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he U.S. Environmental Protection Agency (EPA) strives to develop tech-
nologies and protocols to assist drinking water utilities in reducing the risks 

of potential terrorist attacks on our nation’s infrastructure. Of par-
ticular interest are the development and feasibility testing of contamination warning 
systems that integrate existing public health surveillance and water quality mea-
surements. In collaboration with the EPA,  APL is developing a novel prototype warn-
ing system that employs sensor clustering and Bayesian Network analyses. These 
techniques address the challenges of synthesizing results from disparate data types 
with different data rates and complex environmental and operational responses 
into a warning system that can provide the user with a measure of the likelihood 
that data anomalies do or do not indicate a potential water-borne disease outbreak. 
These critical challenges and how this novel approach and its components address 
them will be described.

Introduction

The Need
Although relatively uncommon in the United States, 

the Centers for Disease Control and Prevention (CDC) 
report 13–14 drinking-water-related disease outbreaks 
per year, affecting an average of ~1000 people annu-
ally (see Table 1; note that it is based on biennial CDC 
reports, so annual averages were determined by taking 
the sum and dividing by 10 years).1 Throughout his-

tory, there have been numerous instances of the delib-
erate poisoning of drinking water supplies or denial of 
drinking water service to an enemy.2 Deliberate con-
tamination remains a viable form of attack because it 
can easily be performed in a covert manner, and the 
resulting health effects, as well as potential panic, could 
be significant. As the threat of terrorism within this 
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country persists, it is therefore prudent to evaluate the 
vulnerabilities of our water infrastructure, to mitigate 
risks where possible, and to be prepared to respond in 
the event of an incident. In December 2003, the Presi-
dent of the United States issued Homeland Security 
Presidential Directive 7 (HSPD-7),3 which designated 
the U.S. Environmental Protection Agency (EPA) 
as the agency responsible for the protection of this 
country’s drinking water. On January 30, 2004, the 
President issued HSPD-9,4 which directed the EPA to 
develop robust, comprehensive, and fully coordinated 
monitoring and surveillance systems for water quality. 
This EPA Water Security Initiative is piloting contami-
nation warning systems at several U.S. water utilities 
to test their feasibility. These pilot programs are inte-
grating automated online and routine water-sampling 
analyses, automated public health surveillance systems, 
consumer complaint monitoring, and enhanced physi-
cal security monitoring.

In a 2003 U.S. General Accounting Office report5 
documenting the results of interviews with water 
experts, the water distribution network was identified 
as the most vulnerable component of the U.S. drink-
ing water infrastructure. Recognizing this vulnerability, 
water utilities are increasingly measuring disinfectant 
levels and other parameters in their distribution systems. 
To improve surveillance further by providing an assess-
ment of the likelihood that data anomalies are related 
to the occurrence of a waterborne disease outbreak, the 
EPA is collaborating with APL to test the feasibility of 
a warning-system prototype framework that integrates 
data from the following disparate sources: (i) traditional 
water quality parameters, which may be measured by 
online water quality sensors and by routinely collected 
grab samples (to be described subsequently), and (ii) 
community health data that may include early signs 
and symptoms of diseases of water origin but that are 
identified through automated public health surveillance  

systems. Outcomes from this project will suggest the 
appropriateness of this type of integration as a compo-
nent of the EPA Water Security Initiative.

The Approach
APL has been able to leverage its expertise in disease 

surveillance, data fusion, and signal analysis to arrive at 
a novel solution that should improve early detection of 
water contamination events and their associated health 
effects. Therefore, this pilot project was initiated to 
explore the feasibility of integrating measured drink-
ing water parameters within an existing operational 
population-based public health syndromic surveillance 
system called the Electronic Surveillance System for 
the Early Notification of Community-based Epidemics 
(ESSENCE).6 The resulting addition to ESSENCE is 
called the Water Security (WS) module. This new appli-
cation utilizes and integrates existing components and 
data elements with water measurement data and imple-
ments data fusion to combine water and health data to 
detect potential water-based health events.

One of the requirements of this prototype is that 
it be useful in routine monitoring as well as detection 
of deliberate contamination events, with the rationale 
being that, although deliberate attacks would be rare 
and catastrophic events, one cannot wait until these 
attacks are imminent or occurring before learning how 
to use the system. Instead, it is best if the system is used 
regularly so that users are familiar with features, limi-
tations, etc. Such a dual-use approach thereby provides 
users with advanced preparation for use during actual or 
suspected bioterrorism events.

The objective of this paper is to provide an overview 
of the APL Water Security project and to illustrate the 
techniques developed for combining water quality and 
population-based health data to monitor for waterborne 
disease outbreaks.

Table 1. D ata derived from biennial CDC reports of disease outbreaks resulting from contaminated drinking water.

Years
Number 
of States

Number 
of out-
breaks

Number  
of ill  

individuals
Number 
of deaths

Outbreak 
size, range 
(median)

Pathogenic 
cause (no. of 
outbreaks)

Chemical 
cause (no. of 
outbreaks)

Cause indeter-
minate (no. of 

outbreaks)
1995−1996 13 22 2567 0 1−1449 

(22)
7 7 8

1997−1998 13 17 2038 0 1−1400 
(10)

10 2 5

1999−2000 25 39 2068 2 2−781 
(13.5)

20 2 17

2001−2002 19 31 1020 7 2−230  
(6)

19 5 7

2003−2004 19 30 2760 4 1−1450 
(7)

17 8 5
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Methods

Water Quality Parameters
Public drinking water may come from reservoirs, sur-

face streams, or underground aquifers, where each source 
has its own water characteristics (e.g., pH, minerals, etc.). 
Water treatment plants then use a variety of different 
technologies to process this source water into drinking 
water. In general, this involves sedimentation, filtration, 
and disinfection. Once the water leaves the treatment 
plant, it may remain in the distribution system for vary-
ing periods of time (e.g., hours to days) depending on 
usage and storage. Therefore, disinfectants such as chlo-
rine or chloramines are typically added to maintain dis-
infection as the water travels and is stored throughout 
the distribution system. If certain levels of disinfectants 
can be maintained within the distribution system, then 
microorganisms may be kept to a minimum.

The water utilities routinely make measurements 
of certain parameters within the distribution system 
in order to monitor drinking water quality. These 
parameters may include water temperature, pressure, 
disinfectant level (e.g., chlorine, chloramines, etc.), pH, 
conductivity, Escherichia coli, total coliform, turbidity, 
and total organic carbon. Not all of these parameters 
are measured by all utilities in their distribution sys-
tems, and the sample measurement rates vary widely. 
Total coliform and E. coli are binary measurements, 
quantified only as present or absent. Other parameters 
are measured quantitatively on an appropriate scale. 
Potential drinking water contamination is most often 
indicated by a drop in the disinfectant level as that 
disinfectant reacts with the contaminant, regardless 
of whether the contaminant is chemical or biologi-
cal. The only measurements of specific contaminants 
are the E. coli and total coliform parameters. Total 
coliforms include multiple species of bacteria that are 
common in the soil and in animal digestive tracts. One 
of the specific species included in total coliforms is E. 
coli, and this species consists of different strains; some 
of these strains can cause significant human disease, 
whereas other strains are innocuous.

Most water utilities rely on grab samples for these 
data. Grab samples are water samples collected from 
specific sites within the distribution system, typically at 
sample frequencies of weekly or less. In addition to the 
grab samples, some utilities have established a limited 
number of automated measuring systems at certain loca-
tions within the pipelines. These automated systems pro-
vide near real-time measurements as often as every few 
minutes. Contamination detection within a distribution 
system is therefore challenging because water data of dif-
ferent types are measured, the data are noisy, most of 
these data are not specific for particular contaminants, 
these data are measured asynchronously and at different 
rates, and there may be many missing data points.

Water Quality Data Preprocessing: Anomaly Detection
Previously, the EPA collaborated with Sandia 

National Laboratories to develop generic water-contam-
inant detection algorithms that employed pattern recog-
nition.7 These algorithms were designed to provide early 
alerts based on automated online water sensor data. 
These ideal data were assumed to be continuously avail-
able, periodic, synchronous sensor measurements with 
no missing data. The pattern recognition approach does 
not incorporate known environmental and operational 
characteristics of the water distribution system and does 
not take into account knowledge of the specific chemi-
cal and physical responses of the measured parameters to 
different types of contamination. Operational and envi-
ronmental responses of the water distribution system 
include cyclical behavior at diurnal, seasonal, and other 
time scales; effects of known aperiodic events (heavy 
rains, large ambient temperature changes, water-main 
breaks) on background levels; effects of human com-
munal water usage on background levels (beyond sea-
sonal effects); and variations among distribution system 
pressure zones, pump cycles, storage tank releases, etc. 
Knowledge of these operational and environmental 
responses is necessary to obtain accurate interpretation 
of real-world data when determining the quality of the 
water within the distribution system. Therefore, APL 
adapted the Sandia algorithms to accommodate the 
way water utilities currently operate (as well as future 
automated measurements) and in a way that takes into 
account the important water parameter behaviors men-
tioned above.

Continuously sampled water data are very noisy, so 
hourly averages are used to smooth the data. The mean 
and standard deviation (SD) are computed for samples in 
the previous 3-day window and are used to convert the 
data into normalized values. Next, a Yule–Walker autore-
gressive model is used to compute a normalized estimate 
for this value. Finally, the difference between the nor-
malized data and the Yule–Walker estimate is compared 
to the threshold for the desired false-alarm rate.

Grab sample water data are processed by using a 
somewhat different technique than for the continuously 
sampled water data. A 7-day window is used, and the 
estimate is computed by subtracting the baseline mean 
from the measured value and dividing by the baseline 
SD. This estimate is then compared to a threshold for 
the desired false-alarm rate. The baseline for compari-
son must be found by using a different approach that 
will now be described. Missing water data and relatively 
infrequent grab sample collection mean that using a 
single grab sample site’s historical data for its baseline 
might not be efficient or representative because one 
would have to use several weeks or months of histori-
cal data for an adequate baseline. One of the challenges 
was the determination of appropriate background base-
line data on which a detection algorithm could be used 
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for comparison for the identification of an anomaly in 
each grab sample site’s data. Figure 1 illustrates the find-
ing by APL that certain sets of water grab sample sen-
sors may have similar properties and therefore may be 
used together to obtain a more complete baseline when 
there are missing data from single sites. Based on tech-
nology previously used in oceanographic analysis,8 APL 
developed a divisive hierarchical clustering algorithm to 
identify grab sample sites that are located in waters with 
similar characteristics (Fig. 1). A modified version of the 
oceanographic algorithm was found to work well when 
it took into account the geographic location of the grab 
sample sites, the distances of these sites from the water 
treatment plants, and the historical disinfectant levels 
(see Results). Therefore, this algorithm was used to iden-
tify clusters of grab sample sites that were then used 
to determine the appropriate baseline against which 
each grab sample measurement in that cluster could be  
compared.

Recall that some water utilities use both grab sample 
and continuous-monitoring sensors to obtain water 
quality data. Because of the differences in data-collec-
tion frequency, as well as common issues such as noisy 
and missing data, further processing of these data was 
performed by using a Bayesian Network (BN) analysis to 

be described later. In the next section, the public health 
data will be described.

Automated Syndromic Surveillance with ESSENCE
An important technology developed for earlier 

detection of disease outbreaks in the community is the 
automated syndromic surveillance system.9 By looking 
for symptoms of illness, these public health surveillance 
systems attempt to identify potential outbreaks or illness 
earlier than through clinical or laboratory diagnosis or 
traditional public health surveillance systems.10 Early 
warning of a possible incident can reduce the potential 
morbidity and mortality of an intentional chemical, bio-
logical, or radiological attack on a community. Specifi-
cally, early detection of water contamination incidents 
has the potential to reduce the extent of contamina-
tion through the distribution system, thereby partially 
mitigating what would undoubtedly impart massive eco-
nomic impacts on the utility, its residential and com-
mercial customers, and the community at large.

Various data sources have been investigated for syn-
dromic surveillance systems,11 including, but not limited 
to, chief complaint data from hospital emergency depart-
ment (ED) admission records. At APL, the ESSENCE 
project has successfully incorporated data from these 
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Figure 1.  Regional differences in weekly disinfectant levels within a distribution system. The geographic information system (GIS) map 
on the right shows the locations of water sample sites. The time-series plots on the left show the disinfectant levels (in milligrams per 
liter) for water sample sites in regions 1−3, respectively. Note that there are larger differences among different regions than within each 
region. WTP, water treatment plant.
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sources into an operational disease surveillance system 
that includes techniques for handling noisy, sparse, miss-
ing, and asynchronously sampled data from disparate 
sources. The ESSENCE project therefore provides an 
existing framework upon which the WS module could 
be added.

Because of differences in data sources among dif-
ferent locations using the ESSENCE system, it was 
decided to develop the initial WS module with hos-
pital ED chief complaint data as the source of health 
data in the prototype because it was commonly used by 
ESSENCE in multiple locations. A chief complaint is a 
brief text description of the major reason expressed by 
the patient for seeking health care from the ED. In addi-
tion, these ED data had to be filtered in order to reveal 
only those data that may be related to a waterborne ill-
ness. Although there are a wide variety of diseases that 
may be related to water contamination, it was decided 
to focus on gastrointestinal (GI) disease. The primary 
reason for this was that there would be GI outbreaks 
that could be observed in the data against which the dis-
ease detection algorithms could be tested. Examples of 
ED chief complaints related to GI disease include nausea 
and vomiting, diarrhea and vomiting, stomach cramps 
and diarrhea, food poisoning, bloody diarrhea, etc. The 
methods for selecting health data that may be related to 
waterborne disease will be described in the subsequent 
section on BN analysis.

BN Analysis
This analysis is performed after the site detection 

and clustering analysis described above and applies 
BN technology.12 In addition to the water data, BN 
technology was used for the public health data and 
for fusing the public health and water data. BNs are 
directed acyclic graphs whose nodes typically represent 
hypotheses that could be true or false based on prob-
ability and the inputs to the nodes. These nodes are 
linked by conditional dependencies that can be based 
on expert and/or evidential reasoning. Therefore, BNs 
can produce probabilities as a degree of belief that an 
anomaly has or has not occurred. By incorporating 
conditional probabilities and linkages among different 
data types and sources, BNs are capable of using his-
torical data and expert knowledge to determine like-

anomaly probability. Therefore, the APL strategy was 
to use algorithm outputs and select preprocessed water 
data as inputs to the BNs in order to keep computa-
tional intensity manageable and scaleable.

The WS module prototype applies BN technology 
using historical data and expert knowledge from public 
health professionals, physicians, and water engineers. 
Three types of BNs are used in the WS module (Fig. 
2). The Water Quality BN takes into account environ-
mental and operational interactions with the water sen-
sors and fuses the water sensor data collected at different 
sample rates. The Water Quality BN examines algo-
rithm outputs for the various water parameters described 
above to test for anomalies in order to provide a degree 
of belief that a water contamination event has or has not 
occurred, based only on the water data.

The examination of population health data (i.e., ED 
chief complaints) for anomalous levels of GI-related ill-
ness potentially caused by waterborne pathogens is per-
formed by the GI Health BN (Fig. 2). This BN selects 
syndromic public health data for consistency with water-
borne illnesses and takes into account expert knowledge 
based on reported cases of confirmed waterborne disease 
outbreaks that have occurred in the past. It does not 
distinguish the specific cause of the disease other than 
the degree of belief that the data are consistent with a 
waterborne disease of some type.

Finally, the Health/Water Quality Fusion BN (Fig. 
2) examines the outputs from these two BNs, as well 
as ancillary preprocessed water data, to determine the 
degree of belief that the water quality anomalies are 
or are not associated with GI illnesses identified in the  
ED data.

Results

Clustering Analysis
The divisive hierarchical water sensor site clustering 

technique described earlier provided a much improved 

Degree of belief that a
waterborne outbreak

is occurring 

Health/
Water Quality

Fusion BN

GI Health
BN

Water
Quality

BN

Syndromic algorithm outputs
selected, filtered health data

external information

Water quality algorithm outputs
selected, filtered health data

external information

Degree of belief that
water supply

is contaminated 

Degree of belief
that a GI outbreak

is underway

Figure 2.  Conceptual scheme of data fusion for waterborne disease event detection.

lihoods of significant anomalies in 
the data. BNs are able to include 
disparate types of evidence13 and 
can account for continuous versus 
discrete data, multiple data rates, 
missing or sparse data, and expert 
or heuristic knowledge. Because 
they contain graphical representa-
tions of conditional dependencies, 
they are transparent enough that 
the user can visualize the basis for 
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baseline for comparing individual 
grab sample site sensors. The left 
column of Table 2 shows how many 
sensor sites are available to provide a 
7-day baseline when no site cluster-
ing is used and no data dropouts are 
allowed. The center column shows 
slight improvement when up to four 
baseline data dropouts are allowed. 
The right column shows the results 
when the divisive hierarchical clus-
tering algorithm is applied. Note in 
this column that now an adequate 
7-day baseline is provided for indi-
vidual sensor anomaly detection 
algorithms to operate for 265 days 
during a year, thereby covering 
most of the weekdays during which 
grab sample measurements are per-
formed. If grab sample data col-
lection frequency were increased, 
this coverage could be further 
improved.

Depending on the water utility 
location, the water quality spatial 
cluster analysis yields on the order 
of five to seven water characteristic 
regions. These clusters enable the 
inclusion of sensors with intermit-
tent data and provide a stable base-
line. As an example of the algorithm 
detection performance achieved for 
Water Quality BN input with this 
stabilization, the measured prob-
ability of detection for transient 
signals was 0.69 (SD = 0.10) at a 
background alert rate of 1 every 190 
days. Because there was no record of 
any actual water contamination in 
the historical water data provided 
by the utility, there was no way to 
know whether a signal in these data 
was an indication of actual contam-
ination. Therefore, there is no bona 
fide measure of a false alert rate, 

so we measure the alert rate when no contamination signal was added and 
designate it a “background alert rate.” Consequently, this background alert 
rate may or may not be a false-positive rate. If we empirically determine a 
detection threshold for a chosen background alert rate, we may then add a 
contamination signal to the data to determine a probability of detection for 
that signal at that alert rate.

Water Quality BN
After data processing by the water anomaly detection algorithms described 

above, BN technology is then used to take into account environmental and 
operational characteristics of the water distribution system, as well as the 
differing data rates (Fig. 3). For example, note that higher temperatures, such 
as those found within the distribution system during the summer months, 
lead to faster evaporation of chlorine gas from the water and therefore a drop 
in chlorine levels. The total chlorine in this figure represents the amount of 
disinfectant added to the water by the utility, and the free chlorine repre-
sents that fraction of disinfectant actually available for reaction to inactivate 
a contaminant. Therefore, a drop in both total and free chlorine may be 
the result of the operational environment rather than a true contamina-

Table 2. R esults of water grab sample site hierarchical clustering to provide baseline.

No clustering, no base-
line dropouts allowed

No clustering, ≤4 base-
line dropouts allowed

Clustering, ≤2 base-
line dropouts allowed

Average no. of usable sites per day 0 0.05 12.24
Maximum no. of usable sites per day 0 3 38
No. of days with at least one usable site per day 0 15 265
The number of grab sample sites available for providing a 7-day window for deriving a baseline over a 1-year period are shown.

Large increases in temperature
also can cause chlorine
measurements to drop

If only free chlorine
drops, contamination

is more likely

Figure 3.  Example of nodes for the Water Quality BN and how environmental and utility 
operational knowledge can be added to the algorithm. WQ, water quality.
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tion event. Because a drop in disinfectant level is the 
primary evidence for a contamination event, it is impor-
tant to take such knowledge into account.

GI Health BN
As mentioned earlier under Methods, the public health 

data were restricted to hospital ED chief complaints for 
this prototype. Filtering was performed in order to retain 
only those ED visits that were consistent with diseases 
that could be waterborne. Because these data are chief 
complaints and not diagnoses, it would be impossible to 
determine from the health data alone whether the chief 
complaints were specifically water-related. For example, 
because water is typically used in cooking, one may not 
readily distinguish a waterborne from a foodborne ill-
ness. To provide some likelihood of whether these ED 
visits represented waterborne illness, an additional BN 
was used to find spatiotemporal correlations among both 
health and water data. This BN is called the Health/
Water Quality Fusion BN and is described below.

Health/Water Quality Fusion BN
As illustrated in Fig. 4, this BN model can be based 

on expert knowledge combined with detailed correla-
tion of relevant cases. The final output (Fig. 5) is pre-
sented as a summary alert webpage showing the outputs 
of the three BNs over the previous several days. Web-
page alert hyperlinks provide the user with maps (Fig. 
5), time series, and other details to help characterize 
the potential outbreak. It is important to note that the 
WS module is a tool for examining large quantities of 
disparate data, and the final decision as to whether a  

waterborne disease outbreak is occurring is the re- 
sponsibility of the public health official.

Conclusions
This article describes the development of a WS module 

for the ESSENCE syndromic surveillance system that 
will undergo its initial beta testing early in 2008. Further 
development of this prototype will ensue based on this 
initial feasibility beta testing. Although the prototype is 
designed for detection of waterborne disease outbreaks 
affecting GI health, the next phase will also involve the 
inclusion of other types of health effects resulting from 
water contamination. For example, chemical and toxin 
contamination may result in neurological and dermato-
logical symptoms. The current prototype was designed 
to be used with water utilities that employ either 
chlorine or chloramines as disinfectants. While this  

Note spike in daily
visits on March 5

Red indicates the date of total
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Figure 4.  Example of how expert knowledge and actual case reports may be used to find correlations in the water and health data. For 
example, knowledge of disease incubation periods may mean that the spike in daily visits is associated with the presence of coliform in 
the water.

Region    Water/Health Fusion       GI Health        Water Quality

Area A
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All

Figure 5.  Examples of user screens showing alert levels and GIS 
maps of sensor locations.



S. M . B ABIN  et  al.

Johns Hopkins APL Technical Digest,  Volume 27, Number 4 (2008)410

prototype will be tested with the participation of two 
water utilities, there are plans for the addition of water 
utilities at other locations with existing syndromic sur-
veillance systems.

The use of water quality data for health monitoring 
must take into account the operational and environmen-
tal characteristics of the water distribution system while 
restricting attention to the health data characteristic of 
waterborne disease. The nested BN approach described 
above (Fig. 2) allows fusion of water information with 
dissimilar population health data to encapsulate both 
engineering and epidemiological expertise.
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