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n view of concerns over bioterrorism, pandemic influenza, and other public 
health threats, development of advanced surveillance systems to corroborate 

and supplement physician sentinel surveillance is a research imperative. Objectives 
of this article are to describe interrelated decisions underlying the design of a public 
health surveillance system and to show these decisions’ effects on data acquisition 
and transfer, on analysis methods, and on visualization tools. Some of these decisions 
are dictated by data limitations, others by goals and resources of the monitoring 
organization. Most such decisions involve three characteristic tradeoffs: the extent of 
monitoring for exceptional versus customary health threats, the level of data aggre-
gation for monitoring, and the degree of automation to be used. A fundamental 
motivation is to extract outbreak information from background noise to empower 
epidemiologists monitoring public health on a day-to-day basis. This article discusses 
each of these tradeoffs and illustrates them with three detailed examples.

Introduction
The purpose of this effort is to show how the goals 

and capabilities of health-monitoring institutions can 
shape the selection, design, and usage of tools for auto-
mated disease surveillance systems.

Automated surveillance systems to enhance public 
health monitoring capability have become a priority 
for both military and civilian institutions since the late 
1990s. The biosurveillance program at APL has played a 
pioneering role in the evolution of these systems. After 

a proof of concept with several civilian data sources 
in 1999, this program joined with the military‑based 
Department of Defense Global Emerging Infection 
System group at the Walter Reed Army Institute for 
Research to help spawn the multicenter BioALIRT pro-
gram under the Defense Advanced Research Project 
Agency.1 These early efforts produced the Electronic 
Surveillance System for Notification of Community-
based Epidemics (ESSENCE), and versions of ESSENCE 
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are currently used in both civilian and military moni-
toring institutions at various jurisdictional levels. Since 
BioALIRT ended in 2003, the APL program has con-
tinued ESSENCE research and development under the 
U.S. Departments of Defense, Homeland Security, and 
Health and Human Services, and is currently a Center 
of Excellence for Bioinformatics sponsored by the Cen-
ters for Disease Control and Prevention (CDC).

Biosurveillance systems make opportunistic use 
of data sources that generally were not designed for 
prospective surveillance and apply analytic methods 
adapted from many other disciplines. Their successful 
application requires the cooperation of epidemiologists, 
software architects and developers, and analysts such as 
statisticians. These systems have drawn criticism because 
of the lack of clear demonstrations of value added to tra-
ditional health monitoring.2

For example, they have not shown the ability to detect 
community-level outbreaks. Part of the problem is that 
few datasets are available with known outbreak signals. It 
also is true that expectations, objectives, resources, and 
support for this developing capability vary widely among 
monitoring institutions. Thus, off-the-shelf solutions do 
not apply, but local health departments generally do not 
have the resources to develop customized systems. For 
advanced biosurveillance systems to achieve widespread 
acceptance, their roles must be clarified for each applica-
tion, and they should be designed to fulfill these roles. 
Clarification of these roles is the subject of this paper.

Considerations for Surveillance System Design
Numerous decisions are faced by a public health insti-

tution: What types of outbreak are the target events for 
detection, and on what scale is the detection needed? 
What information sources should be used, and how 
should the data from these sources be filtered and ana-
lyzed? How should the results be visualized by users? 
Some of these decisions are dictated by available data 
limitations, others by objectives and resources of the 
organization doing the surveillance. Most such deci-
sions involve three characteristic tradeoffs: the extent 
of monitoring for exceptional versus customary health 
threats, the level of aggregation of the monitoring, and 
the degree of automation to be used.

The first tradeoff results from heightened concern 
for bioterrorism and pandemics versus ongoing threats 
that involve endemic disease events such as seasonal 
outbreaks. A system focused on bioterrorist attacks is 
scenario-based, concerned with unusual diagnoses or 
patient distributions, and likely to include attack hypoth-
esis testing and tracking tools. A system at the other 
end of this continuum has broader syndrome groupings 
and is more concerned with general anomalous levels at 
manageable alert rates, where manageability depends on 
the investigation resources available to the monitoring 
institution.

Major aggregation tradeoffs are temporal, spatial, and 
syndromic.3 Bioterrorism fears have shortened the time 
scale of health monitoring from monthly or weekly to 
near real time. The spatial scale of monitoring is a func-
tion of the spatial resolution of data recorded and of the 
monitoring institution’s purview and capacity to collect, 
analyze, and investigate localized outbreaks. Syndromic 
aggregation involves a decision for each type of informa-
tion: Is a fine or a coarse filtering of data records more 
likely to enhance an outbreak signal relative to back-
ground noise?

Automation tradeoffs involve the use of data process-
ing to collect information, analyze it for anomalies, and 
make decisions based on this analysis to investigate or 
respond to a perceived public health threat. The first of 
these uses has widespread acceptance, whereas for anal-
ysis and response, the degree of automation is a subject 
of ongoing controversy and research. To what degree 
can human judgment in alerting/response decisions be 
automated? What should be the depth and frequency of 
human inspection and adjustment? Should health indi-
cator data be inspected and analyzed more often during 
elevated bioterrorism threat conditions? All of these 
decisions affect monitoring tools and practices as well as 
funding for related research.

A widely cited article4 by a CDC Working Group 
emphasized the importance of understanding these deci-
sions in any surveillance system evaluation as follows: 

The description of purpose should include the indications 
for implementing the system; whether the system is designed 
for short-term, high-risk situations or long-term, continu-
ous use; the context in which the system operates (whether 
it stands alone or augments data from other surveillance 
systems); what type of outbreaks the system is intended 
to detect; and what secondary functional value is desired. 
Designers of the system should specify the desired sensitivity 
and specificity of the system and whether it is intended to 
capture small or large events.

The current paper asserts that this information 
should drive the design of any such system, not just its 
evaluation, or else the chances of success are haphazard. 
Key measures cited by those authors, such as sensitivity 
and timeliness, also are scope- and goal-dependent, or 
in their words: 

Measuring the validity of a system for outbreak detection 
requires an operational definition of an outbreak. . . . Opera-
tionally, an outbreak is defined by the affected public health 
jurisdiction when the occurrence of a condition has changed 
sufficiently to warrant public health attention.

Examples given below elaborate on and quantify these 
dependences.

For the organization of the rest of the paper, the 
tradeoffs based on surveillance objectives, on data aggre-
gation, and on the degree of automation are explained 
in turn, and then three examples are presented to illus-
trate them and their interrelationship.
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Detection System Objectives and Related 
Tradeoffs 

Concerns over bioterrorist threats have driven much 
of the funding and early development of modern bio-
surveillance systems. Such concerns lead to a scenario-
based approach in which detection efforts are focused 
on the most plausible perceived attack scenarios. Such a 
scenario is a deliberate aerosol release of Bacillus anthracis 
spores. However, systems based on such specific scenar-
ios have very limited utility because (i) the scenario may 
never occur, and (ii) the scenario must be highly specific 
to avoid a false-alarm rate that would render the system 
useless. An actual attack scenario may not adequately 
reflect the modeled one. In the absence of detailed data 
on the extent of disease resulting from large-scale bio-
terrorist attacks, the ability to validate such detectors 
is limited. For effective use of a public health detection 
system in a crisis, human monitors must be accustomed 
to operating the system routinely and interpreting and 
responding to its outputs. Therefore, the concept of 
dual use for both customary and exceptional threats has 
become popular, although this concept poses technical 
challenges discussed below.

In the extension of automated surveillance systems 
to general public health problems, most emphasis has 
been on infectious disease, such as influenza, as opposed 
to chronic disease, such as cancer or diabetes. This 
emphasis results from both bioterrorism and pandemic 
concerns. For analysis purposes, this emphasis calls for a 
focus on transient event detection rather than on subtle 
but lasting data effects. Thus, the small mean shift is 
not the primary signature of interest for infectious dis-
ease surveillance, although detection of such shifts is a 
classic problem for the statistical process control (SPC) 
community and would be more relevant in a chronic dis-
ease application, such as detecting a persistent increase 
in cancer risk caused by ongoing industrial pollution. 
Moreover, in view of the terrorist scenarios, system 
development has focused on diseases with short-to-
moderate incubation periods (i.e., for which symptoms 
appear within days or at most a couple of weeks of infec-
tion), such as influenza or smallpox, as opposed to HIV/
AIDS, for which symptoms may not appear for months 
or years.5

Objectives Related to Situational Awareness and  
Dual-Use Considerations

Most early implementations of biosurveillance sys-
tems focused on the capability for detecting the leading 
edge of an outbreak rather than on threat character-
ization and tracking,6 but experience has changed this 
focus. For example, at an interactive roundtable discus-
sion convened by the U.S. Medicine Institute for Health 
Studies,7 there was strong consensus that syndromic 
surveillance has important uses that do not include 

early detection. In fact, although early outbreak detec-
tions resulting from automated systems do occur, they 
are rare. Even participants who had found them did not 
feel that early detection is a sufficient or even a principal 
justification for these systems. The day-to-day benefit is 
situational awareness, a concept whose dimensions are 
still unfolding. The following dual or combined uses 
have been reported:

•	 Monitoring for new strains of disease. Pandemic 
influenza, possibly resulting from a human-commu-
nicable mutated form of the H5N1 avian flu virus, is 
of widespread concern; biosurveillance systems have 
helped identify new strains of lesser seasonal viral 
infections and of norovirus.8

•	 Seasonal influenza surveillance and tracking. The 
significant annual influenza morbidity and mortal-
ity drive many health departments to use their sys-
tems to look for indications of the beginning and the 
potential local effects of flu season.

•	 Combination with environmental data to monitor 
for health problems related to extreme heat, poor air 
quality, allergy season, or contamination of the food 
or drinking water supply.

•	 Disaster management. Several health departments 
have used automated systems to track societal effects 
of displaced disaster victims, including those of Hur-
ricane Katrina in 2005.

These applications will develop further as data qual-
ity and availability improve. Additional likely uses and 
enhancements are as follows:

•	 Combination with individual-based electronic medi-
cal records for more specific surveillance. See the arti-
cle on information fusion and the electronic medical 
record by Mnatsakanyan and Lombardo elsewhere in 
this issue.

•	 Corroboration of warnings from biosensor data. 
Plans are underway to use biosurveillance systems to 
corroborate biosensor data indications of the pres-
ence of pathogens in indoor ventilation systems or 
outdoor atmosphere.

•	 Monitoring of traditionally hospital-acquired infec-
tions such as methycillin-resistant Staphylococcus 
aureus that have recently become community-acquired 
threats, as in generalizations of Morton et al.9

General Public Health Anomaly Detection
At the simpler, more general end of the spectrum of 

surveillance objectives is monitoring for anomalies by 
using one-sided statistical significance tests for unusu-
ally high counts or concentrations of data, whether they 
be diagnoses, product sales, or syndromic visits. Most 
health-surveillance systems operational as of 2007 are 
not scenario-based beyond the syndromic filtering of 
data records, so that specific signal shapes or anomaly 
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combinations across data types are not routinely moni-
tored. Commonly used alerting tools are adaptive ver-
sions of control charts to signal statistical time series 
anomalies, typically using “stoplight” coding with red 
for a highly significant anomaly (e.g., for a P value of 
<0.01) and yellow for lesser significance (e.g.,  <0.05). 
More elaborate systems also apply scan statistics or simi-
lar methodology to seek localized anomalous disease 
clusters.10 These systems do not purport to distinguish 
seasonal epidemics from unusual public health threats; 
both are considered part of the detectable signal. To the 
human monitor is left the task of fusing more syndromic 
data with laboratory and radiology test results or with 
other evidence to form and track outbreak hypotheses. 
The use of these general methods is widespread because 
of their conceptual simplicity and because they can be 
implemented without substantial data analysis in insti-
tutions that cannot afford extensive development and 
testing. There is a natural hesitation by local health 
departments to spend scarce resources on sophisticated 
published methods that have not been proven effective 
on local data and that may require expertise to maintain 
and interpret.

Scenario-Based Detection
At the other end of the surveillance methodology 

spectrum are algorithms designed to detect specific 
threats such as bioterrorist aerosol attacks or pandemic 
influenza. These methods are based on presumed out-
break characteristics and data effects. Research studies 
have undertaken this approach, sometimes based on 
considerable underlying research, seeking validation 
from medical and demographical expert knowledge, his-
torical data analysis, inference based on characteristic 
data patterns during seasonal outbreaks, and simulations. 
Scenario-based methods employ assumptions specific to 
the pathogen causing the outbreak, route of infection, 
affected population, outbreak symptomatology, health-
seeking behaviors of that population, effects on data 
sources, and delays between these effects on different 
sources. Some such methods use disease agent-based 
models in which individual people and their behaviors 
are represented as software objects11,12; these models 
are expensive, highly dependent on the population of 
interest, and difficult to validate. A second approach is 
the application of data-fusion techniques to population-
level data. A Bayesian Network (BN) application under 
development at APL for this purpose is presented in the 
article by Mnatsakanyan and Lombardo elsewhere in 
this issue. This approach focuses on unusual distribu-
tions of diagnoses or patient ages as well as seasonal and 
other patterns, all derived from a combination of medi-
cal knowledge and data analysis.

Note that unlike general anomaly detection meth-
ods, both of these approaches must distinguish usual, 
seasonal outbreaks from the rare events of interest in the 

scenario. Any decision support aid also faces the chal-
lenges of validation and user acceptance.

Approaches to Combining General and Scenario-Based  
Surveillance

Most public health systems currently do not use sce-
nario-based analysis, but many departments do use com-
binations of indicators to address the tradeoff between 
specific threat types and general surveillance. Although 
they cannot monitor all possible threat scenarios or 
potentially interesting subsyndromes, some do look for 
certain unusual chief complaints or diagnosis codes, 
such as rare codes corresponding to weaponized diseases 
such as anthrax or smallpox, while watching the gen-
eral alerts from syndromic surveillance systems. Thus, 
the tradeoff problem is addressed with limited, paral-
lel surveillance efforts. Most local health departments 
cannot support scenario-based analysis routinely but 
recognize the need to shift effectively to heightened and 
detailed surveillance measures if a specific threat arises. 
The BN approach pursued at APL is intended to pro-
vide a surveillance umbrella that can monitor for both 
general and specific anticipated public health problems. 
Example 2 below gives additional details.

Tradeoffs Related to Data Aggregation
Having chosen their information sources, health-

surveillance system designers must make numerous 
data-aggregation decisions. Key decision categories are 
how to group and filter data records, how to aggregate 
in space and time, and how to manage other covariates 
such as age and gender.3 A thematic tradeoff is between 
(i) expanding the collection window size to increase data 
structure for background modeling and (ii) keeping the 
window size small to avoid masking a potential outbreak 
signal with the additional counts. For example, the left 
half of Fig. 1 gives plots of the daily respiratory visit 
counts for slightly more than 3 years of data on three 
spatial scales: the entire state, a large treatment facility 
(here a median respiratory-diagnosis visit count exceed-
ing 100 per day), and a small facility (median visit count 
~10 per day). The right half of Fig. 1 shows these counts 
restricted to a single flu season to clarify local features. 
At the statewide level, annual cycles and day-of-week 
effects in the time series are clearly visible and ame-
nable to regression modeling, but these features weaken 
as the spatial scale decreases, and percentage errors in 
data modeling grow rapidly.13 At the ZIP-code level of 
aggregation, the features cannot be seen at all. Thus, the 
outbreak signal and the background noise are strongly 
affected by decisions about how to aggregate the surveil-
lance data. To see a seasonal pattern in the background 
or a lognormal shape in the signal, one may need to look 
at week-long counts of county-level data, whereas com-
munity counts or 4-hour time intervals might hide such 
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features but make small outbreaks visible. These deci-
sions are necessary in the classification of data records 
according to syndrome grouping, in time, and in space. 
Finally, we discuss aggregation by syndromic grouping 
of data records based on physician categorization of ill-
ness types. 

Grouping and Filtering of Data Records by Syndrome
Limiting a syndrome group to diagnoses closely 

related to a disease of interest should improve alerting 
specificity but will likely yield a sparse, unstructured 
data background, and many such groups may be needed 
for general public health surveillance. A key feature of 
the syndromic approach is to monitor larger but noisier 
syndrome groups for a more general surveillance capabil-
ity and a reasonable number of data streams to analyze. 
(Analyzing time series for counts of groups of records 
representing every possible illness would be prohibitive.) 
This approach also seeks power to detect the unknown 
threat; from the viewpoint of bioterrorism monitoring, 
a genetically engineered pathogen could have a novel 
presentation to the immune system and thus result in 
unusual symptom combinations.

Figure 2 illustrates the tradeoff in syndrome grouping. 
At the more specific, more diagnostic end are narrowly 
defined syndromes (e.g., localized cutaneous lesions, 
hemorrhagic illness) and subsyndromes (e.g., influenza-
like illness). These narrow classifications are helpful 
for monitoring of reportable diseases and other specific 
threats. Analysis of clinical encounters restricted to 

these subsyndromes must deal with sparse time series. 
In general, alerting algorithms applied to such series 
will yield higher specificity (i.e., lower false-alarm rates) 
than similar methods applied to broader, noisier data  
classifications.

At the more syndromic end of Fig. 2 are more inclu-
sive data groupings (e.g., febrile or gastrointestinal ill-
ness). These groupings are chosen for broader sensitivity 
to large-scale events. Resulting time series are generally 
richer in structure, displaying more clearly systematic 
features such as annual seasonal cycles and day-of-week 
effects. Sparse time series in this continuum result from 
finer syndromic filtering, whereas the sparseness in Fig. 
1 results from finer geographic subdivision. Regression 
modeling and other analytic approaches for removing 
these features to unmask signals of interest are more 
effective on these time series than on the sparser ones. 
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Figure 1.  Outpatient clinic daily visit counts for respiratory syndrome for varying spatial aggregation and temporal scale.

More
diagnostic

More
syndromic

 Narrowly defined syndromes,
  subsyndromes
 Specific threats such as

  reportable diseases
 Sparse time series
 Higher specificity

 More inclusive symptom
  categories
 Broader sensitivity to more

  threat types
 Richer time series, more 

  amenable to modeling
 High background alert rates

      reduced specificity

Figure 2.  Dual considerations for syndromic classification of  
data records.



H. S .  BURKOM  et  al.

Johns Hopkins APL Technical Digest,  Volume 27, Number 4 (2008)304

However, these noisier syndrome groupings are more 
subject to unmodeled systematic data patterns irrelevant 
to infectious disease surveillance, such as addition of 
new care facilities or data-transmission problems. Thus, 
although these groupings arguably permit detection of 
a wider variety of signals, the resulting alert rates are 
generally higher. 

Grouping of Data in Time
Before 1990, most public health surveillance was 

done at intervals of weeks or longer. Since that time, 
health informatics systems have improved consider-
ably, allowing surveillance to be performed on a daily 
to near-real-time basis. The increased data availability 
poses challenges to the statistics and data-mining com-
munities. For anomaly detection, should quantities such 
as clinic visit counts be grouped by week, by day, or, as 
sample rates and analysis approach real-time capability, 
by 8-hour or smaller blocks?

Grouping of Data in Space
The spatial scale of monitoring is a function of the 

spatial resolution of data recorded and allowable for use 
as well as the monitoring institution’s purview and its 
capacity to collect, analyze, and investigate localized 
outbreaks. The spatial resolution also may be subject to 
data-use restrictions (e.g., if exact addresses exist in data 
records but only ZIP codes or census tracts can be made 
available for analysis). The signal-to-noise background 
depends on whether data are monitored at state, city, 
or local levels. Monitoring of smaller spatial units may 
allow greater sensitivity to small-scale outbreaks, but 
only if the system is capable of controlling or managing 
the resulting multiple alerts and if the algorithms are 
effective for the scale chosen. 

A special case of this tradeoff was considered by 
Reis and Mandl14 when they compared (i) monitoring 
respiratory syndrome data for outbreaks from two hos-
pitals separately with (ii) monitoring the combined daily 
counts. They found that the more advantageous strategy 
depended on whether the outbreak affected one or both 
hospitals, and their discussion also noted the rich-ver-
sus-sparse data-modeling idea above. These results led to 
the recommendation of a “hybrid approach that main-
tains both localized and aggregate models, each provid-
ing its own complementary advantages in increased 
detection performance. The data also may be grouped 
at multiple levels of aggregation to provide additional 
meaningful perspectives on the data.”14 Grigoryan et 
al.15 also invoked this modeling dilemma in their efforts 
to derive outbreak reference dates from syndromic data. 
Their comment that “the choice of a data source and its 
granularity largely depend on the goal of the study and 
availability of the data” could be equally applied to the 
choice of data granularity for routine surveillance.

Decisions regarding the grouping of data to form time 
series for purely temporal anomaly detection often are 
driven by jurisdictional or logistic considerations, but 
these decisions can decrease the early-warning advan-
tage of syndromic surveillance, such as when early cases 
are scattered among the chosen regions. The scan sta-
tistics approach10 has become popular because it avoids 
preselection bias and can choose the most significant 
among possible outbreak locations and extents without 
oversensitivity to multiple testing. When the quality 
of a data source and the included location information 
are sufficient, the use of scan statistics can guide spa-
tial aggregation and can direct limited public health 
resources to localities of anomalous case distributions. 
In adaptations of scan statistics for routine surveillance 
by ESSENCE and other biosurveillance applications, 
temporal aggregation becomes important for the estima-
tion of the data background spatial distribution. In such 
cases, temporal baseline/test period decisions are neces-
sary to obtain these estimates from historical data. For 
example, records supplied by a group of sentinel physi-
cians are usually not distributed like the general popula-
tion according to the most recent census, and surrogate 
catchment areas are generally unavailable.

Tradeoffs Related to THE Role of Automation
The term automation here will denote electronic data 

processing, including collection by means of user inter-
faces; transmission and distribution; database storage; 
analysis, graphical or tabular organization and visualiza-
tion; and any level of decision support, from statistical 
significance indications to investigation/response guides. 
Among these functions, those related to input, transfer, 
and output are widely accepted as essential to advanced 
disease surveillance. However, there also are tradeoffs 
among these basic functions. Selection of database 
technology should be based on the scope of the surveil-
lance system, the range of user platform types, and the 
intended connectivity with other systems. Additionally, 
the amount of identifiable information that resides on a 
system involves weighing the benefit of ready informa-
tion availability to health monitors against the risk of its 
access by unauthorized users.

The role of automation in analysis, investigation, and 
response may range from strictly subjective human deci-
sions, based on visual data inspection of raw data and 
external knowledge, to relying completely on informat-
ics tools for decision support. Most operational systems 
are much closer to the subjective extreme. Pending the 
acceptance of automated analysis and response algo-
rithms, tools to facilitate the investigation process are 
restricted in practice to (i) specialized queries for various 
in-depth data views and (ii) online communication tools 
for sharing user interpretations, investigation history, 
and other external knowledge.
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Factors that stimulate research and development 
toward increased utilization of automated analysis, espe-
cially because of limited human resources for monitor-
ing, are the increasing number of data sources and the 
volume of the data in those sources, potentially impor-
tant symptom and age groupings, and geographic regions 
of interest.

A first step toward automated analysis is the use of 
general alerting algorithms to decide the statistical sig-
nificance of increased data counts, proportions, or other 
outcome variables. These algorithms are often derived 
from the control charts of SPC, but with two key differ-
ences. First, many of the time series derived for monitor-
ing do not reach or maintain a steady state, and their 
distributions continue to evolve for a variety of reasons 
related to both population behavior and data capture. 
Second, the signal to be detected is not a persistent 
mean shift as in many SPC charts, and precise authen-
tic signals are rare in these data sources, so there is no 
accepted definition of a target signal. Because of the 
vagueness caused by these issues and the application to 
many disparate data streams, false-alarm problems are 
common. Tradeoffs related to statistical alerting algo-
rithms include the following:

•	 Use of empirical versus theoretical thresholds. Standard 
SPC charts require that successive observations be 
independent and identically distributed Gaussian, but 
many surveillance time series violate these assump-
tions. Many empirical and composite strategies have 
been implemented for deciding when to alert. See the 
article on developments in temporal alerting algo-
rithms by Burkom et al. elsewhere in this issue.

•	 Length of baseline for training periods. The evolving 
nature of surveillance time series is not conducive to 
classical analysis using years of historical data, which 
may be unavailable anyway. A short, sliding base-
line captures recent behavior, whereas a longer one 
provides more stable values for mean, variance, and 
other needed parameters. For daily data predictions, 
baselines ranging from 4 to 8 weeks have proven 
effective.

•	 Alerting strategy. Alerting algorithms typically borrow 
from the control charts successfully used to determine 
when industrial processes go out of control in SPC. 
Methods based on Shewhart charts are more suit-
able for the detection of single-interval spikes and 
other relatively impulsive signatures, whereas meth-
ods based on exponentially weighted moving aver-
age (EWMA) and cumulative summation charts are 
preferable for more gradual signatures.16 Algorithms 
used in ESSENCE systems as of 2007 use an adaptive 
version of a combined Shewhart−EWMA strategy 
developed for hospital infection control.9

•	 Frequentist versus Bayesian statistics. Regarding the 
paradigm for statistical inference, applications 

using informative prior probabilities and adaptation 
based on posterior distributions have been rare in 
operational systems. For prospective, scenario-based 
approaches (see the accompanying article by Mnat-
sakanyan and Lombardo elsewhere in this issue),17 
Bayesian enhancements are essential, and further 
development of these enhancements is an important 
aspect of the effort to reduce false-positive signals.

Research to resolve these issues continues, but the gap 
between public health practitioners and theoreticians 
must be closed with an operations-research approach in 
which public health goals and constraints are clarified. 
In the meantime, use of statistical alerts is mixed among 
health monitors; some depend on them or combine 
them, whereas others ignore them.

The use of automation for more advanced decision 
support has been a subject of academic research, but little 
has been put into daily practice. When location data are 
available and spatial distribution is stable, the popularity 
of scan statistics owes to the fact that they can be used 
to determine location and approximate spatial extent of 
potential outbreaks. However, cluster significance is not 
clear, the problem of determining expected distributions 
can produce frequent irrelevant clusters, and tools need 
to be developed to determine the likelihood of linkage 
of cases in a cluster. For additional discussion of prac-
tical decision-support issues and their treatment, see 
Example 2 below and the article by Mnatsakanyan and 
Lombardo elsewhere in this issue. As in the discussion of 
scenario-based methods, important obstacles to the use 
of analytic decision-support tools are scientific valida-
tion, complicated by widely disparate data environments 
and the absence of sufficient labeled data, and limited 
epidemiological acceptance.

System designers also must choose appropriate visual-
ization tools to expedite daily monitoring. These choices 
involve a tradeoff between large, scalable, web-based, 
multi-tiered server systems and smaller, single-user 
desktop applications. This tradeoff affects the potential 
complexity of analysis tools. Some models or simulation 
methods require dedicated servers and are too computa-
tionally intensive for an individual’s desktop machine. 
Also, the functionality of the user interface can affect 
the modes of visual analysis available to the user.

The requirement for visual analysis capabilities may 
determine the use of thin-client or thick-client applica-
tions. Thin-client applications (i.e., those that can be 
implemented within a web browser) are sufficient for 
many analysis and visualization approaches. In these 
applications, the browser may get information by call-
ing server programs or by running its own scripts. By 
contrast, thick-client applications run desktop programs 
that must be installed and maintained separately on the 
machine of each user who needs them. For example, in 
mapping applications based on the widely used ESRI 
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software, a developer could choose between ArcIMS 
as a thin-client tool to provide layered maps through 
a web browser or ArcView as a thick-client approach18 
to provide access to a desktop application with a richer 
set of geographic information system (GIS) tools. The 
thin-client/thick-client decision may be uniform across 
all system utilities and users, or a combination approach 
could be employed. Factors influencing this tradeoff 
are the desired capabilities, maintenance costs, licens-
ing considerations, and availability and organization of 
developers.

Additional tradeoff questions related to user inter-
face development are as follows:

1.	 Should all users have access to all system data? If 
not, how should layers of privilege be implemented? 
Which users should be enabled to choose configura-
tion options, such as chart types, syndrome group-
ings, or alerting thresholds?

2.	 Can raw data be shared among users? If some cannot, 
what summary information can be shared? For 
example, hospitals or state health departments pre-
vented from sharing patient counts may be able to 
share knowledge that certain diagnosis groups have 
reached epidemic levels.

3.	 Should the system maps, charts, and other visualiza-
tion products be preselected or customizable?

A basic tradeoff related to these questions is that of 
centralization, or of how much functionality and con-
trol are to be assigned to a central monitoring entity—
a person, facility, or agency, depending on the scope 
of the system—and how much should be distributed 
among other users. This tradeoff applies to decisions of 
data filtering, analysis methodology, and visualization 
modes. Opposing factors in this tradeoff are the need 
for uniformity in classification and description and the 
ability of users to choose the most appropriate methods 
corresponding to their local data knowledge.

Example 1: Web-Based Visualization Tools
The tradeoff decisions discussed above differ across and 

within monitoring organizations such as state and local 
health departments and military treatment facilities. A 
biosurveillance system for widespread use must accom-
modate these differences. Our first example illustrates 
how ESSENCE developers have designed website screen 
displays with the required versatility. Figure 3 shows two 
of these displays, with the upper one (a) showing a region/
syndrome-based alert list, and the lower one (b) showing 
a summary alert list. Other display types also have been 
designed for users who want to look only at geographic 
maps, compare certain raw data plots, follow a potential 
developing threat, make weekly reports, etc.

The display of individual alerts in Fig. 3a shows 
details of significant threshold crossings of univariate  
algorithms applied to individual stream time series. 

These data streams are organized by health district or 
county-based geography. Each statistical alert is for a 
time series filtered according to the data type, region, 
syndrome grouping, age category (or all ages), and patient 
sex (or both sexes). Each entry gives these qualifiers with 
the date, observed count, expected count, and a P value 
measure of anomaly. The user may navigate with the 
mouse to drill down for additional detail, and the alerts 
may be sorted, filtered, or pasted into spreadsheets. For a 
local department whose data derive only from a few hos-
pitals, this screen may be adequate for daily monitoring. 
However, for a state-level department monitoring 6–12 
syndrome groups in dozens of hospitals and also moni-
toring over‑the‑counter sales, nurse hotline calls, and 
other data types, a multiple testing problem is inevitable. 
The number and variety of alerts can be overwhelming, 
especially in departments where monitoring is left to 
one to two staff members with other responsibilities.

The summary alert list in Fig. 3b was designed to help 
the monitor see the integrated health picture. This display 
is divided into results for two data sources: daily counts 
of syndromic encounters for (i) emergency department 
visits and (ii) physician’s office visits. For each source, 
results are organized in rows for geographic regions and 
columns for syndrome groups. These syndrome groups 
range from broad categories such as gastrointestinal (GI) 
to narrower diagnostic categories such as lymphadenitis 
(LYMPH). For each source/region/syndrome combina-
tion, two rows of asterisks are displayed. The asterisk 
rows depict alert levels for successive days, with the most 
current day on the right. The symbols in the upper row 
are shaded red to indicate significant alert levels and 
yellow for mild alerts. The symbols on the bottom row 
are shaded red, orange, yellow, blue, and green to describe 
the user concern level for alerts in the upper row. These 
respective concern levels indicate: responding/interven-
ing, investigating, monitoring, not concerned, and for 
informational purposes only. Symbols in the upper row 
are statistical algorithm results, whereas symbols in the 
lower row represent reactions and findings of users, pos-
sibly investigation results or rule-outs from specific local 
knowledge. Thus, this display gives the user a compos-
ite population health overview informed by both data-
based mathematical measures and external knowledge 
across regions, data types, and illness categories.

These displays accommodate the range of surveil-
lance levels and objectives discussed in this paper. For 
the tradeoff of surveillance objectives, the user looking 
at outbreak scenarios can hypothesize about combina-
tions of regions and illness categories suggested by the 
summary alert list and can look for more specific indica-
tions such as at-risk age groups or degrees of anomaly 
in region/syndrome alert lists. For more general health 
monitoring, these displays provide as broad a picture as 
the data sources allow, given the medical expert-based 
syndrome categories.
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The value of these displays for addressing the aggregation tradeoff is that 
they give views at summary and detailed levels. State or regional users may 
routinely scan the overall picture and, when summary alerts or other infor-
mation sources cause concern, may drill down to the level of raw data counts 
for more detail. The alert-list displays also may be filtered to concentrate on a 
specific region, syndrome type, or time interval.

Regarding the automation trade-
off, the obvious benefit of these dis-
plays is that they extract a relatively 
small number of alerts from hundreds 
or thousands of possible combina-
tions of data sources, syndrome cat-
egories, age groups, and regions. In 
the summary alert displays, they also 
address the degree of dependence 
on statistical alerting algorithms by 
allowing the human monitor to rule 
out or emphasize the importance of 
the alerts.

Example 2: Bayesian Networks for 
Decision Support 

This example addresses the prob-
lems of applying automated systems 
for decision support and for com-
bining general and scenario-based 
detection. As noted above, use 
of decision-support tools requires 
validation, or scientific evidence 
of efficacy, and acceptance in the 
public health culture. The evidence 
must show that automated tools 
can fuse information from multiple 
data streams to improve situational 
awareness. The data streams are 
derived from clinical sources, such 
as emergency department visits and 
nurse call hotlines, as well as from 
nonclinical ones such as over-the-
counter remedy sales and absentee 
rates. A decision-support tool must 
fuse the available data, taking into 
account differences in acquisition 
rate, reliability, and relevance to 
the perceived health threats. Public 
health acceptance requires the fur-
ther demonstration that such a tool 
can provide understandable guid-
ance by using routinely available 
data and can be implemented at 
reasonable cost and effort. The BN 
methodology is sufficiently flexible 
and transparent for this purpose. 

A BN is a compact representation 
of the joint probability distribution 
function of a problem domain. It 
is typically visualized as a directed 
acyclic graph, with nodes represent-
ing Boolean random variables and 
directed edges representing condi-
tional dependencies. For each child 

(a)

(b)

Figure 3.  Visualizations for detailed and summary views. (a) The region/syndrome alert 
list shows details of significant threshold crossings of univariate algorithms applied to 
individual stream time series. Sorting, filtering, and copying are enabled. (b) The sum-
mary alert list presents results across regions, data sources, and syndrome groups for situ-
ational awareness over space and time. Both algorithm results and user concern levels are 
shown. 



H. S .  BURKOM  et  al.

Johns Hopkins APL Technical Digest,  Volume 27, Number 4 (2008)308

node, a conditional probability table (CPT) quantifies 
the parent node dependencies. The nodal structure and 
the probabilities may be specified with a combination 
of expert knowledge and data analysis. See Lin et al.17 
for a further explanation and concept demonstration. 
For BNs constructed at APL for health surveillance, 
epidemiologist judgment has determined the structure, 
e.g., which data sources and subsyndromes show effects 
of a waterborne disease outbreak. The CPT probabili-
ties have been derived by using simulations and data 
analysis constrained by guidance elicited from medical 
or epidemiological experts. To keep computations man-
ageable as the number of data sources grow and the BN 
gets more complex, the data inputs to the BN are alert-
ing algorithm outputs instead of the raw data, so that 
algorithmic preprocessing can handle systematic data 
patterns.

Figure 4 shows a sample BN built to detect outbreaks 
of influenza. The data sources represented in this BN 
are civilian emergency department visits, military out-
patient clinic visits, and over-the-counter sales. The 
reader interested in structural details should consult the 
article by Mnatsakanyan and Lombardo elsewhere in 
this issue. For the parent node, marked “influenza,” the 
output probability is the degree of belief that an influenza  
outbreak is in progress. The second-level nodes are 
marked as “source factor,” “age factor,” and “self-care 
factor,” and these nodes in turn depend on specific 
data sources by age-group representation and severity. 
Severity is represented by hospital “discharge factor,” 

which includes anomalies in the number of emergency 
department encounters that result in admissions. Sub-
nodes are included to represent expert knowledge and 
observed data behavior regarding especially suscep-
tible or early indicator age groups such as infants and  
the elderly.

The transparency of BN modeling is understand-
able from Fig. 4. A high probability of influenza epi-
demic may be traced to the probabilities of component 
nodes. The BN indication of the onset of a flu outbreak 
obtains credibility from a consensus among algorithms 
applied to data sources and likely age groups and from 
the subnode indication that severe cases are peaking. 
Furthermore, certain combinations of anomalies among 
the subnodes can be used for hypotheses of epidemic 
scenarios. For example, activation of the nodes corre-
sponding to military clinic visits only could suggest an 
outbreak imported by new trainees from another loca-
tion or redeployment of troops from overseas, or perhaps 
a biological attack on a military base. Indication of an 
influenza outbreak in which the only age groups show-
ing significant anomalies are young adults with many 
hospital admissions, as in the second wave of the 1918 
pandemic, could stimulate investigation of an unusually 
virulent outbreak.19 For scenario surveillance, unusual 
public health threats could thus be inferred from  
subnodes of general BNs, or scenario-based BNs could 
be implemented. The BN approach can satisfy require-
ments for both general health surveillance and the mon-
itoring of potentially disastrous threats.

Figure 4.  BN combining epidemiological knowledge and data analysis for automated decision support and increased specificity.
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Regarding the aggregation tradeoffs, the BN approach 
can help with both syndromic and spatial issues. Nodes 
representing regions and syndrome groups that are 
sparse in data counts may be added to a BN, but the 
higher-level node CPTs may require corroboration from 
other evidence nodes that will reduce the overall false-
alarm rate.

Example 3: Significant Case Cluster Determination 
The final example concerns aggregation of spatial 

data for detection of disease clusters but also concerns 
the tradeoff in surveillance objectives. The issue behind 
this example was the spatial unit for cluster detection in 
a dataset of outpatient clinic visit counts illustrated in 
Fig. 1. In the data records, each outpatient visit record 
contains ZIP codes for both patient residence and the 
clinic where treatment occurred. Respiratory syndrome 
data for the 3+-year time period contained 32 clinic 
ZIP codes and 1095 residence ZIP codes. However, the 
distribution of records among these ZIP codes is highly 
skewed, as seen in Fig. 5. The upper and lower histo-
grams show the numbers of clinics and residence ZIP 
codes, respectively, binned by median daily count. At 
the facility level, the median count is zero in 20 of the 
32 facilities, and the great majority of cases are seen 
at only 6 facilities. The skewness is even clearer at the 
residence ZIP-code level, with median counts of zero for 
89% of the 1233 ZIP codes. What the skewness means 
for cluster detection is that, near the large facilities and 
the ZIP codes with many cases, a large number of cases 
is required for a cluster to become statistically signifi-
cant. In regions with sparse data representation, a much 

ground counts for each affected 
subregion. Choose the signal 
start date for the initial trial early 
in the dataset, and for each sub-
sequent trial, move the injected 
signal forward 8 days to vary the 
background noise and the day-of-
week and seasonal effects.

3.	 For each trial, run the scan sta-
tistics algorithm for each day of 
the signal, and find the minimum 
P value for each day, but only 
for those clusters that intersect 
the simulated outbreak region. 
Those clusters will be treated as 
detections if the P value is below 
threshold α.

4.	 The estimate of the probability 
of detection (representing sen-
sitivity) at threshold α is then 
PDα = NDα/100, where NDα 
is the number of trials with a P 
value below α on signal injec-
tion days.

Figure 5.  Histograms of median daily respiratory syndrome visit counts by treatment 
facility (a) and residence ZIP code (b).

smaller outbreak is detectable. These statements are 
quantified by applying scan statistics to detect simulated 
signals representing outbreak data effects.

The procedure used for simulating the signals is as  
follows:

1.	 Choose a central subregion to be used as the location 
of origin for a point-source outbreak.

2.	 Generate a stochastic, lognormal epidemic curve 
using a median incubation period of 3 days.20

3.	 Given the number of outbreak-attributable cases on 
a particular day, choose the subregion for each case 
with a random draw assuming that the number of 
cases decays exponentially with the distance of the 
subregion from the outbreak center.

The signal injection methodology was:

1.	 To estimate background cluster rates, run the scan 
statistics algorithm M times, once for each day of 
the 3+ years of background data except for a warm-
up period of 8 weeks for an initial estimate of the 
spatial distribution. An estimate of the probability 
of false alarm per day at threshold α is then PFAα 
= MFα/M, where MFα is the number of days with P 
value < α for some cluster. (One cannot infer the 
background alert rate from the P value alone because 
the empirical data typically violate the underlying 
statistical assumptions.)

2.	 Conduct 100 trials, each with a unique stochastic 
outbreak signal with its own distribution in space and 
time. In each trial, for each day of the simulated signal, 
add the attributable counts to the authentic back-
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A number of these experiments were conducted to 
examine the effect of tradeoffs in spatial aggregation, 
and two such experiments were compared for which 
the center of the outbreak was placed in one of the 
sparse subregions not close to any large clinic. The first 
experiment sought clusters using only the 32 clinic ZIP 
codes, while the second used the 1233 patient residence 
ZIP codes. Sensitivity was measured in two ways: the 
first was to credit a detection if a significant cluster 
was found within the first 3 days of the signal, and the 
second was to credit a detection at any day of the signal. 
The receiver operating characteristic (ROC) curves of 
Fig. 6 allow comparison of the results for both levels of 
aggregation using both measures. 

The x axis of Fig. 6 gives the estimated background 
alert rates per day for alert rates of <0.15 (an upper bound 
of approximately one per week) to focus on alarm fre-
quencies that are practical for public health surveillance. 
The y axis gives the two empirical sensitivity measures 
described above. It is characteristic of this dataset that, 
for these comparisons, lower alert rates can be achieved 
by using subregions at the facility level. However, for 
scenarios with a small outbreak away from large facili-
ties, much higher sensitivity can be achieved by using 
residence ZIP code data, and the advantage increases as 
the algorithm threshold is permitted to increase (i.e., as 
the health monitor can tolerate false alarms).

To understand these performance comparisons rela-
tive to pure time series monitoring with fixed region sizes, 
temporal detection algorithms removing the seasonal 
and day-of-week effects were run for time series at the 
state, large-facility, and small-facility levels on the same 
100 trial outbreak signals. For each trial, the same attrib-
utable signal counts were added to background data pro-
jected onto each of these time series, whose scales may 
be reviewed in Fig. 1. Not surprisingly, the 40-case signal 
spread over 9 days was not detected in the statewide or 
large-clinic time series. To better compare the methods, 
we varied the total outbreak size for the same signal 
shapes and reran the temporal algorithms. The sum-
mary in Table 1 shows the number of total cases required 
to achieve 90% and 75% detection sensitivity at the  

different aggregation levels, where sensitivity was again 
measured for the entire signal and for detection by day 
3. This table gives an idea of the signal sizes, spread over 
7–10 days, that are detectable at high sensitivity for these 
aggregation levels. For the large-clinic and statewide data 
series, these sizes are one and two orders of magnitude 
greater than the signal detectable by using scan statis-
tics and residence ZIP codes for a moderate detection 
threshold. The small-facility table entries do give results 
that are comparable with the 40-case outbreak. How-
ever, monitoring 32 (in this dataset) time series for the 
separate facilities introduces a multiple-testing problem 
if they are all monitored at one central location. For a 
detailed treatment of the problem of monitoring multiple 
univariate series, see Marshall et al.21

To choose methods and aggregation levels, a moni-
toring institution should interpret results such as Figs. 
4 and 5 in terms of its objectives and resources. The 
question of which method to use and the level of spa-
tial resolution depends on the thematic considerations 
of this paper:

Table 1. O utbreak sizes required for 75% and 90% detection sensitivity by using temporal methods alone, by level of spatial aggregation.

Size of outbreak effect (number of data cases required) for desired temporal detection probability

Aggregation 
level State (median 829) Large facility (median 166) Small facility (median 3)

Detection  
probability (%)

75 90 75 90 75 90

By day 3 660 1100 170 246 23 30

By day 7 1100 1500 308 407 33 46

Figure 6.  ROC curve comparison results for spatial signal detec-
tion at home versus facility aggregation level.
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1.	 If the objective is bioterrorism, interest may be lim-
ited to outbreaks near the large clinic and the meth-
ods with smaller background alert rates.

2.	 The utility of monitoring a large number of small 
data streams may depend on whether a health 
department has distributed surveillance and inves-
tigation capability. If an investigation requires a 
half day, alerts occur several times per week purely 
because of multiple testing, and the health depart-
ment has only one to two staff members responsible 
for surveillance, investigations cannot keep pace 
with indicated alerts.

3.	 The scan statistics paradigm can help, but for datasets 
such as the outpatient visit records in the example, a 
small spatial resolution will require additional inves-
tigation capability. Data analysis should be done 
before operational use to examine likely cluster rates 
and significant cluster characteristics.

Conclusions
In view of public health concerns regarding bioterror-

ism and the inevitability of pandemic influenza, devel-
opment of advanced surveillance systems to corroborate, 
supplement, and close gaps in physician sentinel surveil-
lance is a research imperative. Early implementations of 
these systems have yielded uneven results in acceptance 
and in demonstrated utility. Public health users have 
reported benefits from these systems, but not always the 
benefits conceived in system design.7 Given the mul-
tiple uses of health surveillance systems for a variety of 
purposes envisioned only after system design and imple-
mentation, the small number of reported successes and 
the excessive false alarms experienced by some users are 
understandable. Requirements analysis should be driven 
by an understanding of decisions regarding each of the 
tradeoffs discussed above, involving surveillance objec-
tives, data aggregation, and the roles of automation.

The interrelationships among these tradeoffs also 
must be understood. Levels of syndromic, temporal, and 
spatial aggregation should be compatible with goals and 
response capabilities. Database and visualization tools 
should be chosen and adjustable to the appropriate com-
plexity for intended use. For scenario‑based detection to 
be accepted and successfully used by health monitors, 
the methodology must be sufficiently transparent, with 
user-friendly automated tools to clarify the basis for 
decision support.

Once the tradeoff decisions are understood, they can 
drive choices regarding data source selection and filter-
ing, anomaly detection methods, visualization tools, 
and the resultant investigation and response protocols. 
Research initiatives related to public health surveillance 
should be guided by well defined objectives given at the 
level of scenarios and required detection performance. 
Improved, context-sensitive requirements analysis 
will determine appropriate choices for these tradeoffs 

and will sharpen the roles and improve the utility of 
advanced surveillance systems.
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