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ABSTRACT
While the use of metal additive manufacturing (AM) has grown immensely over the past decade, 
there still exists a gap in understanding of process defects in AM, which often inhibit its use in 
critical applications such as flight hardware. The Johns Hopkins University Applied Physics Labo-
ratory (APL) is developing novel techniques to replicate authentic surrogate defects in AM parts 
and characterize their effect on mechanical response. Advanced data processing methods, such 
as machine learning, are being leveraged to develop predictive failure models, which will help 
enhance our understanding of the effects of defects.

The effects of defects and ultimate prediction of when 
defects become critical failure points is an ongoing chal-
lenge in the selection and qualification of emerging mate-
rials. The rapid growth of metal additive manufacturing 
(AM) processes in recent years has led to a renewed 
interest in modeling and understanding of defect net-
works. However, analytical approaches to predictive 
failure caused by embedded defect networks were origi-
nally developed for legacy manufacturing methods such 
as casting and forging and are not representative of real-
world AM defect structures. In addition, experimental 
capabilities to create surrogate defects and validate crack 

Figure 1. CFD modeling of defect (keyhole porosity) formation 
over time in Ti-6Al-4V during laser powder bed fusion. Complex 
fluid flow results from a combination of surface tension gradients 
(Marangoni effect) and laser surface depression (recoil vapor 
pressure), resulting in small pores that become trapped in the 
material during solidification.
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nucleation and growth processes have proven difficult 
to implement and control. The underlying goal of this 
research is to produce a predictive failure modeling tech-
nique that leverages large amounts of real-world empiri-
cal data to better inform qualification standards in AM.

The first problem to solve is how to create authen-
tic surrogate defects in AM parts on demand using laser 
powder bed fusion. APL has developed novel techniques 
to introduce real defects via direct manipulation of the 
laser processing parameters.1 While this may sound triv-
ial, it requires an immense amount of knowledge about 
the manufacturing process, and specifically the complex 
physics of molten metals and rapid solidification. To solve 
this first problem, robust computational fluid dynamics 
(CFD) models had to be generated and refined to accu-
rately determine the processing conditions required to 
form a defect. An example is presented in Figure 1.

Once the defects are successfully embedded in the 
AM materials, nondestructive imaging methods are 
needed to effectively validate and characterize the 
resulting defect structure. X-ray computed tomogra-
phy (XRCT) has been a go-to technique for visualizing 
defects in many applications. However, quantification 

of defects is often reduced to a single parameter, such 
as percentage porosity or average pore size. To under-
stand the mechanical response in relation to defects, 
size and morphological data are required. Using adap-
tive image segmentation and automated defect recogni-
tion, the defects can be identified and separated from 
the volume (Figure 2), allowing for numerical character-
ization. These data can be combined with other micro-
structural and crystallography analyses to paint a more 
complete picture.

By focusing the integration of XRCT into dynamic 
experiments, the defect structure can be directly cor-
related with the mechanical response. One approach 
developed by APL includes registration of XRCT data 
from a specimen with embedded defects, both before and 
after tensile testing to failure. This allows for a unique 
quantification of the defect structure at the failure loca-
tion, along the fracture plane. Use of this technique 
showed that for Ti-6Al-4V AM samples with embedded 
porosity, the pretest porosity within the region where 
the fracture occurred was significantly higher than the 
bulk porosity.2 An example from these results is shown 
in Figure 3. This supports the hypothesis that defect net-
works influence mechanical failure. These data can also 
be complemented with digital image correlation (which 
provides strain on the surface of the sample), as well as 
digital volume correlation (which uses the defect shape 
and motion to estimate internal strain fields).

The methods and techniques being developed in the 
work described here can be applied to virtually all mate-
rials, given that there are feasible manufacturing and 
characterization methods available. One of the main 
challenges the team faced in this work was the vast 
amount of raw data generated and the resultant data 
reduction required. The largest leap in progress is being 
realized through implementation of advanced machine 
learning and artificial intelligence approaches. These 
data-hungry techniques are able to overcome the chal-
lenges and uncover hidden linkages and relationships 
not previously seen. Ongoing efforts in implementing 
deep learning techniques are yielding promising results 

Figure 2. XRCT data processing techniques for identification of porosity in an AlSi10Mg AM specimen. The defect structure is seen in the 
2-D slice (left) and can be segmented in 3-D (middle) and uniquely quantified (right).

Figure 3. Characterization using XRCT to quantify defects and 
correlate directly to mechanical test results. The global porosity 
distribution is seen in a 2-D slice, with posttest fracture surface in 
black (a). Local porosity can be isolated to just the failure region 
(along the fracture surface) and independently quantified  (b). 
This local porosity can be summarized and overlaid onto the 
resulting fracture surface (c), providing insights into how defects 
ultimately affect and influence failure.
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of defect morphology and microstructure on the tensile behavior of 
Ti-6Al-4V fabricated via laser powder bed fusion,” J. Mater. Process. 
Tech., vol. 294, 2021, Art no. 117113, https://doi.org/10.1016/j.jmatpro-
tec.2021.117113.
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“A study of the effects of embedded defect morphology and distri-
bution on the mechanical performance of additively manufactured 
Ti-6Al-4V,” in Proc. ASTM Symp. Structural Integrity of Additive 
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that will ultimately influence new models for predic-
tive failure and will change the way we go about design, 
manufacturing, and qualification of AM parts.
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