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ABSTRACT
Despite advances in knowledge and technology, approaches to health care discovery and delivery 
have not broadly kept pace with those advancements. While there have been notable improve-
ments in shaping diagnosis and treatment resulting from knowledge made available through 
advances in technology, the field generally uses broad population characteristics as the basis 
for determining the health of, and how to treat, individuals. Today, with the confluence of big 
data and artificial intelligence (AI), we have an opportunity to tailor diagnoses and treatments 
precisely as needed for an individual—in other words, to practice precision medicine. The Johns 
Hopkins University Applied Physics Laboratory (APL) and Johns Hopkins Medicine (JHM), in part-
nership with the Bloomberg School of Public Health, Johns Hopkins Information Technology, 
and others across the institution, are working to usher in this new paradigm. These organizations 
jointly developed the Precision Medicine Analytics Platform (PMAP). This platform pulls data from 
many sources, aggregates the data, and then provisions needed data to approved researchers in 
a secure environment where they can apply advanced techniques and other tools to analyze the 
data. The guiding vision is to create and sustain the ability to accelerate gaining knowledge and 
value from data and from closing the loop between discovery and delivery, ultimately reducing 
health care costs and improving patient outcomes.

of medicine, practitioners literally used their senses to 
observe the human body to develop approaches to main-
tain or restore individuals’ health. As time passed and 
the field evolved, use of provider senses increasingly 
became complemented by technology to observe and 
learn with great resolution, frequency, and accuracy.

Drawing on these technologies, providers mapped 
individuals into broad classes or populations based on 

INTRODUCTION
Today, two decades into a new millennium, the fields 

of biomedical research and health care stand upon centu-
ries of knowledge about the function of the human body 
and how to care for the ill or injured. The knowledge 
that fueled these advancements was gained from what 
has been the cornerstone of medicine since antiquity: 
using the scientific method—the hypothesis-driven sys-
tematic use of observation to learn. In the earliest days 
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measures or observables such as age, gender, weight, 
heart rate, blood pressure, and blood chemistry. These 
measurements have stood the test of time as very impor-
tant characteristics (“vital signs”) that provide insight 
into the health of an individual and serve as a basis 
for shaping how individuals are treated. Technological 
advancements have, however, made it possible to con-
sider augmenting this approach by potentially enriching 
the provider’s insights by revealing aspects of an indi-
vidual’s health that might otherwise be hidden absent 
capitalizing on these new technologies.

Today, we stand poised to capitalize on the true prom-
ise of precision medicine—the ability to accurately tailor 
diagnosis and treatments precisely as needed for an indi-
vidual. Technology-driven disruptive forces will advance 
and accelerate knowledge faster than ever before, lead-
ing to greater insight into clinically relevant and bio-
logically anchored dynamics that define an individual’s 
health and health state. These technology-driven dis-
ruptive forces result from the confluence of primar-
ily two advancements: big data—the ability to rapidly 
collect torrents of disparate data about individuals and 
populations—and artificial intelligence (AI)—the abil-
ity of computers to perform tasks and actions tradition-
ally performed by humans, such as learning, reasoning, 
and decision-making at massive scale. The global impact 
of big data and AI is being felt in diverse industries rang-
ing from defense,1 intelligence,2 transportation,3 con-
sumer economies,4 and health and health care.5 APL is 
harnessing experience with big data and AI in several 
of these industries to partner with Johns Hopkins Medi-
cine (JHM) to disrupt health care today, just as JHM did 
in the late 19th century—this time through the power 
of precision medicine.

THE VISION FOR PRECISION MEDICINE AT 
JOHNS HOPKINS

Health care has benefited substantially from tech-
nological advancements and groundbreaking discover-
ies. Some cancers can be detected earlier.6,7 Previously 
deadly or severely debilitating conditions can be kept 
at bay or cured.8–10 While these advancements have 
improved the quality of life for individuals and have, in 
many cases, reduced the overall cost of care and extended 

lives, it is widely recognized that the ability to diagnose 
and treat conditions—ranging from influenza, certain 
cancers, and chronic conditions such as cardiovascular 
disease, arthritis, and diabetes—is hindered by ineffi-
ciencies and lost learning opportunities in biomedical 
discovery and health care delivery.11 After the underly-
ing causes of illness and injury are discovered, it can take 
decades and enormous sums of human and financial 
capital12 to develop effective treatments. Furthermore, 
individuals often are treated uniformly (e.g., with a 
single seasonal influenza vaccination or broad-spectrum 
antibiotics) rather than with treatments tailored to their 
specific characteristics (see Figure 1). Under the pressure 
of health care’s growing financial impact, which in the 
United States is approaching 18% of the gross domestic 
product with little to show for extended health or life 
span,13 the health care field has come to the realization 
that traditional approaches to biomedical research and 
health care delivery will only continue the escalation in 
cost and the toll on human life.

JHM was at the forefront of an earlier realization 
about the state of medical research and health care 
delivery. In the late 1800s, under the leadership of Wil-
liam Welch and with support from leading researchers 
and providers of that age, JHM pioneered a methodical 
and systematic approach to using science to understand 
the human body and the afflictions that impact it. The 
result was a new era of knowledge, education, training, 
and policy. Today, JHM has come to a newer realization 
about the current state of research and health care deliv-
ery and has established the Hopkins inHealth initiative 
(https://www.hopkinsmedicine.org/inhealth/) to harness 
the emergence of big data and AI as a force to reinvent 
medicine in the form of precision medicine.

In this precision medicine paradigm, which might 
actually be thought of as “accurate medicine,” patients 
realize value from health care’s ability to tailor treatment 
to the individual. This tailoring is enabled by accumu-
lating enough data from large populations of individu-
als such that a specific individual can be placed among 
“peers” in granularly defined subpopulations with 
like characteristics—characteristics that are far more 
descriptive and extensive than those used in today’s 
generalized approach of describing people by gender, age, 
weight, and even genomics. At JHM, precision medicine 

?

Figure 1. Traditional treatment approach versus precision medicine treatment approach. In the current approach (left), individuals 
often are treated uniformly (e.g., with a single seasonal influenza vaccination or broad-spectrum antibiotics). In the precision medicine 
approach (right), treatments are tailored to individuals’ specific characteristics.
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means drawing on hundreds or thousands of characteris-
tics far beyond today’s norm of a handful of measures to 
describe people and their health state.

It is JHM’s vision (Figure 2) to accelerate the cycle of 
discovery and delivery by fueling it with massive amounts 
of disparate data that describe the social, behavioral, 
environmental, and biological characteristics of indi-
viduals. The process will also be informed by knowledge 
of fundamental basic science and the knowledge and 
wisdom of clinicians. This new paradigm aims to unveil 
a new era of medicine that is less costly in terms of both 
financial impact and the toll on human life.

THE PROMISE OF BIG DATA AND 
PRECISION MEDICINE

Until recently, big data, characterized by its volume, 
velocity, variety, and veracity, could hardly be used to 
describe health-related data. Visits to doctor’s offices 
typically provide the only opportunity to systematically 
collect data regarding an individual. Aside from routine 
annual checkups, these visits usually occur when the 
individual is already ill or injured, and they involve the 
collection of a limited number of measurements consid-
ered indicative of one’s health state. These measures are 
collected along with laboratory blood and other tests 
(e.g., swabs and x-rays) if there is some indication of a 
latent, emerging, or present illness or injury. With the 
regulatory-driven move to electronic health records in 
the United States, these intersections (i.e., visits) with 
providers greatly amplify the volume, velocity, and vari-
ety of digitally collected data regarding individuals.

No longer, however, are doctor’s office visits the only 
way to gain visibility into the measures traditionally 

used to define one’s health at a particular time. The near 
ubiquitous presence and availability of digital health 
technology—sensors, smartphones, Internet of Things 
(including the Internet of Medical Things), and wear-
able devices—enable the ability to gain insight into 
the social, behavioral, environmental, and biological 
determinants of an individual’s health and health state 
continually over time. As a result, the answer to the 
question “Is this person healthy, ill, injured, or healing?” 
may be held within the disparate data we can now col-
lect longitudinally over time at massive scale.

Although electronic health record data are often 
fragmented among providers and are notoriously error 
prone (i.e., have limited veracity), and the digital health 
technology industry is in its infancy with wearables 
being largely considered recreational-grade sensors, the 
digitization of medical data means that the big data 
trend is becoming realized in the health domain and is 
poised only to improve the veracity and clinical utility 
of collected data.

What does this big data emergence mean for preci-
sion medicine? It means that if we explicitly believe that 
the data collected about an individual hold the answer 
to their health state, then if we collect enough similar 
data from large populations of other people, we can 
discern where an individual resides relative to others 
in terms of their individual health state. With enough 
population-level data accumulated, we can define treat-
ments and care pathways for an individual based on 
what we learn from the treatments and care pathways 
of other like individuals. This is equivalent to what 
Netflix, Amazon, and other tech-driven firms are doing 
today with consumer behavior—that is, they monitor 
the purchases an individual makes, along with their 
clickstream digital exhaust, to tailor the presentation of 
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Figure 2. JHM’s precision medicine vision. Precision medicine seeks to use big data, knowledge of basic science, and wisdom of clini-
cians to speed up the cycle of discovery and delivery, ultimately reducing health care costs and improving outcomes.
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content and offerings (i.e., to give the consumer what 
they want/need). These companies’ value proposition 
is to further their bottom-line revenue. For the health 
domain, the value proposition of accumulating these 
data is improved outcomes at lower cost.

Achieving this value proposition in a field that still 
has remnants of its cottage industry age will not be 
easy.14 Just a few of the paradigm shifts the domain will 
need to implement to realize the power of big data for 
precision medicine are policy changes related to data 
access; rethinking legacy information technology (IT) 
infrastructure that tends to put data into inaccessible 
siloes; and a change in mind-set away from the tradi-
tional “small data” mentality of the past to a realization 
that more health data may be collected outside the walls 
of a clinic, hospital, or research laboratory than inside.

THE PROMISE OF AI AND PRECISION MEDICINE
Collection of massive amounts of disparate data is a 

necessary enabler for precision medicine, but collection 
alone is not sufficient to fully realize the promise. Gen-
erating meaningful value from these data is also neces-
sary, and that can only be done through analytics. In 
the age of small data in health care, traditional statis-
tical analysis proved to be adequate to discern mean-
ing from data collected during clinical encounters and 
research studies. Today, however, with the abundance of 
complex and highly dimensional data, these statistical 
analysis techniques—and the ability to perform these 
analyses at massive scale—are quickly being outpaced 
by more advanced methods of AI. (See the article by 
Piorkowski, in this issue, for more on APL’s data science 
contributions.)

Traditional statistical analysis techniques have 
formed the basis for the scientific method applied to bio-
medical and health research for centuries. This analysis 
approach involves establishing a hypothesis and then 
using well-defined mathematical methods to arrive at 

conclusions that either prove or disprove the hypoth-
esis, along with confidence measures to characterize the 
strength of the proof. AI techniques such as random 
forests, convolutional neural networks, and other deep 
learning and machine learning techniques are usher-
ing a new age of analytic approaches into biomedical 
and health research.15 These AI techniques—coupled 
with big data, which provides the high dimensional-
ity of today’s health analytics—offer a complementary 
approach to the traditional hypothesis-driven approach. 
That is, the AI/big data approach affords a means to 
“let the data inform the hypothesis” rather than having 
to rely solely on the wise clinician/researcher to define 
the hypothesis; this is perhaps better characterized as 
“hypothesis generating research.” These complementary 
approaches are an example representation of human–
machine teaming, which capitalizes on the relative 
strengths of humans and machines (i.e., AI) and com-
pensates for the weaknesses of each. Figure 3 illustrates 
the process.

As with the application of any new technology to a 
new domain, there are fits and starts in terms of suc-
cesses and failures. The highly visible misstep of the 
IBM Watson initiative at MD Anderson is an example 
of the fate many early adopters encounter.16 Yet there 
are lower-profile examples of successes in focused areas. 
Among these breakthroughs are CE Mark, Paige’s com-
putational pathology AI-based decision support for pri-
mary diagnosis of prostate cancer, announced in 2019;17 
the Google, University of California, San Francisco, 
and Stanford collaboration demonstrating the power of 
deep learning applied to electronic health records;18 and 
many others.19

At Johns Hopkins, as part of Hopkins inHealth pre-
cision medicine research, we are beginning to see early 
indications of value from AI applied to health data asso-
ciated with a variety of clinical conditions. While our 
approach has been focused within condition-centric 
centers of excellence, we have undertaken development 
of analytical tools and methods with an eye toward 
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Figure 3. AI/big data in precision medicine. Incorporating AI techniques complements the traditional hypothesis-driven approach to 
biomedical and health research. With the AI/big data approach, the data can inform the hypothesis rather than the clinician/researcher 
being required to define the hypothesis at the outset.
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generalizability across conditions. Accordingly, we have 
developed, for example, a natural language processing 
(NLP) toolbox that provides researcher- and clinician-
facing means for bringing meaning to unstructured 
text—nearly all our centers of excellence have a need 
for such NLP capabilities.

We have applied machine learning methods that pro-
cess highly dimensional input data, including electronic 
health records, imaging, and patient-reported outcomes, 
to produce and define clusters of subpopulations among 
patients with multiple sclerosis, along with methods to 
discern which features are most important in defin-
ing these subpopulations.20 Further, we have devel-
oped tools that map health-state trajectories of patients 
within each of these subpopulations, thus defining the 
basis for predicting how a given individual patient with 
multiple sclerosis may progress based on the cohort of 
other patients with similar characteristics across the 
highly dimensional space.

While AI applied to health is still in its early days, 
we can see bright spots of promise in today’s state of the 
art. Looking toward the future, we can see the poten-
tial to realize value from data that have historically 
landed “on the cutting room floor,” such as data from 
failed drug trials. In fact, we can see the potential to 
radically change the approach to how clinical trials are 
performed today. We can see the potential to improve 
diagnosis for patients who have a variety of illnesses or 
injuries. However, we will not see any of this value with-
out a new approach to how data are collected, organized, 
and provisioned.

WHERE WE STAND TODAY—THE PRECISION 
MEDICINE ANALYTICS PLATFORM

The hallmark of JHM’s revolution in medicine in 
the late 19th century was the coupling of discovery and 
the delivery of medicine.21 This pairing has produced 

remarkable breakthroughs that have improved the lives 
of many worldwide. While this connection continues 
today, it is not as robust as needed to realize the promise 
of precision medicine. Team approaches to translational 
biomedical discovery and clinical care exist; however, 
many areas in the research domain operate in a loosely 
coupled manner.11 That is, each research effort oper-
ates independently—each researcher undertakes their 
hypothesis-driven study, independently accesses clini-
cally obtained data from the electronic health record, 
and gathers study-specific data via stand-alone data-
bases, repositories, and registries. The researcher cre-
ates software tools to access, manipulate, process, and 
visualize these data using independently developed, 
maintained, and updated approaches—institutional 
review and approval of requests for access to these data 
are also handled on a case-by-case basis. Data and tools 
are shared only in limited cases and, more important, 
sharing of lessons learned and cross-pollination related 
to clinical insights are limited within narrow channels 
of communication.

This approach to biomedical discovery is 
unsustainable—it cannot withstand the disruption cre-
ated by the confluence of big data and AI. Legacy health 
IT, principally the electronic health record, which had 
been the source for many research studies, is suitable for 
coding and billing but not a sustainable basis for clinical 
research in the age of big data. Further, disaggregated 
registries and repositories are also contrary to the needs 
of AI-based approaches, which thrive on highly dimen-
sional data. A new approach is needed if the power of 
these disruptive forces to revolutionize the practice of 
medicine is to be realized. See Figure 4 for an illustration 
of the traditional approach versus the precision medi-
cine approach.

This existential need is what drove the partnership 
between JHM and APL to jointly develop the Precision 
Medicine Analytics Platform (PMAP). From the incep-
tion of PMAP development in 2016, the guiding vision 
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Figure 4. Traditional biomedical discovery process versus precision medicine discovery process. In the traditional discovery process 
(left), each researcher independently accesses clinically obtained data from the electronic health record and gathers study-specific data 
via stand-alone databases, repositories, and registries. In the precision medicine discovery process (right), disparate, high-velocity, high-
volume data are aggregated into a single repository.
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was to create and sustain the ability to accelerate gain-
ing knowledge and value from data and from closing the 
loop between discovery and delivery in this new era of 
big data and AI.

PMAP handles the “dirty work” of creating pipelines 
to access disparate, high-velocity, high-volume data 
(i.e., big data). It aggregates these disparate data into 
a harmonized and normalized single Data Commons 
to facilitate access, obviating the existence of multiple 
researchers independently creating different tools to 
access the same data and storing them separately. The 
Data Commons affords a single repository that com-
bines the transactional data of the electronic health 
record with other sources of data while also providing a 
single point of storage from which secure study-specific 
projections of data can be provisioned to researchers 
with institutional approval to access them. See Figure 5 
for an illustration.

Accelerating research with PMAP is only one aspect 
of the platform. Its real purpose is to impact clinical 
care in a way that realizes value for the health care 
system, the provider, and the patient—without realizing 
this value, PMAP has failed to deliver. While the bulk 
of the development since 2016 has been targeted at the 
“shovel and spade” work of building PMAP’s infrastruc-
ture, as we enter 2021, the team is pivoting to squarely 
focus on the analytics and delivery components of the 
platform. This is the beginning of where we expect the 
full force of big data and AI to be its most disruptive to 
precision medicine.

THE PERILS OF BIG DATA AND AI
We are early in the emergence of the disruptive trans-

formation underway in biomedical research and health 
care delivery. Though there are promising indicators of 
the future, there are also concerns: about ethics asso-
ciated with computers making decisions with life/
death consequences,22 security and privacy,23 bias in 
models and training data,24 reproducibility of results,25 
and more. While it is very true that these factors also 
impact application of big data and AI to other domains, 
data related to health and health care are considered 
extremely personal and sensitive, and people are natu-
rally concerned about who and/or what is making 
decisions that potentially impact their health. It is con-
ceivable that any number of these challenges may con-
spire to plummet precision medicine into the Gartner 
Hype Cycle’s “trough of disappointment”;26 however, we 
are hopeful that all fields will collectively advance both 
the science and policy 27 associated with big data and AI 
while cultural acceptance of degrees of human–machine 
teaming evolves to a stage where precision medicine’s 
promise reaches the “plateau of productivity” and value.

WHERE WE WILL STAND IN THE NEXT 
QUARTER CENTURY

Polio and HIV/AIDS are examples of illnesses that 
once ravaged individuals, but decades of research 
and clinical trials resulted in cures or therapies that 
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Figure 5. The PMAP platform. PMAP pulls data from many sources and aggregates the data into the Data Commons. The data can then 
be provisioned to approved researchers in a secure Research Environment where they can access needed data and a suite of tools and 
capabilities built for other studies to capitalize on a build-once-and-reuse-many-times paradigm. Much of the development since the 
platform’s 2016 inception has focused of building PMAP’s infrastructure. In 2021, the team is focused on the analytics and delivery com-
ponents of the platform.
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significantly dented the impact of symptoms. Polio was 
first described clinically in 1789, and it took until 1955–
1957 to see an 85–90% drop in the incidence of the dis-
ease.28 HIV/AIDS, which escalated in the 1980s, is an 
example from more modern times.10 Thirty-plus years 
of substantial research led to today, when antiretroviral 
therapy (ART) medications can drive the viral load to 
undetectable levels with little to no risk of transmission. 
These are monumental accomplishments of biomedical 
discovery and health care delivery, yet in both cases, it 
took decades and enormous tolls on quality of life and 
life span as well as tremendous financial impact to indi-
viduals, communities, and governments.

Now in 2021, we can look to the ongoing transforma-
tion driven by the Hopkins inHealth precision medicine 
initiative. We are hopeful that the collaborative efforts 
of APL and JHM to develop and deploy PMAP across 
the institution will accelerate the development of cures 
and treatments for other illnesses and injuries. Even at 
this early stage of PMAP’s deployment, we are seeing a 
groundswell of interest and adoption among research-
ers and clinicians—they are gravitating to the platform 
to conduct their research and to provide value to their 
patients. They see how PMAP can streamline their 
ability to access diverse data and discover heretofore 
hidden or unknowable insights leading to better care 
for individuals. These insights will lead to ways to help 
individuals stay healthier longer, to detect and diagnose 
illnesses and injuries sooner, and to apply accurate treat-
ments sooner—reducing the overall cost of maintaining 
and restoring health.

Since its founding in 1942, APL has collaborated 
many times with its older sibling Johns Hopkins Uni-
versity institutions. These collaborations are described 
in more detail in the article by Palmer et al., in this 
issue. APL’s involvement in JHM’s thrust into preci-
sion medicine is representative of a new era of strate-
gic teamwork. The two organizations chose precision 
medicine as an initial focus of this partnership because 
of JHM’s existential necessity to reinvent its approach 
to discovery and delivery of medicine and APL’s experi-
ence in technical areas relevant to the transformation 
necessary to realize the benefits of precision medicine. 
Collectively, we are building the technical, policy, and 
institutional foundation that will sustain JHM’s leader-
ship through the next 25 years and beyond. With this 
transformation, all stakeholders—patients, providers, 
family members, payers, and others—will benefit from 
the disruptive forces of big data and AI and the power of 
precision medicine.
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