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utomated systems for public health surveillance have 
evolved over the past several years as national and local 

institutions have been learning the most effective ways 
to share and apply population health information for outbreak investigation and 
tracking. The changes have included developments in algorithmic alerting methodol-
ogy. This article presents research efforts at The Johns Hopkins University Applied 
Physics Laboratory for advancing this methodology. The analytic methods presented 
cover outcome variable selection, background estimation, determination of anoma-
lies for alerting, and practical evaluation of detection performance. The methods and 
measures are adapted from information theory, signal processing, financial forecast-
ing, and radar engineering for effective use in the biosurveillance data environment. 
Examples are restricted to univariate algorithms for daily time series of syndromic 
data, with discussion of future generalization and enhancement.

Evolving Role of Alerting Algorithms in Health 
Surveillance

Research has been ongoing to adapt and implement 
health surveillance algorithms for decades and has 
accelerated since the late 1990s because of concern over 
the threat of a clandestine bioterrorist attack.1 Methods 
have been imported from many disciplines in which 
prospective signal detection has been applied, and 
some experience has been gained. Successes have been 
limited because of the rarity of large-scale outbreaks,  

the lack of documentation of community-level ones, 
and the lack of consensus over which data effects are 
outbreak signals and which should be considered back-
ground noise. However, the application continues to 
grow more important and more difficult because of 
advances in public health informatics and the increased 
perception of natural disease threats, such as pandemic 
influenza, along with bioterrorism concerns. More and  
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increasingly complex data streams are available to health 
monitors, methodologies for monitoring them need to 
keep pace, and automated algorithms are needed to direct 
the attention of investigators to potential problems amid 
this ocean of information. 

Expert knowledge—a combination of local back-
ground data experience, medical knowledge, and under-
standing of population behavior—has not proven suf-
ficient to bridge the gap between statistical and epide-
miological significance of algorithmic alerts. The use of 
automated biosurveillance systems has thus produced 
false-alarm problems,2 and most of the reported benefit 
of these systems has been in combination with other sur-
veillance tools, as in corroboration of medical suspicions 
and a broadening of situational awareness. Current algo-
rithm research is addressing how to improve detection 
performance for greater specificity and broader utility. 
Figure 1 sketches the roles of alerting algorithms in a 
biosurveillance system, with elements of routine opera-
tions on the right and design and evaluation functions 
on the left. 

The algorithmic challenges are as follows:

•	 To capture the best datasets for making effects of an 
outbreak stand out as much as possible from usual 
data behavior.

•	 To filter the records to produce time series for addi-
tional outbreak discrimination, i.e., for maximizing 
the signal-to-noise ratio.3

•	 To develop and apply robust, sensitive algorithms 
tuned to these time series to identify the signal as early 
as possible. Key components of these algorithms are 
prediction and anomaly determination.4 Prediction 
is important because unusual data behavior cannot 
be recognized without estimates of usual behavior. 
Systematic time series effects such as seasonal cycles, 
day-of-week usage patterns, and regular clinic clos-
ings are common features in syndromic time series. 
Various forecasting approaches have been applied to 
remove expected trends and outliers so that the con-
trol charts could be applied to the forecast residuals to 
determine when to alert.

To provide perspective on development of an entire 
biosurveillance system, the right half of Fig. 1 shows the 
additional challenges of data acquisition, cleaning, and 
transfer at the top and the challenge of useful visualiza-
tion for human interpretation at the bottom. The design 
and maintenance of the data chain are especially impor-
tant; the utility of algorithms, output products, and 
interfaces depends on the prompt availability of secure 
data at the required level of detail.

The remaining sections of this article discuss our 
recent efforts on algorithmic subtasks depicted in Fig. 
1 and applied for the ongoing development of the Elec-
tronic Surveillance System for the Early Notification 
of Community-based Epidemics (ESSENCE). For more 

background information on ESSENCE, see the article on 
biosurveillance research and policy tradeoffs by Burkom 
et al. elsewhere in this issue. These sections present

•	 The challenge of outcome variable selection, featur-
ing a discussion of mutual information, its applica-
tion to a surveillance time series, and a reference 
series to determine whether their quotient, such as 
the division of daily syndromic counts by total daily 
facility visits to estimate a population-level rate, can 
reduce the signal-to-noise ratio

•	 An adaptive, recursive least-squares (RLS) algorithm 
tailored for univariate, city-level syndromic time 
series with applications for multivariate analysis

•	 Improvements in implemented algorithms previously 
reported and a strategy for replacing them with a 
more data-adaptive approach

Although detailed material in this article is restricted 
to univariate algorithms, multivariate alerting methods 
also are conservatively applied in ESSENCE systems, 
and their broader application is an active research area 
whose niche in surveillance practice is still to be deter-
mined. The final section discusses research challenges 
of current interest for both univariate and multivariate 
detection methods.

Use of Mutual Information for Improved  
Signal-to-Noise Ratio

Monitoring in the Absence of a Static Baseline
Most surveillance systems are vulnerable to dramatic 

and unpredictable shifts in the monitored health care 
data3 resulting from changes in data collection meth-
ods, diagnosis coding, participating clinical facilities, 
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Figure 1.  Components of biosurveillance systems, including the 
routine algorithmic alerting process.
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insurance eligibility, and similar factors. Reis et al.4 
have noted that anomaly detection methods in most 
surveillance systems are not robust to shifts in health 
care utilization because they cannot adjust quickly to 
changing baselines, so that utilization shifts may trig-
ger false alarms. As a result, the effects of public health 
crises and major public events may undermine health 
surveillance systems at the very times they are needed 
most.4 Baseline changes may trigger irrelevant alarms 
and mask signals caused by population health events of 
concern. For example, a sudden jump in influenza-like 
illness diagnoses in a population might be caused by an 
increase in the size or perhaps insurance eligibility of 
the monitored population and not by a real disease out-
break. In addition, the total number of medical facility 
visits could rise because of the addition of a hospital into 
the network, but the hospital might not have a clinic 
treating the syndrome of interest.3 

Avoiding false alerts in syndromic monitoring by 
comparing data to a baseline population is made diffi-
cult by the lack of a stable data background. True inci-
dence rates, classically measured by the number of new 
cases in a given time period divided by the population 
size,5 can rarely be calculated in syndromic surveillance 
data because catchment area sizes for the data sources 
typically are unavailable. These data sources include 
records of deidentified and filtered clinical encounter 
records, pharmaceutical prescriptions, or selected over-
the-counter remedy purchases. Although it is possible 
to estimate the population in a particular geographi-
cal catchment area, this estimate may not be useful as 
a denominator for proportion monitoring because it 
cannot include patient preferences, temporary closures, 
or sales promotions in pharmacies or diagnostic labo-
ratories or large transient population inflow or outflow 
caused by long holiday weekends or large public events 
(political conventions, the SuperBowl, etc.). The number 
of people served by a military hospital is particularly 
difficult to estimate because of the transitory nature of  
military lifestyles.

Syndromic Data Categorization
In biosurveillance, a syndrome grouping is defined 

as being a filtering of clinical prediagnostic records 
designed to clarify the data signal resulting from out-
breaks of certain disease types.6 Clinical encounter data 
compiled and formatted by systems such as ESSENCE7 
are cleaned to remove duplicate, incomplete, or ambigu-
ous entries. Before records are available for analysis, data 
fields with personal identifiers are removed or altered to 
comply with privacy requirements while enough is made 
available for accurate filtering and analysis. The data 
streams available for alerting algorithms typically con-
sist of these cleaned records and may come from various 
sources (e.g., syndromic hospital visit counts and school 
absentee rates).

Challenge of Minimizing False Alerts While Maintaining 
Signal-to-Noise Ratio

One approach to reducing false alarms in syndromic 
data streams is to approximate true rates by replacing 
daily filtered diagnosis counts with the quotient of these 
counts by some reference series, such as the total of all 
daily visits. The Centers for Disease Control and Pre-
vention (CDC) uses this approach for seasonal influ-
enza surveillance by monitoring weekly percentages of 
influenza-like illness submitted by participating sentinel 
physicians. The rationale for monitoring ratios instead 
of counts is that general health care utilization shifts 
and other data features irrelevant to disease surveillance 
often affect both numerator and denominator and thus 
are reduced or eliminated in the ratio, thereby lower-
ing the false-alarm rate. Thus, changes in the syndro-
mic data stream (the ratio’s numerator, denoted below 
as the “target” data stream4) relative to a changing 
background (the denominator, denoted the “context” 
stream) are drawn out, and these changes are presum-
ably more likely to indicate genuine increases in the 
syndrome group of interest. 

An example of the signal-to-noise ratio increase 
obtained by using proportions instead of counts is illus-
trated in Fig. 2. Two plots are shown in the upper half of 
the figure: the red line is a plot of the daily total number 
of visits recorded in a health care facility, and the blue 
line shows counts of only those visits classified in the 
respiratory syndrome. A small simulated outbreak is 
indicated in the count series. The outbreak signal is 
much more distinct in the time series of ratios than in 
the series of unchanged counts.

The purpose of the work described here is to provide 
the epidemiologist or system designer with a mathemati-
cal tool to decide whether to use individual counts or 
to use proportions, and which proportions, when moni-
toring daily surveillance data. The approach herein 
complements the proportional model networks of Reis 
et al.4 and may be used to decide which target/context 
ratios should be monitored in a multisource network, 
thus reducing the network size and computational  
complexity.

Technical Approach for Evaluating Ratios for Signal-to-Noise 
Discrimination

The approach described here to solve the “denomina-
tor problem” is to use information-theoretic techniques 
to determine under what conditions proportions are 
preferable to counts and whether ratios formed by using 
a particular reference series are more effective than 
simple counts for anomaly detection. Given two data 
streams X = {x(t)} and Y = {y(t)}, their mutual information 
I(X; Y) provides a general measure of their interdepen-
dency. Let X have a probability density function (pdf) 
given by p(x), and let p(y) be the pdf of Y. If their joint 
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pdf is denoted by p(x, y), then the mutual information 
I(X; Y) between X and Y is defined formally as8

	 I X Y p x y
p x y

p x p yyx

( ; ) ( , )log
( , )

( ) ( )
.=









∑∑ 	 (1)

Note that the mutual information also can be written as

	 I(X; Y) = H(X) 1 H(Y) 2 H(X, Y) ,	 (2)

where H(X) is the usual Shannon entropy of a single 
variable defined by

	 H X p x p x
x

( ) ( )log ( )= −∑ 	 (3)

and the joint entropy H(X, Y) is given by8

	 H X Y p x y p x y
yx

( , ) ( , )log ( , ) .= ∑∑ 	 (4)

Mutual information (MI) is a general measure of 
dependency in data: a nonzero MI indicates that two 
data streams X and Y share some kind of dependence, 
linear or not. We use MI to decide which data streams 
are more appropriate for use as a context stream to a 
given target stream. In essence, we are designing a noise 
filter by using a context channel to remove the noise 
from the target channel. MI is a nonlinear generalization 
of the well-known linear dependency summary statistic, 
the Pearson linear correlation. The advantages of using 

MI over Pearson correlation as a summary statistic can 
be seen by the following example. Let a random variable 
X be uniformly distributed on the interval from 0 to 1, 
and let Y = X2. Then Y is completely determined by X, so 
that X and Y are dependent, but their correlation is zero; 
they are uncorrelated. The mutual information between 
X and Y, however, is significant.

MI not only provides a general measure of depen-
dency between two variables, but it also has the impor-
tant feature (for biosurveillance applications) of being 
robust to missing data values and has been shown to be 
advantageous in analyzing datasets in which up to 25% 
of the values are missing.9 For these reasons, the mutual 
information metric has been used to analyze dependency 
in such diverse fields as bioinformatics,9–11 physics,12,13 
and ecology.14

Mutual Information Estimation
Calculating precise values for MI is nontrivial, and 

the accurate estimation of mutual information has been 
discussed by Kraskov et al.15 and Steuer et al.16 The most 
straightforward technique is to use a histogram-based 
procedure.11 In this method, a bivariate histogram is 
used to approximate the joint pdf of the variables. The 
use of histograms requires an appropriate choice of bin-
ning strategy to obtain an accurate but economical esti-
mate of the joint pdf. Some popular binning strategies 
are those of Sturges17 (lower bound on number of bins  
k ~ 1 1 log2(N), where N is the data size), Law and 
Kelton18 (upper bound on number of bins k ~ N1/2), 
(number of bins k ~ 1 + log2(N)), and Scott19 (bin width 
h = 3.5s/N1/3, where s is the sample standard deviation).

Figure 2.  When a denominator variable (or context stream) such as total diagnosis count is available, a proportion sometimes can clarify 
an outbreak signal. 
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Other authors have chosen to circumvent the histo-
gram problem by using different techniques to estimate 
the joint pdf. These include adaptive binning,12 k near-
est-neighbor statistics,15 kernel density estimators,20 and 
B-spline functions.10 We have compared some of the dif-
ferent methods of calculating mutual information and 
found little relative difference in the MI rankings for 
pairs of variables in a dataset. The absolute magnitudes of 
I(x; y) for the same pair of variables, however, did change 
with the particular algorithm employed (depending on 
the accuracy of the approximation method and on the 
normalization used).

As seen from Eq. 4, mutual information is bounded 
above by the sum H(X) + H(Y), so that if this sum is 
small, I(X; Y) can be small even if X and Y are com-
pletely correlated. To obtain a dependency measure 
whose magnitude is meaningful, some authors normal-
ize MI so that its maximum value is unity if X and Y are 
completely correlated, similar to the behavior of the cor-
relation coefficient ρ. Normalization techniques include 
division of I(X; Y) by the arithmetic mean21 (H(X) + 
H(Y))/2, by the maximal marginal entropy of the consid-
ered dataset,22 or by the geometric mean (H(X)H(Y))1/2 
of the individual entropies.23

The mutual information here was calculated in two 
ways: the first by using a histogram method with a bin-
ning procedure following Priness et al.11 and the second 
by using the B-spline method outlined by Daub et al.10 
When using the binning technique, we found it conve-
nient to use an arithmetic mean normalization.19 The 
B-spline calculations were performed by using the source 
code in C11 made freely available by Daub et al.10 for 
noncommercial use. The choice of mutual information 
estimation algorithm did not significantly change the 
conclusions of our study, so the MI calculations shown 
below will be those calculated with the B-spline algo-
rithm, whose source code is easily obtained.10

Testing Benefits of Mutual Information-Based  
Discrimination Using Simulation 

Based on the discussion above, a series of Monte 
Carlo simulations were conducted on time series of 
deidentified, syndromic outpatient visit counts made 
available for ESSENCE research. The simulations 
were implemented by introducing simulated lognormal 
spikes in the daily counts of the health time series to 
simulate outbreak data effects. In a representative alert-
ing algorithm used for evaluation in this study, series 
z-score values above a given threshold were considered 
to be alerts, where a z score was obtained by subtracting 
the sliding baseline mean from the current count and 
dividing by the baseline standard deviation. This simple 
detector was implemented over a large number of simu-
lations with varying thresholds and spike magnitudes to 
compare the probability of detection in (i) daily counts 

in a single-syndrome data stream and (ii) daily counts 
made up of the ratio of this single-syndrome data stream 
with other syndromic data streams (including the total 
daily visit count).

We illustrate typical simulation results using daily 
counts of rash syndrome visits over a 1402-day period. 
The time series of these rash syndrome counts is plot-
ted in the upper graph of Fig. 3 and labeled R. A data 
stream constructed from a Poisson-distributed random 
time series with mean l = 50 over the same time period 
is shown in the lower graph of Fig. 3 and denoted by 
P. Monte Carlo simulations then were performed on (i) 
the rash data stream R alone, (ii) the rash data stream 
R divided by the Poisson context data stream P (target/
context average MI = 0.01), (iii) R divided by the context 
series P 1 R (target/context average MI = 0.06), (iv) R 
divided by the context P 1 2R (target/context average 
MI = 0.18), (v) R divided by P 1 3R (target/context aver-
age MI = 0.32), and (vi) R divided by P 1 4R (target/
context average MI = 0.44).

The results are summarized by the receiver operat-
ing characteristic (ROC) curve shown in Fig. 4. ROC 
curves are plots of the probability of detection (PD) (the 
fraction of true positives, an empirical sensitivity esti-
mate) versus the probability of false alarm (PFA) (esti-
mated as the fraction of threshold exceedences among 
the unspiked background data) as the discrimination 
threshold is varied.24 As the context time series C 
included more of the original signal R (from C = P to 
C = P + 4R), the average mutual information between 
the target P and the context changed from 0.01 to 0.44. 
From the plotted ROC curves, detection probabilities 
increased almost uniformly with the target/context MI.

The improvement in signal-to-noise ratio achieved 
by replacing count data with target/context pairs with 
positive MI can be expressed directly by the quantity AD 
= PD(T + C) – PD(T) at a given PFA value and thresh-
old. The quantity PD(T) is the probability of detection 
for the target series T alone, and PD(T + C) is the corre-
sponding detection probability for the data stream using 
the target and context in the ratio T/C. The quantity 
AD will be called the “detection advantage,” because it 
summarizes the improvement in alert detection by using 
a proportion with the target/context pair (T, C) over 
using the target T alone. 

Figure 5 shows the detection advantage AD for the 
series of Fig. 4 at PFA = 0.03 for both the cross-correla-
tion and mutual information measures. The cross-corre-
lation ρxy between successive pairs of datasets X and Y 
was calculated from the expression

	 
m m

 xy
x y

y

E X Y
=

− −[( )( )]
,

x
	 (5)

where E is the expected value operator, and σx
2 and 

σy
2 are the respective variances of X and Y. Clearly, the 



H.  S. BU RKOM  et  al.

Johns Hopkins APL Technical Digest,  Volume 27, Number 4 (2008)318

detection probability is enhanced dramatically as the 
mutual information and correlation between the target 
and context series increase. For example, the use of the 
Poisson noise time series (having an MI of only 0.01 
with the rash count series) as a context gives lower sen-
sitivity than monitoring the rash counts alone. As the 
mutual information of the context data stream with the 
target increases, the detection advantage AD increases 
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Figure 3.  Historical rash counts R from chief-complaint syndrome data (upper) used as the target stream to a context data stream P of 
Poisson noise shown with a mean of 50 (lower).
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mation are increased.

sharply to 0.2, giving a 20% increase in the probability 
of detection.

Additional sets of simulations were conducted with 
35 other syndromic count series from the same dataset of 
outpatient clinic visits. In Fig. 6, we show a set of ROC 
curves using counts of a botulism-like syndrome as the 
target and 10 other syndromic series (including the sum 
of all syndromic visits) as contexts. The black curve is 
the ROC for the “target-only” series of undivided counts. 
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Note that the three curves below this target-only curve 
correspond to algorithms applied to ratios using the con-
text data series for neurological, shock/coma, and fever 
syndrome counts. These three curves indicate lower 
detection probabilities than the black curve generated 
by the algorithm applied to counts alone because of 
their low mutual information (MI  0.35) relative to the 
target count series. 

The results of our Monte Carlo simulations on outpa-
tient clinic data can be summarized as follows: (i) using 
MI as a metric was slightly better than using correlation, 
(ii) using a shorter time window (e.g., 100 or 200 days) for 
calculating the mutual information between two time 
series is preferable to comparing their average MI over 
their entire time history, and (iii) the maximum proba-
bility of detection among context series occurred almost 
always when the total syndromic visit count series was 
used as the context, even if another syndrome data 
stream had higher MI with the target series. This obser-
vation is related to coherent integration effects25 arising 
from the summation of a large number of (noisy) syndro-
mic data series. This aggregation of many sources causes 
the average noise amplitude in the total diagnostic series 
to be reduced by a factor of √N, where N is the number 
of syndromes in the total dataset. This noise reduction 
is especially evident for highly multivariate datasets like 
that used in our simulations (N = 35).

Practical Implementation of Mutual Information  
Discrimination 

Our MI criterion is intended to provide the epide-
miologist with a mathematical tool to decide whether 

to monitor individual counts or to use proportions, and 
what kind of proportions, when monitoring a public 
health network. 

The Monte Carlo simulations discussed in the previ-
ous section suggest that it is useful to use ratios instead 
of counts to clarify an outbreak if the numerator and 
denominator of the ratio have sufficient mutual infor-
mation. Based on results of simulations using an outpa-
tient clinic visit dataset of 35 syndromic time series, our 
simulations suggest a minimum MI of 0.5 for monitoring 
target/context ratios instead of counts if the method of 
Daub et al.10 is used for MI calculation. For large data-
sets, it can be advantageous to use the total diagnostic 
counts as the context because the noise levels of this 
data stream are considerably reduced by coherent inte-
gration. The advantage of monitoring ratios instead of 
counts also may be improved by transforming the data 
series, using short-history time windows, or implement-
ing more sophisticated detection algorithms. Finally, it 
also is beneficial to use this method over short time win-
dows (e.g., 200 days) to ensure that the measured depen-
dency between target and context series is recent and is 
not washed out by multiyear averaging.

Signal Processing RLS Filters Adapted  
for Background Prediction

Linear Filters for Adaptive Modeling
For useful anomaly detection in biosurveillance, it is 

necessary to compare recent observed data to an esti-
mate (or predicted value) of what the data ought to be 
in the absence of a disease outbreak. Therefore, accu-
rate prediction of the data background is an important 
subtask of automated surveillance. The prediction of 
syndromic data is complicated by strong nonstationarity 
and by multiple issues related to data acquisition. Linear 
filters are particularly useful in the background predic-
tion problem because they are easy to implement and 
because their adaptive formulation can deal effectively 
with nonstationary data.26 The ability to use them in 
multistream environments is an additional advantage.

A transient event of short duration superimposed on 
a stationary (or quasi-stationary) background cannot 
be usefully predicted by using linear prediction filters.27 
However, when recent values of a single data stream 
are used to predict future values, these predictions may 
be used as a set of “background” values with respect to 
which a threshold detector (for unusually high counts) 
could operate.27 Accurate background estimates may be 
expected to yield improved sensitivity at practical alert 
rates as measured by ROC curves, as shown in the previ-
ous section. 

Filter Modifications for Biosurveillance Applications
Linear prediction filters are generally easy to 

implement when the optimality criterion is that of a  
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minimum least-squared error. We have successfully pio-
neered and used the adaptive RLS linear filters in the 
analysis of a “predict and detect” system using over-
the-counter medications that were chosen based on 
their high correlations with a single clinical dataset.27 
The current effort shows that the same RLS prediction 
method in a univariate (single data stream) environment 
predicts accurate background counts for a large class of 
surveillance time series.

A major problem for modeling syndromic data streams 
from many health indicator information sources is the 
day-of-week effect. When present, this effect results 
in a consistent statistical disparity among observed 
counts on different weekdays. A systematic and adap-
tive approach to this problem is a vital ingredient in our 
RLS implementation. Our method to equalize the data 
distributions relies on an invertible transformation of 
the data values. The following section describes the day-
of-week issue and our solution and implementation. We 
then show the RLS implementation of the prediction 
problem and present results and discussion.

Algorithmic Treatment of Weekly Data Patterns
To illustrate the issue, we present military outpatient 

clinic data from a large metropolitan area. The time series 
in Fig. 7 represents nearly 4 years of typical daily counts 
of visits whose diagnoses were classified in the respiratory 
syndrome. Figure 8 shows the sorted (by value) data cor-
responding to different days of the week. Weekend (Sat-
urday and Sunday) values fall on curves that are distinctly 
separate (and lower) from those of the weekdays. Our 
adaptive solution to this problem is as follows. We fit the 
middle part of each curve with a straight line and form 
a reference line using the median of the weekday lines. 
Other choices for the reference line could work as well. 

All data values then are corrected to this reference line 
by linear transformation. Figure 9 shows the corrected 
(sorted) data values after this transformation, and the cor-
rected daily values are shown in Fig. 10. Predictions then 
proceed on these corrected values. The transformations 
are inverted by using the same straight line parameters to 
restore count levels on the original scale. 

Background Prediction and the RLS Algorithm
We consider the raw time series of clinical visit counts 

as both the primary and the reference data channel in 
order to predict future counts in the following manner. 
Today’s and several past days’ counts are combined to 
make a future clinical data prediction, which then is 
compared to the actual value of that day’s clinical data 
when that value becomes available, and the error is used 
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Figure 7.  Daily counts of syndromic visits for the respiratory 
syndrome of military outpatient visits from a large metro- 
politan area.
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counts by day of week. The abscissa values are used as indices for 
day-of-week equalization.
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to update the filter coefficients in such a way as to mini-
mize the square of the error. 

Denoting the daily counts by yn, a linear prediction, 
P days ahead, is given by

	 ˆ ,y h yn P m n m
m

M

+ −
=

−
= ∑

0

1

	 (6)

where we have assumed a set of linear filter coefficients 
 h = [h0, h1, . . ., hM 2 1]

T of length M. In vector notation, 
this equation is 

	 ˆ ,y h yn P
T

n+ = 	 (7)

where h = [h0, h1, . . ., hM 2 1]
T, yn = [yn, yn 2 1, . . ., 

yn 2(M 2 1)]
T, and T denotes matrix transposition. The 

prediction error is given by 

	 e y yk k k= − ˆ , 	 (8)

and the performance index at day n is 

	 εn
n k

k
k

n
e= −

=
∑ l | | .2

0

The “forgetting factor” λ is introduced to deal with non-
stationary behavior so that more recent data are given 
more emphasis.27 The relationship between the forget-
ting factor and the effective memory of the filter is found 
from 

	 n

n n

n

n
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This equation can be solved to give the forgetting factor in 
terms of the effective memory of the filter, l = nl/1 1 nl, 
which can be chosen according to observations made 
on the underlying dataset. We have generally found an 
effective memory value of 4 weeks (28 days) to give a 
useful value l = 0.9655. The least-squares analogue of 
the ordinary Wiener filter equations then are 

	 � �n k

k

n

k m k l l
n n k

k

n

k my y h x y−

=
− −

−

=
∑ ∑

0 0

( ) ,= 	 (9)

where we have introduced the variable x yn n P
ˆ .+≡   

Details of the RLS adaptive algorithm are provided in 
Box 1.

Note that our implementation uses multiple predic-
tions for the same day, as described above and shown in 
Fig. 11, in which the data between the left-hand arrows 
are used to predict each data point (red circle). Thus, 
given today’s and the past available data—i.e., indices 
n – (M – 1), . . ., n—we make a prediction for day index 
n 1 P, using the present filters. In addition, we use the 
same filters to make a prediction for day n 1 P – 1, 
using the available data indices [n – 1 – (M – 1), . . ., n 
– 1], and similarly we continue to make a prediction for 
every prior day up to and including the index n 1 1 {the 
corresponding data indices for the latter prediction are 
[n – (M – 1) – (P – 1), . . ., n – (P – 1)]}. In other words, 
every day in the future will have P predictions that were 
made when that point was P days ahead of the index n, 
P – 1 days ahead, and so on, until it was only 1 day 
ahead. So when the index n (i.e., today) turns to n 1 1, 
i.e., the data for tomorrow become available, we have P  
possible error terms, only one of which can be fed 
back into the recursive update equations. In the pres-
ent implementation, we have found that choosing 
the error term with the smallest magnitude produces 
the most effective coefficient updating in terms of  
prediction accuracy. We experimented with feeding 
the most recent estimate as well as the one with the 
smallest magnitude and found the latter to provide 
slightly better results. In many cases, of course, the 
most recent estimate also was the one with the smallest  
magnitude.

Comparative Performance of Adaptive RLS Filter on  
Syndromic Data

Table 1 lists the daily syndromic time series used to 
test this method. We used a training period of 1 year 
to compute reliable estimates of the linear transforma-
tion coefficients required in the day-of-week equaliza-
tion procedure prior to prediction. The last two columns 
of Table 1 show the median fractional absolute differ-
ence for RLS predictions of the listed nine syndromes 
compared with predictions obtained with a method  
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Figure 10.  Daily counts of syndromic visits after equalization 
transformation.

2



H.  S. BU RKOM  et  al.

Johns Hopkins APL Technical Digest,  Volume 27, Number 4 (2008)322

Box 1 
  The quantities 
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which play the roles of the correlation matrix and the cross-
correlation vector, satisfy rank 1 update equations 
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where the superscript n denotes the present day number (with 
0 indicating the first day). The least-squares solution to a 
given a pair { , }( ) ( )R rn n  is clearly 

	 h R rn n n( ) ( ) ( )[ ] . ,= −1

 
and the corresponding prediction value (filter output) is

	 ˆ . .( ) ( ) ( )x h yn n T n=

  The RLS algorithm26 is an adaptive method to relate the 
solution to the least-squares problem at step n to the solu-
tion of the least-squares problem at step n 1 1. In the par-
lance of Kalman filtering theory (sequential estimation 
theory), the quantities at step n (present) are referred to as 
the a priori values, whereas those at step n 1 1 (next step) are  

a posteriori quantities. An important step in the RLS algo-
rithm is the computation of the inverse correlation matrix, 
which by using the matrix inversion lemma can be written 
as follows:

 	 [ ] [ ]( ) ( ) ( )R R K Kn n n (n) (n)T+ − −= −1 1 1 m  

in terms of the Kalman gain vectors

	  K R y j n, nj j n( ) ( ) ( )[ ] ,− = +1 1  

and the likelihood variable m( ) ( ) ( )( . ) .n n T ny K= + −1 1

  The filter update equations are obtained by applying 
R n( )+ 1  (i.e., the correlation function of the least-squares 
problem at step n + 1) to the left of h n( )  (i.e., the solution to 
the least-squares problem at step n):

	 h h e Kn n n n n n n( ) ( ) ( | ) ( ) ( | )= +− − −1 1 1m

while the prediction errors are related to each other by

	 e en
n

n n( ) ( | )= −� 1 .

  The hybrid quantities are defined as follows:
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Table 1. M edian fractional absolute forecast error for nine syndromic time series comparing  
the CDC W2 algorithm to adaptive RLS.

Syndrome Mean count CDC W2 (%) RLS (%)
Respiratory 1 335 13 9
Respiratory 2 162 16 10
Fever 1 79 16 14
Rash 2 78 18 17
Gastrointestinal (GI) 2 62 16 15
Lower GI 2 55 22 16
GI 1 53 16 15
Lower GI 1 38 18 15
Neurological 2 35 19 18

currently used in the CDC BioSense 
system28 for monitoring public 
health on the national level. This  
reference method is an enhance-
ment of the Early Aberration 
Reporting System (EARS) C2 
algorithm,29 denoted W2, in which 
separate C2 implementations are 
applied to normal weekdays and 
to weekend/holidays. For the syn-
dromic visit count series used, note 
that the RLS fractional predic-
tion errors are consistently below 
those of the reference W2 method.  
Importantly, for day-to-day moni-
toring experience, this advantage 
holds uniformly when comparisons 
are stratified by day of week and by 
month of year.

The modified RLS filter-based 
predictor presented above yielded 
useful predictions for a variety of 
city-level syndromic data series. 
More recent comparisons suggest 

s1s6 s5 s4 p3s2 p2p1s3

Figure 11.  Schematic illustration of prediction algorithm (e.g., values on days s1–s4 are 
used to predict p3).
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that it may be useful on smaller scales as well, and efforts 
are ongoing to establish the class of time series for which 
it is useful and to select this predictor based on a modest 
set of historic data. A logical next step is to investigate 
the advantage in signal detection capability that may be 
obtained by using residuals calculated with this special-
ized RLS adaptation. Both simple threshold detectors 
and more complex control charts are to be applied for 
this purpose.

Practical Adaptation of Temporal Alerting 
Methods for Routine Operations

Basic challenges and common approaches used in 
univariate temporal alerting algorithms for biosurveil-
lance have been discussed previously in this journal.1 
This section discusses advances and adaptations that 
have resulted from experience working with epidemi-
ologists, from the changing data environment, and from 
recent research.

Adaptive Choice of Detection Algorithms
The use of data models and control charts for disease 

surveillance was discussed previously in this journal.1 
Although the adaptive regression approach discussed 
in that article has proved applicable to many facility-
level and county-level data streams, this modeling 
has little explanatory value for sparser time series that 
occur when data records are filtered more finely because 
of geographic restrictions, concerns for particular 
age groups, or subsyndrome classifications. Moreover, 
ESSENCE has evolved to allow users to choose ad hoc 
combinations of data filters, and rapid anomaly detec-
tion of the resulting time series is required. The first 
and currently implemented solution to the dilemma of 
whether and how to model was an automated choice 
between adaptive regression and an exponentially 
weighted moving average (EWMA) chart, discussed 
next. A more recent, unified solution uses generalized 
exponential smoothing, discussed in the section on 
Holt–Winters-based control charts. 

The current automated algorithm selection is deter-
mined by a goodness-of-fit test to determine whether 
the adaptive regression model has explanatory value. 
For each day’s baseline, regression coefficients are refit 
by using standard predictor variables. For a goodness-
of-fit measure, the adjusted R2 coefficient estimates the 
portion of the sum of squared baseline modeling errors 
that are explained by the predictor variables. If this mea-
sure exceeds 0.6, the system uses the regression model 
to make a current-day forecast and decide whether the 
day’s observed count is anomalous. Time series of record 
counts using the more inclusive respiratory and gastro-
intestinal syndromes usually pass this test in medium 
to large regions where the median daily count is well 

above 10. However, if the adjusted R2 does not exceed 
0.6, an adaptive EWMA control chart is applied to test 
for anomaly. 

The experience of recent years of ESSENCE use has 
led to modifications in both the regression model and 
EWMA algorithms implementations, and we summarize 
these modifications below.

Modifications to Adaptive Regression Algorithm
•	 Predictor variables: The various data types used in 

ESSENCE show several different day-of-week pat-
terns, with many data sources showing characteris-
tic weekend drop-offs ranging from 75% to 100%. 
Weekly patterns in hospital emergency room data 
vary widely according to the type of hospital and level 
of weekend staffing. To accommodate the resulting 
range of time series behaviors, six day-of-week indi-
cator variables now are included in the model. The 
other predictor variables are a linear trend term and 
indicators for holiday and post-holiday effects. By 
contrast with some research efforts,30,31 long-term 
predictors such as harmonic seasonal terms are not 
included in ESSENCE because the data history often 
is not sufficient for the use of these terms, and even 
when it is sufficient, year-to-year changes in infor-
mation systems, diagnosis coding, population behav-
ior, and even weather can degrade their predictive 
value. 

•	 Outlier removal: Alerting problems have occurred 
because of anomalous baseline data values even when 
the goodness-of-fit test selects the regression model. 
These outlier values may reflect true health events 
but often result from issues in the data chain, and, 
regardless of their cause, they should not be used to 
infer regression coefficients for forecasting. To avoid 
training on these outliers, observations outside the 
alerting confidence bounds are replaced by those 
bounds for model-fitting.

•	 Probability-scale representation of algorithm output: 
The unscaled outputs of the regression algorithm are 
the forecast errors divided by the standard error of 
regression. For alerting purposes, values represent-
ing degree of anomaly are derived from Student’s t 
test distribution lookups using these outputs with 
the number of degrees of freedom set to the baseline 
length minus the number of predictor variables. Note 
that the resulting p values are not outbreak probabili-
ties but only statistical anomaly measures on a 0–1 
scale. Use of this scale allows comparison of outputs 
among algorithms and direct combination of these 
outputs by multiple univariate methods.

Modifications to the EWMA Control Chart Algorithm
When the regression goodness-of-fit test fails in 

ESSENCE data analysis, an adaptive version of the 
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EWMA control chart of statistical process control (SPC) 
is applied.32 The SPC formulation assumes that the 
input data stream Xt is Gaussian with mean m and vari-
ance σ2. The ESSENCE test statistic is ( ) / ,Z x kst t t−
where Zt is the current weighted moving average

	 Zt = ωXt 1 (1 – ω)Zt – 1  ,	 (10)

and ω is a smoothing constant between 0 and 1. The 
sliding baseline mean xt  and standard deviation st give 
estimates of µ and σ. The denominator kst approximates 
the standard deviation of Zt, where the constant k is 
given by 

	 k t2 2

2
1 1=

−




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− −ω
ω

ω
( )

( ( ) ) . 	 (11)

The ESSENCE implementation uses a 28-day sliding 
baseline and a 2-day guard band, or buffer, separating 
the baseline from the current day.

Adaptations to EWMA Chart Implementation
The following modifications have been adopted to 

improve the accuracy and robustness of statistical alert-
ing in response to concerns of epidemiologist users, 
typical data behavior, and the most common problems 
in the data acquisition chain.

(i)  Sensitivity to both sudden and gradual signals: Data 
signals expected from infectious disease outbreaks are 
not the lasting step increases that one would expect of 
a mean shift. The signals of interest are transient data 
effects of epidemic curves of attributable cases lasting 
from a few days to a month or more. Even for a given 
disease such as influenza, the outbreak signal may be 
sudden and explosive or more gradual. In a published 
hospital-based application, cumulative sum (CUSUM)-
Shewhart and EWMA-Shewhart charts were applied to 
detect both types of signal in the monitoring of hospi-
tal infections.33 Those authors found an EWMA-She-
whart chart preferable for autocorrelated background 
data. Emulating this strategy, the ESSENCE EWMA 
algorithm is applied for smoothing coefficients of both 
0.4 and 0.9, with the smaller coefficient for sensitivity 
to gradual signals and the larger one to approximate a 
Shewhart chart for sensitivity to spikes.
(ii)  Correction for the adaptive baseline: The conven-
tional EWMA statistic was developed for stationary 
Gaussian data, and the use of the sliding window for 
daily parameter adjustment changes the variance of the 
weighted moving average from the simple, fixed-param-
eter situation. From taking the variance of ( )Z xt t−  
and expanding, the total adjusted variance at time step 
j is the st

2 times the factor
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for baseline length B and guard band length g. There-
fore, the sample standard deviation st is multiplied by the 
square root of this factor in the test statistic.
(iii)  Probability-scale representation of algorithm output: 
As in the regression model implementation, this modi-
fication was partly a cultural one to bridge the gap 
between classical epidemiologist practice and SPC con-
trol chart usage. Given the modification ii for the adap-
tive baseline, probability values representing the degree 
of anomaly are derived from Student’s t test distribution 
lookups with the number of degrees of freedom set to 
the baseline length – 1, assuming that the input data are 
Gaussian. Again, the resulting p values should not be 
interpreted as outbreak probabilities.
(iv)  Bounding the baseline variance: This modifica-
tion was needed because of the many varied time series 
monitored for both general syndromic and more diagno-
sis-specific surveillance. Because of the multiple strata 
used as data filters, many of the monitored time series 
are sparse, with median daily counts of zero. Thus, for a 
4- to 8-week sliding baseline, the sample standard devia-
tion st of these series often is near zero, and for detec-
tion statistics analogous to (x – u)/st, near-zero variances 
cause instability and unwanted alerts. In general, single 
isolated cases are not signals. Therefore, health monitors 
were asked which small temporal clusters should cause 
alerts and which should not. Minimum variances were 
established from this guidance by algebraic manipula-
tion of the EWMA test statistic.
(v)  Small-count corrections for monitoring non-Gauss-
ian time series: Despite the adjustments above, for many 
time series the algorithms were producing too many 
alerts because series values were not Gaussian-distrib-
uted. In biostatistics applications, count data often are 
assumed to obey a Poisson distribution, for which the 
variance equals the mean value. The distribution of 
syndromic count data is usually closer to Poisson than 
to Gaussian in that the dependence of the variance on 
the mean is evident (though overdispersion evidenced 
by exaggerated variances often is seen because the 
counts are not from homogeneous populations). For 
this reason, false alarms were reduced by adding a factor  
c/st to each Gaussian-derived alerting threshold, i.e., by 
adding a fixed, empirically derived constant c divided 
by the data standard deviation. This approach produces 
adjustments that are significant for small-count time 
series but negligible for series with larger counts. For 
Poisson data streams, this approach yielded expected 
probabilities of threshold exceedence for mean count 
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values at least as small as 0.1 per day. The threshold 
adjustment is not directly applicable to the EWMA 
strategy because the EWMA Zt of a Poisson variable 
is not still Poisson. However, the correction applied 
to Zt/ω again produced the expected probabilities for 
smoothing constants ω = 0.4 and 0.9 when the correc-
tion constant c was empirically computed as a function 
of both ω and the desired p value α. Optimizing this 
function over a range of mean values from 0.1 to 20 
gave the following formula for c:

 c(ω, α) = 0.1304 – (0.2409 – 0.1804
	 × (1 – ω)4) × log(10 × α) .	 (13)

Figure 12 illustrates the effect of this correction.
Combining ii through v, the corrected adaptive 

EWMA alerting method for smoothing constants ω = 
0.4 and 0.9 is

•	 At step j, compute the test statistic Zt = (Et – xt )/
max(st*, smin), where Et is the current EWMA, xt
is the current baseline mean, st* is the baseline stan-
dard deviation adjusted as in ii, and smin is the empir-
ical minimum in iv.

•	 Form the adjusted test statistic Zt* by subtracting the 
non-Gaussian correction term

	 Zt* = Zt – c(ω, α) × ω/(ω, α) × ω/max(st*, smin) .	(14)

•	 Alert if Zt* exceeds the critical t distribution value 
for B – 1 degrees of freedom at p value α, where B is 
the baseline length.

(vi)  Automated management of apparent data drop-outs: 
Some algorithm problems reported by ESSENCE users 
have resulted from data acquisition or reporting prob-
lems, and these were frequently caused by data drop-outs. 
Typically, a clinic’s information system goes down for a 
week or more, and data from the affected facilities are 
interrupted until transmission to ESSENCE is restored. 
Sometimes corrected previous-day values become avail-
able, but often the system retains zero values for those 
days. Statistical detection and adjustment for these 
problems is difficult because full and partial drop-outs 
may cause a variety of “errors” in the sense of irrelevant 
alarms. The simplest resulting problem is that the sliding 
baseline mean and standard deviation assume unrealis-
tic values during the drop-out, and meaningless alerts 
are seen when good data start up again. This situation 
arises from a common informatics limitation that miss-
ing data often are impossible to distinguish from zero 
values because of the large number of data suppliers and 
confidentiality restrictions in biosurveillance systems. 
Therefore, the following statistical solution has been 
adopted. Suppose that the baseline contains a string of 
M zeros and that Eq. 10 is the set of values outside this 
string. The M zeros are treated as missing data, and the 
baseline is restarted if

	 (NZ(B1)/length(B1))M < α ,	 (15)

where NZ(B1) is the number of zeros in Eq. 10 and α 
is a threshold probability, with α = 0.01 adopted from 
experience. Thus, the string of zeros is more likely to 
be treated as missing data if few zeros appear in the rest 
of the counts. The implemented logic is more com-
plex to account for multiple zero strings, but this basic 
idea avoids nuisance alarms and quickens algorithm  
recovery time.

Limitations of Automated Regression/Control-Chart 
Approach 

The simple algorithm selection criterion combined 
with improvements to the regression and EWMA algo-
rithms has helped reduce data/algorithm mismatch and 
false-alarm rates in the environment of increasingly 
complex data and surveillance objectives. However, 
limitations of this approach cause occasional anecdotal 
problems, and the sheer number of data streams to moni-
tor calls for continued improvements and system-level 
algorithm combinations. 

The most frequent problems result from violations of 
the underlying data assumptions. For example, regres-
sion residuals in syndromic time series often are autocor-
related, variances are nonhomogeneous, and means are 
not constant as a function of time. These realistic data 
issues can cause the regression and EWMA methods to 
scale anomalies differently. More advanced modeling 
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Figure 12.  Monte Carlo estimates of false-alert probabilities for 
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the threshold is adjusted to 3 1 1.07 ω/s.
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approaches like weighted and robust regression, autoregressive integrated 
moving average (ARIMA) modeling, and transformation of the dependent 
variables can reduce these problems,31,34 but often they introduce more 
assumptions and more coefficients to be estimated. It is usually suggested 
to have at least five observations for robust estimation of every parameter 
in regression model. Thus, predictors in the current ESSENCE model sug-
gest at least 8 weeks of data in the baseline, and much longer characteristic 
data baselines are available from relatively few data sources. Furthermore, 
the advantages of more complex modeling may come at the cost of resource-
intensive data analysis,35 and such analysis often is impractical for numerous, 
ad hoc data streams. 

Anecdotal problems have been caused by artifacts of the fixed-length 
moving baseline and the exact goodness-of-fit criterion for choosing regres-
sion modeling. One approach that is more flexible than regression but can 
accommodate seasonality, short-term trends, and data peculiarities is gener-
alized exponential smoothing, which is widely used for financial forecasting 
and introduced in the next section.

Data Forecasting Using Generalized Exponential Smoothing
The idea of exponential smoothing has been extended to the modeling of 

local changes in trend36 and then in periodic behavior.37 In the well-known 
Holt–Winters implementation, updating equations analogous to Eq. 10 are 
combined to obtain forecasts accounting for changes in process mean, sea-
sonal components, and trend behavior. Specifically, let α, β, and γ denote 
smoothing coefficients (where α has the role of ω in simple EWMA) for 
updating terms corresponding to the level, trend, and seasonality, and let s 
be the cycle length, in data time steps, of seasonal or periodic behavior in 
the data series. Forecast components mt, bt, and ct then are updated with the 
following equations.

Level: 	 m
s

m bt t t=
−
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y

c
t

t

( )( ),1 0 11 1 	 (16)

Trend: 	 bt = b(mt 2 mt 2 1) 1 (1 2 b)bt 2 1,  0 < b < 1	 (17) 
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t 1

1 0 1
*

( ) , 	 (18)

Eq. 18 contains a recent, robust improvement with the use of mt  – 1.
38 In the 

multiplicative Holt–Winters procedure, these components are combined to 
yield a k step-ahead forecast:

	 ˆ ( )( ) .|y m kb cn k n n n n s k+ − += + 	 (19)

Holt–Winters Forecasting for Biosurveillance
Forecasting by the Holt–Winters method has been applied39 to the pre-

diction of daily biosurveillance data using 16 authentic data streams on the 
scale of Fig. 7. In this study, the cycle length s was set at 7 to account for 
the frequent but data-source-dependent weekly patterns reported above 
for daily syndromic series, and Holt–Winters forecasts gave forecast errors 

that consistently were lower than 
those obtained with an adaptive 
regression model. We have applied 
Holt–Winters forecasts to build an 
anomaly detector that is robust with 
respect to data scale and to common 
data features such as holiday effects. 
We summarize the modifications 
required for robust forecasting and 
then present the adaptive Holt–
Winters control chart. 

(i)  Updating adjustments for pre-
dictable outliers: Updating is applied 
with the usual cyclic multiplier 
replaced by a special factor for holi-
days or other calendar events.
(ii)  Updating adjustments for unex-
pected outliers: Updating of the com-
ponent terms is suspended if the 
current data are anomalous accord-
ing to an absolute fractional error 
criterion. This condition has been 
refined across data scales to avoid 
spurious training.
(iii)  Adjustment for sparse time series: 
Data with sequential zeros may cause 
an imbalance in component updat-
ing that leads to artificial trending. 
To avoid such artifacts, a small data-
dependent constant is added to all 
input values and then subtracted 
from the composite forecast.
(iv)  Choice of initial values for level, 
trend, and cyclic components: Initial 
value effects are negligible in simple 
EWMA but are known to be critical 
in more generalized Holt–Winters 
forecasting.35 Experience with syn-
dromic series forecasting has con-
firmed this finding and shown that 
grossly misspecified initial values 
may degrade algorithm performance 
for several months using daily data 
and also may confound the choice 
of smoothing coefficients α, b, and 
γ. From experience with numerous 
syndromic series on multiple scales, 
the recommended starting values 
for level, trend, and seasonal multi-
pliers are the overall baseline mean, 
an initial zero slope, and stratified 
averages for the weekly multipliers, 
respectively. If no historic data are 
available, initialization should be 
based on the best information or 
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experience at hand. After 4–6 weeks of data have been 
collected, early guesses for the initial values should be 
replaced with values for the recommended computa-
tions.
(v)  Choice of smoothing coefficients: The selection of 
Holt–Winters smoothing coefficients is critical for reli-
able forecasting. Based on forecast results using a variety 
of data streams and data-grouping criteria, we catego-
rized input series by median value using categories of 
sparse (median < 1), low (1 < median < 10), average (10 < 
median < 100) , or high (median > 100). Following previ-
ous studies,35,39 we applied a coarse, multidimensional 
grid search to determine an effective set of smoothing 
coefficients for each median category. Figure 13 illus-
trates the results of this search for combinations of α 
and γ, for b = 0. Each color‑coded cell represents the 
goodness-of-fit-based rank of a particular [α, γ] coeffi-
cient pair. Blue represents the best pairs as indicated by 
the highest rank. The sets of coefficients shown in Table 
2 were chosen for each group. 

Forming an Alerting Algorithm from the Residuals
Even for reliable data forecasts, the forecast residuals, 

or differences between observed and expected values, 
are not sufficient for anomaly detection. Estimates of 
residual variance also are needed to calculate a detec-
tion statistic in order to reduce day-to-day changes in 
sensitivity and specificity. For example, in syndromic 
data streams, a day-of-week effect is present not only 

in sample data means but also more subtly in residual 
variances, despite forecast efforts to remove this effect. 
We tested and adopted a method suggested by Chat-
field40 and nearly identically by Koehler38 in which 
variance is a function of level and cyclic parameters.21 
The Koehler estimate provided the detection statistic 

ˆ (yt + k − yt(k))/   Var (et(k)) with the closest fit to a stan-
dard Gaussian distribution.

Holt–Winters-Based Algorithm Performance
A study has been completed to compare the detec-

tion performance of the above statistic to the traditional 
regression-based detector. Simple 1-day spikes were 
added to authentic background data streams previously 
collected in ESSENCE. Probabilities of detecting the 
injected spikes were tabulated for the new normalized 
Holt–Winters statistic and for the adaptive regression 
method, respectively. Average detection probabilities, 

Table 2. C oefficient sets.

Name Median Chosen [α, b, γ] coefficient set
Sparse 0 [0.05, 0, 0.10]
Low [1,10) [0.05, 0, 0.05]
Average [10,100) [0.15, 0, 0.05]
High [100, ∞) [0.30, 0, 0.05]
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Figure 13.  Results of grid searches for optimal sets of smoothing coefficients in each data category.
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equivalent to the scaled area under the relevant part of 
the ROC curve, were calculated for background alert 
levels ranging from 1 per 28 days to 1 per 56 days. Table 
3 summarizes the results of this study and shows a con-
sistent detection performance advantage for the new 
Holt–Winters method. Although it is probably demon-
strable that more sophisticated modeling could improve 
the regression detector for any given time series, such 
efforts must keep in mind the variety of data types, lim-
ited on-site analysis capability, and other requirements 
of biosurveillance systems. 

With the success of these preliminary results, work 
is in progress on evaluating Holt–Winters detection 
performance for detection of signals of varying realistic 
shape and duration for ESSENCE implementation.

Summary and Research Directions
This article shows how challenges of developing auto-

mated disease surveillance systems are being approached 
by statistical means. The discussion has been limited 
to univariate alerting methods, but current ESSENCE 
methods also include multivariate statistical alerting for 
simple data fusion41 and scan statistics for detection of 
localized case clusters.1

A considerable body of research has addressed syndro-
mic classification of clinical patient records in order to 

clarify potential data signals for early warning of disease 
outbreaks.6 Subsequent to these classification decisions 
are questions of how to form the most useful outcome 
variables and how to monitor them. Research issues 
include how to best combine and transform the derived 
time series. The MI criterion presented above gives a 
means for evaluating target/context quotients, typically 
a series of daily syndromic facility visit counts divided by 
the daily facility visit total, for their capacity to increase 
the signal-to-noise ratio for the syndrome of interest. 
The MI simulation results suggest that appropriately 
conditioning and combining syndromic data streams 
can be important in achieving the signal-to-noise gains 
necessary for improved detection performance in bio-
surveillance. Further research is continuing on applying 
optimal filtering to the target/context problem and on 
implementing shorter time windows for more discrimi-
nating alert detection. Information-theoretic methods, 
little used in disease surveillance up to now, may have 
additional potential utility, such as application to larger 
sets of data streams to select advantageous combinations 
for monitoring by adaptive multivariate SPC. 

The requirement for adaptive data background estima-
tion in biosurveillance is driven by the need for increas-
ingly early signal recognition. Before the late 1990s, 
most disease surveillance was done on weekly, monthly, 
or longer time scales. More recently, daily monitoring 

Table 3. C omparison of empirical detection probabilities obtained from Holt–Winters and 
adaptive regression methods.  

Syndromic data series

Holt–Winters  
detection  

probabilities

Adaptive regression 
detection  

probabilities
Median daily  
data count

Resp_1 0.988 0.984 310.5
Resp_2 0.994 0.983 184
Fever_1 0.921 0.879 90
Rash_2 0.994 0.985 75
Gi_2 0.990 0.985 72
Lesion_2 0.979 0.960 62
GI_1 0.989 0.945 55
Lesion_1 0.923 0.943 43
Neuro_2 0.986 0.969 39
LGI_2 0.920 0.870 23
UGI_1 0.910 0.822 15
Hemr_ill_2 0.944 0.863 15
Bot_Like_2 0.957 0.882 15
UGI_2 0.888 0.832 8
Lymph_1 0.828 0.724 7
Shk_Coma_2 0.579 0.517 5
Bot_Like_1 0.645 0.509 3
Rash_1 0.537 0.484 3

Average probabilities are shown for practical background alert rates for a signal level of twice 
the data standard deviation of each data series.
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of population data has become common among health 
departments, and advances in hospital informatics sys-
tems are pushing analysts to develop near real-time alert-
ing capability. We have shown how linear RLS filters may 
be modified for improved prediction of syndromic time 
series, and we obtained consistent improvements in pre-
diction for a variety of city-level data series. 

Efforts are currently in progress to specify the class 
of time series for which these filters are most useful and 
to calculate filter coefficients from limited data history. 
Another important extension is the use of RLS filters 
for multivariate background prediction, an effort that 
is promising because of the potential to adapt quickly 
to changes in the multistream covariance matrix. Such 
changes present a major obstacle for other modeling 
approaches.

The final section introduced anomaly detection 
methods based on forecasts using generalized exponen-
tial smoothing. Engineering modifications were pre-
sented to get robust detection performance from Holt–
Winters forecasts across a large set of disparate syndro-
mic time series.

We summarize the advantages of the Holt–Winters-
based adaptive control charts:

•	 The normalized Holt–Winters detector outperforms 
traditional regression-based method on most syndro-
mic data streams.

•	 As in the application of simple EWMA charts, robust 
detection performance does not depend on assump-
tions of normality, stationarity, and constant vari-
ance. 

•	 EWMA is a special case of Holt–Winters smoothing, 
so the specific adjustments described above for sparse 
data streams can be included in a more general Holt–
Winters framework.

•	 Only a limited amount of data is required to initialize 
the algorithm, and the entire data stream can be used 
for detection analysis. 

•	 With the choice of a single, adaptive method for 
each time series category, the automated switching 
among algorithms is eliminated, avoiding occasional 
problems from the anomaly scale or from incorrect 
switching.

•	 The residual variance estimation presented reflects 
natural properties of syndromic data. No significant 
autocorrelation is left in the forecast residuals. 

Following the success of these preliminary results, 
further testing of adaptive Holt–Winters control charts 
is underway for detection of signals of varying realistic 
shape and duration. The varying objectives, data envi-
ronments, and geographic scales of modern biosurveil-
lance systems pose numerous obstacles that can be 
solved only by a combination of epidemiological and 
informatics advances along with analytical ones like 
those of the current study. 
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