a 
taxonomy is, by definition, structured in a way that makes these 
operations trivial. For example, consider the classification 
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which yields the more sensible result that there is a high 
confidence that the true diagnosis is not within the set of 
migraine, stroke, or allergies. That is, mathematically, the 
true diagnosis is in the empty set � with 99.99% belief.

The TBM with a Taxonomy of Hypotheses
Closer inspection of the TBM Eqs. 2 and 3 (and 

indeed the D-S combination rules) reveals that evidence 
combination, apart from simple multiplication and 
summation, reduces to set operations of intersections 
and unions. Comparatively, a taxonomy is, by defini-
tion, structured in a way that makes these operations 

.
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trivial. For example, consider the classification taxon-
omy in Figure 1 with a three-level hierarchy (e.g., the 
Link 16 standard taxonomy), a root node representing 
the set Ω, and the open-world assumption modeled by 
an empty set.

This example illustrates the following relevant facts 
regarding taxonomies:

•	 Each node is precisely given by the union of all its 
children nodes. For example, 

• Each node is precisely given by the union of all of its
children nodes. For example, 𝐵𝐵𝐵𝐵21 = {𝐵𝐵𝐵𝐵32, 𝐵𝐵𝐵𝐵42, 𝐵𝐵𝐵𝐵52}.

• The specificity of the hypotheses increases as the
taxonomy is traversed from top to bottom. For example,
hypotheses at the level T2 are more specific hypotheses
than their parent nodes at the level T1.

• Nodes are mutually exclusive (there is no overlap in their
hypotheses) if they are on different branches of the
taxonomy

.

•	 The specificity of the hypotheses increases as the 
taxonomy is traversed from top to bottom. For 
example, hypotheses at the level T 2 are more specific 
hypotheses than their parent nodes at the level T 1.

•	 Nodes are mutually exclusive (there is no overlap in 
their hypotheses) if they are on different branches of 
the taxonomy.

And thus, the FOD is the set of all leaf nodes (nodes 
with no children).

The TBM can be used to combine evidence from dif-
ferent sources in the form of BBAs that express evidence 
on any subsets of the hypotheses in the taxonomy, includ-
ing at different levels in the hierarchy. For example, one 
source of evidence (e.g., sensor) may be particularly good 
at distinguishing between classes of battle space objects 
enumerated in level T 1, while another source may exploit 
phenomenology that is particularly good at identifying 
classes of battle space objects that are contained in the 
sub-tree of 

• Each node is precisely given by the union of all of its
children nodes. For example, 𝐵𝐵𝐵𝐵21 = {𝐵𝐵𝐵𝐵32, 𝐵𝐵𝐵𝐵42, 𝐵𝐵𝐵𝐵52}.

• The specificity of the hypotheses increases as the
taxonomy is traversed from top to bottom. For example,
hypotheses at the level T2 are more specific hypotheses
than their parent nodes at the level T1.

• Nodes are mutually exclusive (there is no overlap in their
hypotheses) if they are on different branches of the
taxonomy

, and still a third source may only be able 
to detect and discriminate between classes of battle space 
objects 

And thus, the FOD is the set of all leaf nodes (nodes with no 
children). 

  The TBM can be used to combine evidence from different 
sources in the form of BBAs that express evidence on any 
subsets of the hypotheses in the taxonomy, including at 
different levels in the hierarchy. For example, one source of 
evidence (e.g. sensor) may be particularly good at 
distinguishing between classes of battlespace objects 
enumerated in level T1 while another source may exploit 
phenomenology that is particularly good at identifying classes 
of battlespace objects in that are contained in the sub-tree of 𝐵𝐵𝐵𝐵21 
and still a third source may only be able to detect and 
discriminate between classes of battlespace objects 𝐵𝐵𝐵𝐵12 and 𝐵𝐵𝐵𝐵22. 
This ability to combine evidence that spans different subsets of 
the hypothesis space enables the use of heterogeneous evidence 
sources reporting on heterogeneous sets of hypotheses. This is 
fundamentally what enables the TBM estimation approach to 
support multi-INT fusion of evidence for CID. 
  Once TBM combination rules have been applied, the 
algorithm has to make a decision about what to report. As 
discussed by (Smets, 2007), the resulting fused BBAs are not 
suitable for making a decision because their masses will, in 
general, be scattered throughout the taxonomy, across 
hierarchical levels. An alternative often used in classifier 
systems is to simply report every hypothesis that has some 
significant belief along with their belief value. This is not a 
desirable product for a potentially burdened warfighter that may 
have to evaluate CID estimates quickly to support a decision. 
An alternative, and more actionable, approach is to report the 
most concise CID while limiting the loss of specificity. For 
example, instead of reporting a CID estimate of  𝐵𝐵𝐵𝐵32, 𝐵𝐵𝐵𝐵42, or 𝐵𝐵𝐵𝐵52, it 
is more useful and readily comprehended to simply report 𝐵𝐵𝐵𝐵21, 
so long as the loss of specificity is not too great. The appropriate 
reporting level can be achieved using the formal definition of a 
taxonomy and applying the BetP Pignistic Probability 
Transform (PPT). Specifically, a suggested methodology is to 
start at the lowest level (i.e. the set of leaf nodes) in the 
taxonomy and compute the BetP using the fused BBA from all 
CID evidence. The BetP is then computed at one level higher in 
the taxonomy and the information loss between the two levels 
is computed. This process repeats until choosing a level in the 
taxonomy would exceed the specified level of specificity loss. 
A later section (“Adaptive Output”) details an information 
theoretic method for selecting the taxonomy level at which to 
report the CID estimate. 

 and 
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systems is to simply report every hypothesis that has some 
significant belief along with their belief value. This is not a 
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example, instead of reporting a CID estimate of  𝐵𝐵𝐵𝐵32, 𝐵𝐵𝐵𝐵42, or 𝐵𝐵𝐵𝐵52, it 
is more useful and readily comprehended to simply report 𝐵𝐵𝐵𝐵21, 
so long as the loss of specificity is not too great. The appropriate 
reporting level can be achieved using the formal definition of a 
taxonomy and applying the BetP Pignistic Probability 
Transform (PPT). Specifically, a suggested methodology is to 
start at the lowest level (i.e. the set of leaf nodes) in the 
taxonomy and compute the BetP using the fused BBA from all 
CID evidence. The BetP is then computed at one level higher in 
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. This ability to combine evidence that 
spans different subsets of the hypothesis space enables 
the use of heterogeneous evidence sources reporting on 
heterogeneous sets of hypotheses. This is fundamentally 

what enables the TBM estimation approach to support 
multi-INT fusion of evidence for CID.

Once TBM combination rules have been applied, 
the algorithm has to make a decision about what to 
report. As discussed by Smets,6 the resulting fused 
BBAs are not suitable for making a decision because 
their masses are, in general, scattered throughout the 
taxonomy, across hierarchical levels. An alternative 
often used in classifier systems is to simply report every 
hypothesis that has some significant belief along with 
their belief value. This is not a desirable product for a 
potentially burdened war fighter who may have to eval-
uate CID estimates quickly to support a decision. An 
alternative, and more actionable, approach is to report 
the most concise CID while limiting the loss of specific-
ity. For example, instead of reporting a CID estimate of 
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different levels in the hierarchy. For example, one source of 
evidence (e.g. sensor) may be particularly good at 
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discussed by (Smets, 2007), the resulting fused BBAs are not 
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systems is to simply report every hypothesis that has some 
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A later section (“Adaptive Output”) details an information 
theoretic method for selecting the taxonomy level at which to 
report the CID estimate. 

, 

And thus, the FOD is the set of all leaf nodes (nodes with no 
children). 

  The TBM can be used to combine evidence from different 
sources in the form of BBAs that express evidence on any 
subsets of the hypotheses in the taxonomy, including at 
different levels in the hierarchy. For example, one source of 
evidence (e.g. sensor) may be particularly good at 
distinguishing between classes of battlespace objects 
enumerated in level T1 while another source may exploit 
phenomenology that is particularly good at identifying classes 
of battlespace objects in that are contained in the sub-tree of 𝐵𝐵𝐵𝐵21 
and still a third source may only be able to detect and 
discriminate between classes of battlespace objects 𝐵𝐵𝐵𝐵12 and 𝐵𝐵𝐵𝐵22. 
This ability to combine evidence that spans different subsets of 
the hypothesis space enables the use of heterogeneous evidence 
sources reporting on heterogeneous sets of hypotheses. This is 
fundamentally what enables the TBM estimation approach to 
support multi-INT fusion of evidence for CID. 
  Once TBM combination rules have been applied, the 
algorithm has to make a decision about what to report. As 
discussed by (Smets, 2007), the resulting fused BBAs are not 
suitable for making a decision because their masses will, in 
general, be scattered throughout the taxonomy, across 
hierarchical levels. An alternative often used in classifier 
systems is to simply report every hypothesis that has some 
significant belief along with their belief value. This is not a 
desirable product for a potentially burdened warfighter that may 
have to evaluate CID estimates quickly to support a decision. 
An alternative, and more actionable, approach is to report the 
most concise CID while limiting the loss of specificity. For 
example, instead of reporting a CID estimate of  𝐵𝐵𝐵𝐵32, 𝐵𝐵𝐵𝐵42, or 𝐵𝐵𝐵𝐵52, it 
is more useful and readily comprehended to simply report 𝐵𝐵𝐵𝐵21, 
so long as the loss of specificity is not too great. The appropriate 
reporting level can be achieved using the formal definition of a 
taxonomy and applying the BetP Pignistic Probability 
Transform (PPT). Specifically, a suggested methodology is to 
start at the lowest level (i.e. the set of leaf nodes) in the 
taxonomy and compute the BetP using the fused BBA from all 
CID evidence. The BetP is then computed at one level higher in 
the taxonomy and the information loss between the two levels 
is computed. This process repeats until choosing a level in the 
taxonomy would exceed the specified level of specificity loss. 
A later section (“Adaptive Output”) details an information 
theoretic method for selecting the taxonomy level at which to 
report the CID estimate. 

, or 

And thus, the FOD is the set of all leaf nodes (nodes with no 
children). 

  The TBM can be used to combine evidence from different 
sources in the form of BBAs that express evidence on any 
subsets of the hypotheses in the taxonomy, including at 
different levels in the hierarchy. For example, one source of 
evidence (e.g. sensor) may be particularly good at 
distinguishing between classes of battlespace objects 
enumerated in level T1 while another source may exploit 
phenomenology that is particularly good at identifying classes 
of battlespace objects in that are contained in the sub-tree of 𝐵𝐵𝐵𝐵21 
and still a third source may only be able to detect and 
discriminate between classes of battlespace objects 𝐵𝐵𝐵𝐵12 and 𝐵𝐵𝐵𝐵22. 
This ability to combine evidence that spans different subsets of 
the hypothesis space enables the use of heterogeneous evidence 
sources reporting on heterogeneous sets of hypotheses. This is 
fundamentally what enables the TBM estimation approach to 
support multi-INT fusion of evidence for CID. 
  Once TBM combination rules have been applied, the 
algorithm has to make a decision about what to report. As 
discussed by (Smets, 2007), the resulting fused BBAs are not 
suitable for making a decision because their masses will, in 
general, be scattered throughout the taxonomy, across 
hierarchical levels. An alternative often used in classifier 
systems is to simply report every hypothesis that has some 
significant belief along with their belief value. This is not a 
desirable product for a potentially burdened warfighter that may 
have to evaluate CID estimates quickly to support a decision. 
An alternative, and more actionable, approach is to report the 
most concise CID while limiting the loss of specificity. For 
example, instead of reporting a CID estimate of  𝐵𝐵𝐵𝐵32, 𝐵𝐵𝐵𝐵42, or 𝐵𝐵𝐵𝐵52, it 
is more useful and readily comprehended to simply report 𝐵𝐵𝐵𝐵21, 
so long as the loss of specificity is not too great. The appropriate 
reporting level can be achieved using the formal definition of a 
taxonomy and applying the BetP Pignistic Probability 
Transform (PPT). Specifically, a suggested methodology is to 
start at the lowest level (i.e. the set of leaf nodes) in the 
taxonomy and compute the BetP using the fused BBA from all 
CID evidence. The BetP is then computed at one level higher in 
the taxonomy and the information loss between the two levels 
is computed. This process repeats until choosing a level in the 
taxonomy would exceed the specified level of specificity loss. 
A later section (“Adaptive Output”) details an information 
theoretic method for selecting the taxonomy level at which to 
report the CID estimate. 

, it is more useful and readily comprehend-
ible to simply report 

• Each node is precisely given by the union of all of its
children nodes. For example, 𝐵𝐵𝐵𝐵21 = {𝐵𝐵𝐵𝐵32, 𝐵𝐵𝐵𝐵42, 𝐵𝐵𝐵𝐵52}.

• The specificity of the hypotheses increases as the
taxonomy is traversed from top to bottom. For example,
hypotheses at the level T2 are more specific hypotheses
than their parent nodes at the level T1.

• Nodes are mutually exclusive (there is no overlap in their
hypotheses) if they are on different branches of the
taxonomy

, so long as the loss of specific-
ity is not too great. The appropriate reporting level can 
be achieved using the formal definition of a taxonomy 
and applying the BetP PPT. Specifically, a suggested 
methodology is to start at the lowest level (i.e., the set 
of leaf nodes) in the taxonomy and compute the BetP 
using the fused BBA from all CID evidence. The BetP 
is then computed at one level higher in the taxonomy, 
and the information loss between the two levels is com-
puted. This process repeats until choosing a level in the 
taxonomy would exceed the specified level of specificity 
loss. The Adaptive Output section details an informa-
tion theoretic method for selecting the taxonomy level 
at which to report the CID estimate.

CID Estimation Rules
Now, using the hypothesis taxonomy in Figure 2, con-

sider a situation resulting in CID entanglement between 
two crossing tracks. The first track, �1, has a BBA, 
m�1(τ = 0), over this hypothesis taxonomy (omitting the 
Ω superscript for brevity) given by the CID evidence 
unambiguously associated with it before the crossing at 
time τ = 0. Likewise, the second track, �2, has a BBA, 
m�2(τ = 0), over the same hypothesis taxonomy. As an 
example, the BBAs are

 𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯𝒯(𝜏𝜏𝜏𝜏𝜏𝜏){𝐵𝐵𝐵𝐵𝒯2} = .9,𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯𝒯(𝜏𝜏𝜏𝜏𝜏𝜏){𝐵𝐵𝐵𝐵22} = .1 (6) 
𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏𝜏𝜏){𝐵𝐵𝐵𝐵𝒯2} = .1,𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏𝜏𝜏){𝐵𝐵𝐵𝐵22} = .9 

, (6)

which trivially yields a BetP for �1 of

 

which trivially yields a BetP for 𝒯𝒯𝒯𝒯1 of: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝒯𝒯𝒯𝒯𝒯(𝜏𝜏𝜏𝜏𝜏𝜏)({𝐵𝐵𝐵𝐵𝒯2}) = 0.9,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝒯𝒯𝒯𝒯𝒯(𝜏𝜏𝜏𝜏𝜏𝜏)({𝐵𝐵𝐵𝐵22}) = 0.1 (7) 

and a BetP for 𝒯𝒯𝒯𝒯2 of: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏𝜏𝜏)({𝐵𝐵𝐵𝐵𝒯2}) = 0.1,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏𝜏𝜏)({𝐵𝐵𝐵𝐵22}) = 0.9 (8) 

Thus, it is easy to see that the CID estimates of these tracks 
might be reported at the taxonomy level T2 since the 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
distribution for both tracks represent a high confidence in the 
CID at this level. 

 (7)

and a BetP for �2 of

 

which trivially yields a BetP for 𝒯𝒯𝒯𝒯1 of: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝒯𝒯𝒯𝒯𝒯(𝜏𝜏𝜏𝜏𝜏𝜏)({𝐵𝐵𝐵𝐵𝒯2}) = 0.9,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝒯𝒯𝒯𝒯𝒯(𝜏𝜏𝜏𝜏𝜏𝜏)({𝐵𝐵𝐵𝐵22}) = 0.1 (7) 

and a BetP for 𝒯𝒯𝒯𝒯2 of: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏𝜏𝜏)({𝐵𝐵𝐵𝐵𝒯2}) = 0.1,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏𝜏𝜏)({𝐵𝐵𝐵𝐵22}) = 0.9 (8) 

Thus, it is easy to see that the CID estimates of these tracks 
might be reported at the taxonomy level T2 since the 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
distribution for both tracks represent a high confidence in the 
CID at this level. 

. (8)

Thus, it is easy to see that the CID estimates of these 
tracks might be reported at the taxonomy level T 2 since 
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Figure 1. Simple example hypothesis taxonomy. This example 
taxonomy has three levels, not counting the root level, where 
the third level is denoted T N. Each element in the taxonomy is 
denoted ti where i indicates the level, and j indicates the node’s 
position within that level. This also illustrates how the mass 
assigned to node t2 propagates as belief (dark arrows) and plausi‑
bility (light arrows) through the taxonomy to each level of speci‑
ficity in the taxonomy. (Copyright 2012 Society of Photo‑Optical 
Instrumentation Engineers [SPIE].9)
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the BetP distribution for both tracks represents a high 
confidence in the CID at this level.

When the tracks cross at time τ = 1, it is no longer 
clear which CID to attribute to which track. Histori-
cally, there have been two ways to address this challenge: 
(1) simply designate both tracks as having an unknown 
CID or (2) ignore the ambiguity and leave the CID esti-
mates on each track unchanged. Both approaches are 
problematic. In the first case, the end user now has lost 
any knowledge of the CID estimates previously acquired. 
In the latter case, the CID estimate assigned to each 
track is 50% likely to be incorrect. Since a tracking ambi-
guity represents a case where at least one BBA is reliably 
associated with each track but we do not know which 
one, the disjunctive combination rule is used to compute 
the CID estimate of each track. Another way to justify 
the use of the disjunctive rule is to leverage set theory.10 
When tracks �1 and �2 cross (become ambiguous), we 
know that either BBA m�1(τ = 0) OR m�2(τ = 0) is cor-
rectly associated to each track, and therefore we apply 
disjunctive logic to combine the information represented 
by these BBAs. By applying the disjunctive combination 
rule to the BBAs m�1(τ = 0) and m�2(τ = 0), we obtain

𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡12 = .1 𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡22 = .9

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12

= .09
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡12

= .009
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) ∅
= .081

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12 , 𝑡𝑡𝑡𝑡22

= 𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡11

= .82

𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡12

= .082
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡22

= .738

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡22

= .09
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) ∅
= .009

𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡22

= .081

𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏=0) 𝑡𝑡𝑡𝑡12 = .1 𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏=0) 𝑡𝑡𝑡𝑡22 = .9

𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯1(𝜏𝜏𝜏𝜏=0) 𝑡𝑡𝑡𝑡12 = .9 𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12

= .9 ∗ .1 = .09
𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12 , 𝑡𝑡𝑡𝑡22

= .9 ∗ .9 = .81

𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯1(𝜏𝜏𝜏𝜏=0) 𝑡𝑡𝑡𝑡22 = .1 𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12 , 𝑡𝑡𝑡𝑡22

= .1 ∗ .1 = .01
𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡22

= .9 ∗ .1 = .09

  

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1)({𝑡𝑡𝑡𝑡12}) = .09 

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1)({𝑡𝑡𝑡𝑡12 , 𝑡𝑡𝑡𝑡22}) = 𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1)({𝑡𝑡𝑡𝑡11}) =           

. 81 + .01 = .82                                                        (9)  

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1)({𝑡𝑡𝑡𝑡22}) = .09, 

which represents the new disjunctively combined belief 
masses for both tracks �1 and �2, since we do not know 
which track to attribute the evidence to after their cross-
ing. The BetP over the hypotheses in level T 2 is

 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯)({𝐵𝐵𝐵𝐵𝒯𝒯}) = .09 +

1
2

(. 82) = .5 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯)({𝐵𝐵𝐵𝐵𝒯𝒯}) = .09 +
1
2

(. 82) = .5 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯)({𝐵𝐵𝐵𝐵𝒯𝒯} = {𝐵𝐵𝐵𝐵𝒯𝒯 , 𝐵𝐵𝐵𝐵𝒯𝒯}) =
. 82

1 − .18
=

. 82

. 82
= 1 

, 

and the BetP over the hypotheses in level T 1 is

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯)({𝐵𝐵𝐵𝐵𝒯𝒯}) = .09 +
1
2

(. 82) = .5 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯)({𝐵𝐵𝐵𝐵𝒯𝒯}) = .09 +
1
2

(. 82) = .5 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯)({𝐵𝐵𝐵𝐵𝒯𝒯} = {𝐵𝐵𝐵𝐵𝒯𝒯 , 𝐵𝐵𝐵𝐵𝒯𝒯}) =
. 82

1 − .18
=

. 82

. 82
= 1 . 

From these BetP calculations, it is clear that the CID 
estimate should be reported at level T 1 and the resulting 
estimate is 

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1)({𝑡𝑡𝑡𝑡12}) = .09 

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1)({𝑡𝑡𝑡𝑡12 , 𝑡𝑡𝑡𝑡22}) = 𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1)({𝑡𝑡𝑡𝑡11}) =           

. 81 + .01 = .82                                                        (9)  

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1)({𝑡𝑡𝑡𝑡22}) = .09, 

, which is the parent node of the CID esti-
mates for each of the crossing tracks. Thus, in this situa-
tion, both tracks should be given the new CID estimate 
resulting from the disjunctive combination rule. Note 
that while the specificity of the CID estimate for each of 
the crossing tracks is diluted, it is not inconsistent with 
either of the original tracks and it does not represent a 
complete loss of knowledge by simply declaring that the 
CID is unknown. Thus, the general rule for CID esti-
mation in cases of association ambiguity is to apply the 
TBM disjunctive combination rule (Eq. 3) and assign 
the result to all the ambiguous tracks.

Following the separation of the two tracks after their 
crossing at time τ = 1, consider the case where, at time 
τ = 2, �2 is observed by a sensor and has new evidence 
unambiguously associated with it, which is represented 
by the following BBA:

 𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯𝒯(𝜏𝜏𝜏𝜏𝜏𝒯){𝐵𝐵𝐵𝐵1𝒯} = .1 (10) 
𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯𝒯(𝜏𝜏𝜏𝜏𝜏𝒯){𝐵𝐵𝐵𝐵𝒯𝒯} = .9 

. (10)

The updated CID estimate, since we are assuming the 
sensor evidence is unambiguously associated with �2, 
is found by taking the conjunctive combination of the 
sensor evidence and the combined BBA from Eq. 6. This 
leads to a combined BBA of

𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡12 = .1 𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡22 = .9

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12

= .09
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡12

= .009
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) ∅
= .081

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12 , 𝑡𝑡𝑡𝑡22

= 𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡11

= .82

𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡12

= .082
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡22

= .738

𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡22

= .09
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) ∅
= .009

𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)∩𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=2) 𝑡𝑡𝑡𝑡22

= .081

𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏=0) 𝑡𝑡𝑡𝑡12 = .1 𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯2(𝜏𝜏𝜏𝜏=0) 𝑡𝑡𝑡𝑡22 = .9

𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯1(𝜏𝜏𝜏𝜏=0) 𝑡𝑡𝑡𝑡12 = .9 𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12

= .9 ∗ .1 = .09
𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12 , 𝑡𝑡𝑡𝑡22

= .9 ∗ .9 = .81

𝑚𝑚𝑚𝑚𝒯𝒯𝒯𝒯1(𝜏𝜏𝜏𝜏=0) 𝑡𝑡𝑡𝑡22 = .1 𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡12 , 𝑡𝑡𝑡𝑡22

= .1 ∗ .1 = .01
𝑚𝑚𝑚𝑚(𝒯𝒯𝒯𝒯1⋃𝒯𝒯𝒯𝒯2)(𝜏𝜏𝜏𝜏=1) 𝑡𝑡𝑡𝑡22

= .9 ∗ .1 = .09

 

Table 2: TBM Conjunctive Combination of the Result from 
Table 1 and the BBA for Evidence Associated with Track 𝒯𝒯𝒯𝒯2 

𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)∩𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯){𝐵𝐵𝐵𝐵𝒯𝒯} = .009 + .082 =  .091 
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)∩𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯){𝐵𝐵𝐵𝐵𝒯𝒯} = .738 +  .081 = .819 
𝑚𝑚𝑚𝑚((𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)∩𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯){∅} = .081 + .009 = .09 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵((𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)∩𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯)({𝐵𝐵𝐵𝐵𝒯𝒯}) =
. 091

1 − .09
=

. 091
. 91

= .1 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵((𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯𝒯)∩𝒯𝒯𝒯𝒯𝒯)(𝜏𝜏𝜏𝜏𝜏𝒯)({𝐵𝐵𝐵𝐵𝒯𝒯}) =
. 819

1 − .09
=

. 819
. 91

= .9 
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Figure 2. CID entanglement example. This example illustrates 
a situation resulting in CID entanglement between two crossing 
tracks. (Modified from Figure 1.9)
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which is the same BetP distribution that �2 had before 
the tracks’ crossing at time τ = 0 (Eq. 8). In this situ-
ation, the new evidence has almost completely disen-
tangled the CID ambiguity introduced by crossing at 
time τ = 1. While the BetP distribution at time τ = 2 
is the same as at time τ = 0, the belief mass distribution 
is slightly different from the original. This is due to the 
BBA for �2 (Eq. 10) having a belief mass of less than 1 
for the hypothesis 

And thus, the FOD is the set of all leaf nodes (nodes with no 
children). 

  The TBM can be used to combine evidence from different 
sources in the form of BBAs that express evidence on any 
subsets of the hypotheses in the taxonomy, including at 
different levels in the hierarchy. For example, one source of 
evidence (e.g. sensor) may be particularly good at 
distinguishing between classes of battlespace objects 
enumerated in level T1 while another source may exploit 
phenomenology that is particularly good at identifying classes 
of battlespace objects in that are contained in the sub-tree of 𝐵𝐵𝐵𝐵21 
and still a third source may only be able to detect and 
discriminate between classes of battlespace objects 𝐵𝐵𝐵𝐵12 and 𝐵𝐵𝐵𝐵22. 
This ability to combine evidence that spans different subsets of 
the hypothesis space enables the use of heterogeneous evidence 
sources reporting on heterogeneous sets of hypotheses. This is 
fundamentally what enables the TBM estimation approach to 
support multi-INT fusion of evidence for CID. 
  Once TBM combination rules have been applied, the 
algorithm has to make a decision about what to report. As 
discussed by (Smets, 2007), the resulting fused BBAs are not 
suitable for making a decision because their masses will, in 
general, be scattered throughout the taxonomy, across 
hierarchical levels. An alternative often used in classifier 
systems is to simply report every hypothesis that has some 
significant belief along with their belief value. This is not a 
desirable product for a potentially burdened warfighter that may 
have to evaluate CID estimates quickly to support a decision. 
An alternative, and more actionable, approach is to report the 
most concise CID while limiting the loss of specificity. For 
example, instead of reporting a CID estimate of  𝐵𝐵𝐵𝐵32, 𝐵𝐵𝐵𝐵42, or 𝐵𝐵𝐵𝐵52, it 
is more useful and readily comprehended to simply report 𝐵𝐵𝐵𝐵21, 
so long as the loss of specificity is not too great. The appropriate 
reporting level can be achieved using the formal definition of a 
taxonomy and applying the BetP Pignistic Probability 
Transform (PPT). Specifically, a suggested methodology is to 
start at the lowest level (i.e. the set of leaf nodes) in the 
taxonomy and compute the BetP using the fused BBA from all 
CID evidence. The BetP is then computed at one level higher in 
the taxonomy and the information loss between the two levels 
is computed. This process repeats until choosing a level in the 
taxonomy would exceed the specified level of specificity loss. 
A later section (“Adaptive Output”) details an information 
theoretic method for selecting the taxonomy level at which to 
report the CID estimate. 

. However, in general, new evidence 
incorporated after an ambiguity can disentangle some of 
the dilution caused by the ambiguity. Thus, the general 
rule for CID estimation where there is no ambiguity is 
to apply the TBM conjunctive combination rule (Eq. 2) 
and assign the result to the track for which the evidence 
was associated.

Efficient Implementation
The TBM combination rules fundamentally con-

sist of set operations, specifically set intersection and 
union. This is particularly convenient when employing 
TBM using a taxonomy of hypotheses since a taxon-
omy concisely captures overlapping and nonoverlap-
ping hypothesis sets. One efficient way to represent sets 
and perform set operations is to encode the sets using 
BitSets.11 If a hypothesis taxonomy consists of N leaf 
nodes, then each hypothesis can be presented within 
the taxonomy as a BitSet of size N. An example of a 
simple BitSet encoding is presented in Figure 3 using a 
subset of the CoT classification taxonomy. The figure 
shows a portion of the CoT taxonomy where each node 
has a string defined by CoT (e.g., a–.–A) as well as the 
corresponding BitSet represen-
tation that is generated as fol-
lows. First, given a taxonomy 
with S leaf nodes, we specify 
that each BitSet representing 
each node in the taxonomy 
is of fixed length S. Starting 
with the leaf nodes, we define a 
BitSet with precisely one “true” 
bit while ensuring that no two 
BitSets contain the “true” bit in 
the same bit slot (i.e., the inter-
section between any two BitSets 
is the zero BitSet). Then, for 
each non-leaf node in the tax-
onomy, the node is represented 
by a BitSet that is equal to the 
union of all leaf-node BitSets 
contained as a subset in that 
node. As an example, the CoT 
string for the taxonomy node 
representing all “air” target 
types is a–.–A, while its BitSet 
representation is 1111000000 

since this node represents four leaf nodes. Note also 
that the BitSet representation for a taxonomy is not 
unique as the leaf-node BitSets can be generated in 
many different ways and still satisfy the above-stated 
constraints.

Each leaf-node hypothesis (e.g., equipment, unit, 
structure) in the taxonomy has a BitSet representation 
consisting of one “1” and the remaining bits set to “0” 
where the position of the “1” is unique for each leaf 
node. Any non-leaf node in the taxonomy is the union 
of the BitSets of all its children nodes (e.g., air, ground). 
The root node, which represents the universe of hypoth-
eses, is represented by a BitSet with all N values equal 
to “1.” BitSet intersection and union operations are per-
formed by comparing the values (0 or 1) in each position 
between two BitSet values. If there is any position where 
both BitSets have a “1,” then the intersection BitSet 
contains a “1” in that position and the intersection is 
non-empty. If there is any position where either BitSet 
has a “1,” then the union BitSet contains a “1” in that 
position and the union is non-empty. When evaluat-
ing the conjunctive combination rule, note that BitSet 
intersections that are non-empty represent non-zero 
terms in the summation of Eq. 2. When evaluating the 
disjunctive combination rule, note that BitSet unions 
that are non-empty represent non-zero terms in the 
summation of Eq. 3. As a result, the use of a taxonomy 
to represent the hypothesis space combined with BitSet 
representations of each node in the taxonomy makes 
the evaluation of TBM combination rules conceptually 
straightforward and computationally efficient.
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Figure 3. Using BitSets to represent hypotheses. This example of a simple BitSet encoding 
uses a subset of the CoT classification taxonomy, where each node has a string defined by CoT 
(e.g., a–.–A) as well as the corresponding BitSet representation that is generated.
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Multi-INT Features and Evidence
In the above examples of TBM combination rules, 

we assumed that each contributing source provided a 
BBA over a set of nodes within the hypothesis space, 
but it did not reveal how the BBA was computed. To 
support a multi-INT solution, we need to relate the fea-
tures for each INT to the hypothesis space. To this end, 
we introduce the concept of CID features and compute 
the CID evidence based on estimates of those features. 
Both categorical (discrete) and continuous features may 
be necessary to capture the BBA for a given INT source. 
No matter the source type, the estimated features need 
to be able to be mapped to the hypothesis space in 
order to impart evidence. For an electronic intelligence 
(ELINT) source, the features might be the electronic 
notation (ELNOT) of a signal. Because ELNOTs do not 
uniquely identify a battle space object, an ELNOT esti-
mate imparts evidence on many hypotheses in the tax-
onomy. Suppose, for example, that an estimated ELNOT 
identifies a military aircraft (both fixed-wing and rotary-
wing) at a confidence level c. Under the example CoT 
taxonomy in Figure 3, the resultant BBA would be

 

𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�{𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴, 𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴}�
= 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�{0010000000,0001000000}�
=  𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸{0011000000} = 𝑐𝑐𝑐𝑐 

𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸{{∅}} = 1 𝑎 𝑐𝑐𝑐𝑐 

  For a Geospatial Intelligence (GEOINT) source, the features 
might be the size or shape of an imaged battlespace object. In 
this case, the estimate (e.g., length) is a continuous variable, and 
the corresponding BBA is computed by the overlap between the 
estimated feature and known features values of battlespace 
objects.  As a further example using kinematics, consider a 
source that estimates the maximum speed of a battlespace 
object (see Figure 4), resulting in a mean and standard deviation 
(accounting for the inherent uncertainty in the ability to observe 
speed). This can be captured as a Gaussian distribution over the 
speed feature. The possible speeds of various vehicles are 
known and can be captured using intervals over the speed 
feature space. Then, the evidence (i.e., BBA) is given by 
evaluating the overlap of the Gaussian with the intervals of 
speed.  

Figure 4: Example “Max Speed” Continuous Feature and 
Evidence Assignment 

In the example of Figure 4, the BBA for the “max speed” 
feature over the CoT taxonomy is: 

𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�{𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴, 𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴}� = .9 
𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸{{𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴}} = .1 

That is, ~90% of the Gaussian distribution overlaps the region 
corresponding to fixed wing aircraft while ~10% of the 
Gaussian distribution overlaps the region corresponding to a 
missile, and there is negligible overlap with the other regions. 

Adaptive Output 
  The last remaining requirement for CID estimation is the 
ability to produce an actionable output that is both informative 
and concise. Once the TBM is used to combine evidence and 
compute the BBA over the taxonomy of hypotheses, the 
Pignistic Probability Transform (BetP) can be computed over 
any collection of exhaustive and mutually exclusive 

. 

For a geospatial intelligence (GEOINT) source, the 
features might be the size or shape of an imaged battle-
space object. In this case, the estimate (e.g., length) is 
a continuous variable, and the corresponding BBA 
is computed by the overlap between the values of the 
estimated feature and the known features of battle space 
objects. As a further example using kinematics, consider 
a source that estimates the maximum speed of a battle-
space object (see Figure 4), resulting in a mean and stan-
dard deviation (accounting for the inherent uncertainty 
in the ability to observe speed). This can be captured 
as a Gaussian distribution over the speed feature. The 
possible speeds of various vehicles are known and can 
be captured using intervals over the speed feature space. 
Then, the evidence (i.e., BBA) is given by evaluating the 
overlap of the Gaussian with the intervals of speed.

In the example shown in Figure 4, the BBA for the 
max speed feature over the CoT taxonomy is

 

𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�{𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴, 𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴}�
= 𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�{0010000000,0001000000}�
=  𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸{0011000000} = 𝑐𝑐𝑐𝑐 

𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸{{∅}} = 1 𝑎 𝑐𝑐𝑐𝑐 

  For a Geospatial Intelligence (GEOINT) source, the features 
might be the size or shape of an imaged battlespace object. In 
this case, the estimate (e.g., length) is a continuous variable, and 
the corresponding BBA is computed by the overlap between the 
estimated feature and known features values of battlespace 
objects.  As a further example using kinematics, consider a 
source that estimates the maximum speed of a battlespace 
object (see Figure 4), resulting in a mean and standard deviation 
(accounting for the inherent uncertainty in the ability to observe 
speed). This can be captured as a Gaussian distribution over the 
speed feature. The possible speeds of various vehicles are 
known and can be captured using intervals over the speed 
feature space. Then, the evidence (i.e., BBA) is given by 
evaluating the overlap of the Gaussian with the intervals of 
speed.  

Figure 4: Example “Max Speed” Continuous Feature and 
Evidence Assignment 

In the example of Figure 4, the BBA for the “max speed” 
feature over the CoT taxonomy is: 

𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸�{𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴, 𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴 𝑎 𝐴𝐴𝐴𝐴}� = .9 
𝑚𝑚𝑚𝑚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸{{𝑎𝑎𝑎𝑎𝑎.𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴 𝑎𝐴𝐴𝐴𝐴}} = .1 

That is, ~90% of the Gaussian distribution overlaps the region 
corresponding to fixed wing aircraft while ~10% of the 
Gaussian distribution overlaps the region corresponding to a 
missile, and there is negligible overlap with the other regions. 

Adaptive Output 
  The last remaining requirement for CID estimation is the 
ability to produce an actionable output that is both informative 
and concise. Once the TBM is used to combine evidence and 
compute the BBA over the taxonomy of hypotheses, the 
Pignistic Probability Transform (BetP) can be computed over 
any collection of exhaustive and mutually exclusive 

. 

That is, ~90% of the Gaussian distribution overlaps the 
region corresponding to fixed-wing aircraft, while ~10% 
of the Gaussian distribution overlaps the region cor-
responding to a missile, and there is negligible overlap 
with the other regions.

Adaptive Output
The last remaining requirement for CID estimation is 

the ability to produce an actionable output that is both 
informative and concise. Once the TBM is used to com-
bine evidence and compute the BBA over the taxonomy 
of hypotheses, the PPT (BetP) can be computed over any 
collection of exhaustive and mutually exclusive hypoth-
eses (i.e., a reporting hypothesis space) within the taxon-
omy. As a matter of procedure, the PPT (Eq. 5) is applied 
over multiple reporting hypothesis spaces within the 
taxonomy and a decision is made as to which hypothesis 
space to use as the reported result. Since the objective of 
the adaptive output is to provide the most concise output 
without significant loss of information, an information 
theoretic approach derived from the domain of data com-
pression is applied.12 The procedure is as follows:

•	 The probability distribution (BetP) is computed 
across the set of leaf nodes (R0) within the taxon-
omy, which serves as the reference probability distri-
bution since it is the most specific representation of 
the FOD. The BetP formula for an arbitrary report-
ing hypothesis space Ri is
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•	 The Kullback–Leibler (KL) divergence,13 D(Ri||R0), 
between a reporting hypothesis space (Ri) and the 
leaf node (reference) hypothesis space (R0) in the 
taxonomy is computed by writing the KL diver-
gence in terms of the Shannon entropy of the refer-
ence hypothesis space, H(R0), and the cross entropy 
between the reporting hypothesis space and the ref-
erence hypothesis space, H(Ri,R0), as follows.13

Let N(B) be the number of leaf nodes that represent 
hypothesis B in a reporting space Ri with i > 0, then:

Example feature: max speed

Gaussian
feature
estimate

Feature value

PDF

{a–.–S, a–.–G-E-V, a–.–U} {a–.–A-C-F, a–.–A-M-F}

{a–.–A-C-H, a–.–A-M-H} {a–.–A-W-M}

15 m/s 70 m/s Mach 1

Figure 4. Example showing max speed continuous feature and 
evidence assignment. This example using kinematics illustrates 
a source that estimates the maximum speed of a battle space 
object, resulting in a mean and standard deviation (accounting 
for the inherent uncertainty in the ability to observe speed).
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|𝐴𝐴𝐴𝐴 𝐴 𝐵𝐵𝐵𝐵|

|𝐵𝐵𝐵𝐵|
𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝐵𝐵𝐵𝐵)

1 −𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(∅)
𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖

 ∀𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑖 0 

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴0) = − � 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅0(𝐴𝐴𝐴𝐴) 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅0(𝐴𝐴𝐴𝐴)�
𝐴𝐴𝐴𝐴𝐵𝑅𝑅𝑅𝑅0

 

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ,𝐴𝐴𝐴𝐴0) = − � 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅0(𝐴𝐴𝐴𝐴) 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝐵𝐵𝐵𝐵)�
𝐴𝐴𝐴𝐴𝐵𝑅𝑅𝑅𝑅0;𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖;𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴

 

with 

𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝐵𝐵𝐵𝐵) =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝐵𝐵𝐵𝐵)
𝑁𝑁𝑁𝑁(𝐵𝐵𝐵𝐵)  ∀𝐵𝐵𝐵𝐵 𝐵 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 

and 

𝐷𝐷𝐷𝐷(𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖||𝐴𝐴𝐴𝐴0) = 𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ,𝐴𝐴𝐴𝐴0) −𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴0) 

• Report the probability distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  for hypothesis
space Ri that is the most concise (i.e., has the least number
of non-zero probabilities) and satisfies the specified Type
II error, 𝛼𝛼𝛼𝛼, where the Type II error is given by Stein’s
Lemma (Kullback S., 1997) :

𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 = 1 − 𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{−𝐷𝐷𝐷𝐷(𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖||𝐴𝐴𝐴𝐴0)} < 𝛼𝛼𝛼𝛼 

. 

•	 Report the probability distribution BetPRi for hypoth-
esis space Ri that is the most concise (i.e., has the 
least number of non-zero probabilities) and satisfies 
the specified type II error, α, where the type II error 
is given by Stein’s lemma:13

  

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝐴𝐴𝐴𝐴) = �
|𝐴𝐴𝐴𝐴 𝐴 𝐵𝐵𝐵𝐵|

|𝐵𝐵𝐵𝐵|
𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝐵𝐵𝐵𝐵)

1 −𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(∅)
𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖

 ∀𝐴𝐴𝐴𝐴 𝐵 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑖 0 

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴0) = − � 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅0(𝐴𝐴𝐴𝐴) 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅0(𝐴𝐴𝐴𝐴)�
𝐴𝐴𝐴𝐴𝐵𝑅𝑅𝑅𝑅0

 

𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ,𝐴𝐴𝐴𝐴0) = − � 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅0(𝐴𝐴𝐴𝐴) 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝐵𝐵𝐵𝐵)�
𝐴𝐴𝐴𝐴𝐵𝑅𝑅𝑅𝑅0;𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖;𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴

 

with 

𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝐵𝐵𝐵𝐵) =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝐵𝐵𝐵𝐵)
𝑁𝑁𝑁𝑁(𝐵𝐵𝐵𝐵)  ∀𝐵𝐵𝐵𝐵 𝐵 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 

and 

𝐷𝐷𝐷𝐷(𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖||𝐴𝐴𝐴𝐴0) = 𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ,𝐴𝐴𝐴𝐴0) −𝐻𝐻𝐻𝐻(𝐴𝐴𝐴𝐴0) 

• Report the probability distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  for hypothesis
space Ri that is the most concise (i.e., has the least number
of non-zero probabilities) and satisfies the specified Type
II error, 𝛼𝛼𝛼𝛼, where the Type II error is given by Stein’s
Lemma (Kullback S., 1997) :

𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 = 1 − 𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒{−𝐷𝐷𝐷𝐷(𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖||𝐴𝐴𝐴𝐴0)} < 𝛼𝛼𝛼𝛼 . 

Generally, the BetP distribution over a smaller report-
ing hypothesis space will contain less information than 
the BetP distribution over a larger reporting hypothesis 
space. That is, reporting a CID estimate higher up in 
the taxonomy generally leads to information loss when 
compared to the leaf nodes. However, reporting the BetP 
distribution over the leaf nodes may not be concise. The 
type II error, α, allows for reporting at a more concise 
level in the taxonomy with a controllable amount of 
information loss. In this context, the type II error prob-
ability, α, is the probability of deciding to report on 
hypothesis space Ri when the data supports selecting the 
reference hypothesis space R0 because Ri is too concise 
to represent the same information as R0.

We applied this procedure to a CoT taxonomy con-
sisting of 754 leaf nodes, using real evidence from three 
features: (1) maximum speed, (2) maximum altitude, 
and (3) friend or foe declaration. We defined an allow-
able type II error of 0.05 (5% compression loss). The 
evidence resulted in 19 (of 754) leaf nodes having non-
zero BetP probability and a resultant entropy, H(R0), of 
2.94. Reporting 19 CID estimates and the corresponding 
BetP distribution to a war fighter may be overwhelming. 
The next level higher in the taxonomy has 34 nodes and 
a BetP distribution with 2 non-zero values. The cross-
entropy, H(R1,R0), is also identically 2.94; thus, the KL 
divergence, D(R1||R0), and the type II error, 

  We applied this procedure to a CoT taxonomy consisting of 
754 leaf nodes, using real evidence from three features: (a) 
maximum speed, (b) maximum altitude, and (3) Friend or Foe 
declaration. We defined an allowable Type II error of 0.05 (5% 
compression loss). The evidence resulted in 19 (out of 754) leaf 
nodes having non-zero BetP probability and a resultant 
Entropy, 𝐻𝐻𝐻𝐻(𝑅𝑅𝑅𝑅0), of 2.94. Reporting 19 CID estimates and the 
corresponding BetP distribution to a warfighter may be 
overwhelming. The next level higher in the taxonomy has 34 
nodes and a BetP distribution with 2 non-zero values. The 
cross-entropy, 𝐻𝐻𝐻𝐻(𝑅𝑅𝑅𝑅1,𝑅𝑅𝑅𝑅0), is also identically 2.94, thus the KL 
divergence, 𝐷𝐷𝐷𝐷(𝑅𝑅𝑅𝑅1||𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜), and the Type II Error, 𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑅𝑅𝑅𝑅1 , is 0. As
a result, the CID estimate can be reported as 2 hypotheses with 
the corresponding BetP probabilities without any information 
loss relative to reporting the BetP for the leaf nodes. This occurs 
when all of the leaf nodes having non-zero probability are 
equivalently represented by a single parent node within the 
taxonomy, i.e., sibling leaf nodes with non-zero probability 
have equal probability. To complete the example, the next level 
higher in the taxonomy has 5 hypotheses and a BetP distribution 
with 1 non-zero value. However, the cross-entropy, 𝐻𝐻𝐻𝐻(𝑅𝑅𝑅𝑅2,𝑅𝑅𝑅𝑅0), 
is 4.04, thus the KL divergence, 𝐷𝐷𝐷𝐷(𝑅𝑅𝑅𝑅2||𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜), is 1.1 and the Type 
II Error, 𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑅𝑅𝑅𝑅2 , is 0.4. Since this exceeds the specified Type II
error level, the process is terminated and the CID estimate BetP 
distribution of 𝑅𝑅𝑅𝑅1is reported to the warfighter. 

Dealing with Latent CID Information 
  Real-world targeting applications often encounter situations 
where highly informative CID information can arrive at the 
decision maker very latent when compared with other tracking 
information. This can occur for a variety of reasons including 
processing and communications latencies, depending on the 
sensing phenomenology. For the warfighter to exploit this latent 
CID information, two algorithm challenges must be addressed. 
First, an algorithm for associating the latent information with 
historical tracking data is required. Second, the CID estimate 
must account for possible tracking ambiguities between the 
time of association and the decision time of the warfighter. 
Latent data association requires maintenance of sufficient time 
history of tracking data while CID estimation at a later time 
requires an accounting of periods of ambiguity. In order to 
address both challenges, a Track Segment Graph (TSG) (Chong 
et al., 2009) is used to retain a compressed representation of the 
movement of each tracked object, including ambiguities, and 
the time periods associated with each node in the TSG are used 
to form an Interval Binary Search Tree (IBST) (“Interval Tree,” 
2020). Given latent CID information (and the associated “valid” 
time of that information), the IBST is searched to determine all 
nodes in the TSG that existed at the valid time, and the TSG is 
used to determine whether those nodes represent periods of 
tracking ambiguity. If an unambiguous association is made with 
a node containing a single track, the TSG is traversed from the 
association time to the current time and a CID estimate is 
computed using the TBM algorithms detailed in the previous 
section (“CID Estimation Rules”) based upon any ambiguities 
that may have occurred. 
  For the purposes of this paper, we define an unambiguous 
association as an association between evidence and tracks that 
have a sufficiently low probability of being incorrect. For 
example, if receiving an image of a battlespace object, we can 
say that this is unambiguously associated with a track if the 

, is 
0. As a result, the CID estimate can be reported as two 
hypotheses with the corresponding BetP probabilities 
without any information loss relative to reporting the 
BetP for the leaf nodes. This occurs when all the leaf 
nodes having non-zero probability are equivalently rep-
resented by a single parent node within the taxonomy 
(i.e., sibling leaf nodes with non-zero probability have 
equal probability). To complete the example, the next 

level higher in the taxonomy has five hypotheses and 
a BetP distribution with one non-zero value. However, 
the cross-entropy, H(R2,R0), is 4.04; thus, the KL diver-
gence, D(R2||R0), is 1.1 and the type II error, 

  We applied this procedure to a CoT taxonomy consisting of 
754 leaf nodes, using real evidence from three features: (a) 
maximum speed, (b) maximum altitude, and (3) Friend or Foe 
declaration. We defined an allowable Type II error of 0.05 (5% 
compression loss). The evidence resulted in 19 (out of 754) leaf 
nodes having non-zero BetP probability and a resultant 
Entropy, 𝐻𝐻𝐻𝐻(𝑅𝑅𝑅𝑅0), of 2.94. Reporting 19 CID estimates and the 
corresponding BetP distribution to a warfighter may be 
overwhelming. The next level higher in the taxonomy has 34 
nodes and a BetP distribution with 2 non-zero values. The 
cross-entropy, 𝐻𝐻𝐻𝐻(𝑅𝑅𝑅𝑅1,𝑅𝑅𝑅𝑅0), is also identically 2.94, thus the KL 
divergence, 𝐷𝐷𝐷𝐷(𝑅𝑅𝑅𝑅1||𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜), and the Type II Error, 𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑅𝑅𝑅𝑅1 , is 0. As
a result, the CID estimate can be reported as 2 hypotheses with 
the corresponding BetP probabilities without any information 
loss relative to reporting the BetP for the leaf nodes. This occurs 
when all of the leaf nodes having non-zero probability are 
equivalently represented by a single parent node within the 
taxonomy, i.e., sibling leaf nodes with non-zero probability 
have equal probability. To complete the example, the next level 
higher in the taxonomy has 5 hypotheses and a BetP distribution 
with 1 non-zero value. However, the cross-entropy, 𝐻𝐻𝐻𝐻(𝑅𝑅𝑅𝑅2,𝑅𝑅𝑅𝑅0), 
is 4.04, thus the KL divergence, 𝐷𝐷𝐷𝐷(𝑅𝑅𝑅𝑅2||𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜), is 1.1 and the Type 
II Error, 𝐵𝐵𝐵𝐵𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑅𝑅𝑅𝑅2 , is 0.4. Since this exceeds the specified Type II
error level, the process is terminated and the CID estimate BetP 
distribution of 𝑅𝑅𝑅𝑅1is reported to the warfighter. 

Dealing with Latent CID Information 
  Real-world targeting applications often encounter situations 
where highly informative CID information can arrive at the 
decision maker very latent when compared with other tracking 
information. This can occur for a variety of reasons including 
processing and communications latencies, depending on the 
sensing phenomenology. For the warfighter to exploit this latent 
CID information, two algorithm challenges must be addressed. 
First, an algorithm for associating the latent information with 
historical tracking data is required. Second, the CID estimate 
must account for possible tracking ambiguities between the 
time of association and the decision time of the warfighter. 
Latent data association requires maintenance of sufficient time 
history of tracking data while CID estimation at a later time 
requires an accounting of periods of ambiguity. In order to 
address both challenges, a Track Segment Graph (TSG) (Chong 
et al., 2009) is used to retain a compressed representation of the 
movement of each tracked object, including ambiguities, and 
the time periods associated with each node in the TSG are used 
to form an Interval Binary Search Tree (IBST) (“Interval Tree,” 
2020). Given latent CID information (and the associated “valid” 
time of that information), the IBST is searched to determine all 
nodes in the TSG that existed at the valid time, and the TSG is 
used to determine whether those nodes represent periods of 
tracking ambiguity. If an unambiguous association is made with 
a node containing a single track, the TSG is traversed from the 
association time to the current time and a CID estimate is 
computed using the TBM algorithms detailed in the previous 
section (“CID Estimation Rules”) based upon any ambiguities 
that may have occurred. 
  For the purposes of this paper, we define an unambiguous 
association as an association between evidence and tracks that 
have a sufficiently low probability of being incorrect. For 
example, if receiving an image of a battlespace object, we can 
say that this is unambiguously associated with a track if the 

, is 
0.4. Since this exceeds the specified type II error level, 
the process is terminated and the CID estimate BetP dis-
tribution of R1 is reported to the war fighter.

DEALING WITH LATENT CID INFORMATION
Real-world targeting applications often involve 

situations where highly informative CID informa-
tion can arrive at the decision-maker with significant 
latency compared to other tracking information. This 
can occur for a variety of reasons, including process-
ing and communications latencies, depending on the 
sensing phenomenology. For the war fighter to exploit 
this latent CID information, two algorithm challenges 
must be addressed. First, an algorithm for associating 
the latent information with historical tracking data is 
required. Second, the CID estimate must account for 
possible tracking ambiguities between the time of asso-
ciation and the decision time of the war fighter. Latent 
data association requires maintenance of sufficient 
time history of tracking data, while CID estimation at a 
later time requires an accounting of periods of ambigu-
ity. To address both challenges, a track segment graph 
(TSG)14 is used to retain a compressed representation of 
the movement of each tracked object, including ambi-
guities, and the time periods associated with each node 
in the TSG are used to form an interval binary search 
tree (IBST).15 Given latent CID information (and the 
associated “valid” time of that information), the IBST 
is searched to determine all nodes in the TSG that 
existed at the valid time, and the TSG is used to deter-
mine whether those nodes represent periods of tracking 
ambiguity. If an unambiguous association is made with 
a node containing a single track, the TSG is traversed 
from the association time to the current time and a CID 
estimate is computed using the TBM algorithms detailed 
in a previous section (CID Estimation Rules) based on 
any ambiguities that may have occurred.

For the purposes of this article, we define an unam-
biguous association as an association between evidence 
and tracks that has a sufficiently low probability of being 
incorrect. For example, if receiving an image of a battle-
space object, we can say that it is unambiguously associ-
ated with a track if the geographic location of the image 
and a track, accounting for their uncertainties, are such 
that the image is highly unlikely to be geospatially con-
sistent with another track. Alternatively, an ambigu-
ous association is declared when there is sufficiently 
high likelihood of geospatial consistency between an 
image and more than one track. While they are not 
the emphasis of this article, tests such as the Mahala-
nobis distance16 between two Gaussian estimates (one 
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representing the geographic location of CID evidence 
and the other representing the geographic location of 
a track) can be used with appropriate type I and type II 
error thresholds to determine whether an association 
is ambiguous or unambiguous. In this context, a type I 
error is the declaration of no association when the CID 
evidence originated from the tracked object (missed 
association), and a type II error is a declaration of asso-
ciation when the CID evidence did not originate from 
the tracked object (false association).

A TSG is created iteratively as tracks are updated in 
order to capture linkages between tracks that become 
ambiguous (i.e., closely spaced and moving in the same 
direction) at different points in time. Here, similar to 
the definition of association ambiguity between CID 
evidence and tracks above, we consider two (or more) 
tracks to be ambiguous if their geographic location and 
velocity estimates (along with their uncertainties) are 
similar enough that there is a high probability of these 
tracks representing the same battle space object. An 
ambiguity is declared when the Mahalanobis distance 
is smaller than a threshold value derived from a speci-
fied hypothesis testing error, β. The smaller the value 
of β, the more similar the track state estimates must be 
to declare an ambiguity. If comparing tracks that have 
six-state estimates (3-D position and 3-D velocity) with 
a desired probability of incorrectly declaring an ambi-
guity to be less than 0.1, then β is 10.645, given by a 
chi-square distribution17 with six degrees of freedom and 
a critical value of 0.9. Thus, when two or more tracks 
have a Mahalanobis distance of less than 10.645, they 
will be declared ambiguous and an ambiguous node 
will be added to the TSG with the ambiguous tracks. 
Additionally, the Mahalanobis test can be used to deter-
mine when an ambiguity is resolved and tracks can be 

placed in their own unambiguous node in the TSG. 
Here it is useful to build in some hysteresis to avoid 
toggling between ambiguous and unambiguous nodes 
in the TSG. For example, the chi-square threshold for 
resolving an ambiguity may use a critical value of 0.95, 
which is 12.592. Thus, once tracks have a Mahalanobis 
distance exceeding 12.592, they can be declared unam-
biguous and will be placed in an unambiguous node in 
the TSG corresponding to a single track.

The above-described approach to using the Mahala-
nobis distance to build a TSG has been used to reduce 
computational burden for multi-hypothesis tracking 
algorithms that evaluate hypotheses over extended time 
horizons.14 Figure 5 presents a TSG for the case of two 
crossing tracks as discussed in detail in the section on 
CID estimation rules. At the top of the figure are two 
nodes representing the time periods for which tracks A 
and B are well separated (i.e., unambiguous). The CID 
estimate for tracks A and B at this time will be com-
puted using the conjunctive combination rule (Eq. 2) on 
all BBAs derived from CID evidence (see the Multi-INT 
Features and Evidence section) associated with these 
tracks. When the tracks become too close according 
to a Mahalanobis distance test, they are declared to be 
ambiguous and a single node is formed, which repre-
sents both tracks A and B. If tracks A and B had CID 
information, the ambiguity indicates loss of the ability 
to attribute this information to either track uniquely, 
and therefore both tracks A and B would be assigned 
a CID estimate using the disjunctive combination rule 
(Eq. 3) across all BBAs previously associated with both 
tracks. Finally, at the bottom of the graph, the tracks 
have separated spatially and are no longer ambiguous; 
however, the CID information is now entangled since 
it is not clear which outgoing track should have which 
initial CID information attributed to it. That is, both 
tracks will still retain a CID estimate resulting from the 
disjunction performed when they became ambiguous.

Each node within the TSG generally contains the 
following information:

•	 Time period represented by the node

•	 Track identifiers (e.g., track numbers)

•	 CID evidence (e.g., BBAs over a reference taxonomy)

•	 Track state representation (e.g., set of track states, 
polynomial curve fit)

Using the TSG can greatly reduce computational and 
storage requirements when compared to simply storing all 
track updates.14 Computational savings are achieved by 
determining ambiguities as track updates occur instead 
of having to reassess the track picture for ambiguities 
each time latent data are received, which could result 
in significant duplicate processing for moderate to large 
tracking problems. In addition, storage requirements can 

Track A Track B

Track A or B Track A or B

Tracks
 A, B

Unambiguous
track

segments
(CID, if available)

Ambiguous
track

segments
(CID loss)

Unambiguous
track

segments
(CID entangled)

Figure 5. Example TSG illustrating crossing tracks. At the top 
of the graph are two nodes representing the time periods for 
which tracks A and B are well separated (i.e., unambiguous). At 
the bottom of the graph, the tracks have separated spatially and 
are no longer ambiguous; however, the CID information is now 
entangled since it is not clear which outgoing track should have 
which initial CID information attributed to it.
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be reduced by representing each node in the TSG by 
a polynomial curve fit or some other compressed rep-
resentation of the track state over that time period. For 
example, if a track is moving in a straight line, the node 
may simply contain the parameters to describe this line 
rather than many track states that represent the time 
series along this line. With the computational and stor-
age requirements reduced, latent data can be associated 
in complex tracking environments and with low compu-
tational latency.

While the TSG is being generated, a corresponding 
IBST is maintained to store the time intervals over which 
all unambiguous nodes in the TSG exist. We focus on 
unambiguous nodes because we cannot uniquely attri-
bute CID evidence with ambiguous tracks. When latent 
data are received, the IBST allows for quick identification 
of unambiguous nodes that temporally intersect with 
the timestamp on the latent data. The IBST provides 
an O(log(N)) complexity search18 for candidate unam-
biguous nodes to associate with latent CID evidence. 
Figure 6 provides an example IBST that has been gener-
ated over the course of 150 min, where the time periods 
in blue indicate unambiguous nodes, each representing 
a single track within the TSG. So tracks represented by 
node 1 (track C), node 2 (track A), node 3 (track D), and 
node 4 (track B) in the TSG were unambiguous with all 
other tracks between 0 and 60 min, 20 and 140 min, 0 
and 150 min, and 60 and 140 min, respectively. Also, 
assume that nodes 2 and 4 are merged at the 140-min 
mark due to ambiguity between tracks A and B. This is 
the same scenario as depicted in Figure 5.

At 150 min, a latent geospatial detection with CID 
evidence (e.g., an image chip with location information) 
collected at 70 min is received by the CID estimation 
process. We query the IBST for all unambiguous nodes at 
time 70 min (red line in Figure 6), and the IBST returns 
nodes 2, 3, and 4 as candidates for association with the 
CID evidence. A final association of CID evidence is 
only made if an unambiguous association can be made 

with one of the tracks represented by one of these nodes. 
Again, this decision can be made using the Mahalanobis 
distance test.

Furthering the example, assume an unambiguous 
association of CID evidence is made with the track repre-
sented by node 2 (track A). The associated CID evidence 
is combined with any other CID evidence for track A 
using the TBM conjunctive combination rule (Eq. 2). To 
update track A’s CID to the current time (150 min), the 
TSG is traversed (e.g., from top to bottom in Figure 5) 
starting from node 2 forward in time until the current 
time. According to Figure 6, node 2 is no longer unam-
biguous (i.e., it has been merged with track B to form an 
ambiguous node) at time 140 min, and therefore, all CID 
evidence associated with node 2 (track A) is fused with 
all CID evidence attributed to node 4 (track B) using the 
TBM disjunctive combination rule (Eq. 3).

Figure 7 depicts the process of CID estimation after 
the latent CID evidence has been associated with 
track A at 70 min. Before the latent association in our 
example, track A had only two features (e.g., max alti-
tude and max speed) attributed to it. After the latent 
association, track A now has three features (e.g., max 
altitude, max speed, and length extracted from an image 
chip) attributed to it (feature 3 highlighted in blue). 
Thus, we start by conjunctively combining the BBAs for 
the evidence (mA.1, mA.2, and mA.3) from these features 
(see the Multi-INT Features and Evidence section) to 
compute the belief mass mA for track A. Continuing to 
traverse the TSG, we find an ambiguous node at time 
140 min that consists of tracks A and B. So, in accor-
dance with the section on CID estimation rules, we now 
conjunctively combine the CID evidence attributed to 
track B (mB.1 and mB.2), resulting in mB, and then the 
belief masses for tracks A and B will be disjunctively 
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Figure 6. Timeline of unambiguous track history graph nodes 
over 150 min of history. Time periods in blue indicate unambigu‑
ous nodes, each representing a single track within the TSG. The 
red line indicates the point at which the IBST is queried for all 
unambiguous nodes.

Figure 7. Evidence combination using TBM for an ambiguous 
node containing two tracks. This figure depicts the process of CID 
estimation after the latent CID evidence has been associated with 
track A at 70 min.

Track A

Feature 1 -> Evidence 𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴.1
Feature 2 -> Evidence 𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴.2
Feature 3 -> Evidence 𝒎𝒎𝒎𝒎𝑨𝑨𝑨𝑨.𝟑𝟑𝟑𝟑

𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴 = 𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴.1 ∩ 𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴.2 ∩ 𝒎𝒎𝒎𝒎𝑨𝑨𝑨𝑨.𝟑𝟑𝟑𝟑
(Conjunctive
Combination)

𝑚𝑚𝑚𝑚𝐵𝐵𝐵𝐵 = 𝑚𝑚𝑚𝑚𝐵𝐵𝐵𝐵.1 ∩ 𝑚𝑚𝑚𝑚𝐵𝐵𝐵𝐵.2
(Conjunctive
Combination)

𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴 ∪𝑚𝑚𝑚𝑚𝐵𝐵𝐵𝐵
(Disjunctive

Combination)

Classification for BOTH
Tracks A and B

Track B

Feature 2 -> Evidence 𝑚𝑚𝑚𝑚𝐵𝐵𝐵𝐵.1
Feature 3 -> Evidence 𝑚𝑚𝑚𝑚𝐵𝐵𝐵𝐵.2
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combined, mA � mB, to produce the CID estimation for 
both track A and track B. An interesting result of this 
example is that the CID estimate of track B is affected 
by the latent association of CID evidence to track A 
through the ambiguity of tracks A and B.

If, after 150 min, these tracks become unambiguous 
again (such as in Figure 5), the CID estimate of both 
tracks will remain equal to mA � mB as in Figure 7 
because we are still unable to unambiguously attribute 
the evidence BBAs mA.1, mA.2, mA.3, mB.1, and mB.2 to 
the correct track. If, however, CID features are associ-
ated with track A or B after their ambiguity is resolved, 
then the corresponding CID evidence BBA is conjunc-
tively combined with the current CID evidence for each 
track, mA � mB.

CONCLUSIONS
This article presented an automated CID estimation 

process that accommodates imprecise CID evidence and 
heterogeneous multi-INT CID feature spaces to gener-
ate an actionable result suitable for targeting decisions. 
The TBM provides a framework for combining uncer-
tain, ambiguously associated, and conflicting evidence 
while accepting an incomplete hypothesis space (open-
world assumption). The TBM was applied to a taxonomy 
with hierarchical hypothesis spaces, allowing for an effi-
cient implementation using BitSet encoding. Given the 
inherent variation in output specificity allowed by a tax-
onomy, this article presented an information theoretic 
approach to selecting the most concise hypothesis space 
while adhering to suitable compression loss. Finally, a 
TSG and IBST representation of historical track rela-
tionships was used to address the association of latent 
CID evidence and CID estimation in the presence of 
subsequent tracking ambiguities. Together, these algo-
rithms provide a robust decision aid for targeting that 
overcomes historical deficiencies that have hindered the 
real-world use of automated CID estimation.
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