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tilizing the concept that air quality has predictable 

Air Quality Effects on Health-Indicator Data 
in Disease Outbreak Surveillance

impacts on certain disease patterns enables better 
detection of unexpected fluctuations in commu-

nity health trends and thereby enhances earlier detection of disease outbreaks. This 
study illustrates that increases in daily outdoor ozone concentrations are associated 
with quantifiable short-term increases in hospital emergency department visits for 
asthma exacerbations among Medicaid patients, especially among 5–12 year olds. 
Spatial variation in asthma visits did not appear to be completely explained by 
spatial variations either in pollutant level or in Medicaid population. Recognizing air 
quality impacts in health data will enable disease surveillance systems to rule out 
relatively common air quality problems in monitoring for the effects of a bioterror-
ist attack. Routine monitoring of air quality indicators along with the corresponding 
health-indicator effects also can assist in establishing expected ranges for disease 
levels to establish alerting thresholds for disease outbreak surveillance. 

Introduction
Air quality impacts on public health can help explain 

certain seasonal and daily variations in health care data. 
In surveillance for bioterrorist attacks, diseases such as 
asthma may act as confounders because they demon-
strate significant responses to environmental factors. 
Automated disease outbreak detection systems,1 such as 
the Electronic Surveillance System for the Early Noti-
fication of Community-based Epidemics (ESSENCE),2 

collect public health data such as daily hospital emer-
gency department (ED) visits and provide alerts to public 
health officials based on anomalies detected by using a 
variety of statistical algorithms.3 To avoid false alarms or 
the masking of infectious respiratory disease outbreaks, 
it is important to understand how asthma exacerba-
tions present in these community data are related to 
temporal and spatial variation in air quality parameters.  
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Therefore, the motivation for this study is to under-
stand some of the environmentally related components 
of public health data to minimize confounding of the 
alerting algorithms.

The goal of this study was to determine the degree 
to which short-term increases in Medicaid patient hos-
pital emergency room visits for asthma exacerbations 
are associated with high ozone and particulate concen-
trations, taking into account environmental effects of 
pollen, mold, and ambient temperature. The District 
of Columbia Department of Health (DC DOH), under 
a grant from the U.S. Centers for Disease Control 
and Prevention (CDC), established an Environmental 
Public Health Tracking Program to quantify possible 
relationships between ambient air quality and health 
resource usage for asthma exacerbations. As part of this 
task, concentrations of the air pollutants ozone, partic-
ulates of aerodynamic diameter <2.5 mm (PM2.5), and 
particulates of aerodynamic diameter 10 mm (PM10) 
were obtained from measurements taken in DC from 
1994 through 2005 (Table 1). Records of asthma-
related hospital ED visits under the Medicaid program, 
for the period between 1 October 1994 and 22 Novem-
ber 2005, were obtained from the DC DOH and tabu-
lated on a daily basis. For the purposes of this study,  
asthma-related data are defined as those records for 
which an asthma code number was listed in one of the 
first three of nine possible diagnosis fields. These Med-
icaid record diagnosis fields contain numbers based 
on the International Classification of Diseases, Ninth 
Revision (commonly called ICD-9) codes used by hos-
pitals and physicians’ office personnel to report billing 
information to insurance companies and Medicaid.4 
ICD-9 codes may indicate either symptoms or specific 
diseases, and those beginning with 493 indicate an 
asthma diagnosis. Based on discussions with medical 
personnel about ED coding practices among different 
DC hospitals, the criterion of an asthma code in one 
of the first three ED record diagnosis fields was chosen 

as an indication that an asthma exacerbation was a 
principal reason for the visit. Data on daily concentra-
tions of ozone and particulates were then evaluated as 
predictors of increases in these daily asthma-related  
visit counts. 

The U.S. age-adjusted rates of ED visits for asthma 
have risen from 56 to >60 per 10,000 population from 
1992 to 1999.5 Many epidemiological studies have shown 
that increases in ground-level ozone and particulate con-
centrations are associated with increased occurrences of 
acute asthma exacerbations.6–8 However, the relation-
ships between air quality parameters and asthma vary 
among different localities. Some localities (such as DC) 
may have lower particulate levels than those with more 
smokestack industry (such as Baltimore or Philadelphia). 
Furthermore, localities with greater traffic congestion 
tend to have higher ozone levels.

Ground-level ozone is primarily produced photo-
chemically from automobile and power-plant nitrogen 
oxide emissions. Because sunlight causes chemical reac-
tions that result in ozone formation, concentrations are 
typically higher during the summer season, or approxi-
mately May through September in the Northern Hemi-
sphere. Ozone is an oxidizing agent that acts as a respira-
tory tract irritant. Particulates (mixtures of solid particles 
and liquid droplets) small enough to enter the lungs also 
may act as respiratory irritants. Inhalable particulates 
may be produced chemically in the atmosphere from 
reactions with sulfur dioxide, nitrogen oxides, and semi-
volatile organic compounds that are found in gasoline 
and diesel engine exhaust and power-plant emissions. 
Alternatively, these particulates may be emitted directly 
into the atmosphere, as in the case of dust from traffic 
and construction sites. Such particulates include coarse 
particles that range in aerodynamic diameter from 2.5 
to 10 mm and fine particles with aerodynamic diameters 
of 2.5 mm.

In addition to outdoor air pollutants, there are many 
other factors that may influence asthma exacerbations. 

Table 1.  Summary of ozone, PM2.5, and PM10 measurement locations and dates.

EPA Site ID Location Ozone PM2.5 PM10
DC17 West End Neighborhood 

Library
01/01/94 to 06/30/96 None 01/01/94 to 05/30/99, 

01/01/01 to 06/30/01
DC25 Takoma Elementary School 01/01/94 to 12/31/05 None None
DC27 Chevy Chase Neighborhood 

Library
None None 01/01/94 to 05/30/99, 

01/01/01 to 06/30/01
DC41 River Terrace Elementary 

School
01/31/94 to 12/31/05 02/21/99 to 12/31/05 01/01/94 to 12/31/96, 

01/01/98 to 06/28/98, 
04/08/01 to 06/19/01, 
01/01/02 to 12/31/05

DC42 National Park Service, 
Haines Point

None 03/20/99 to 12/31/05 None

DC43 McMillan Reservoir 06/20/94 to 12/31/05 01/15/99 to 12/31/05 None
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Extreme ambient temperatures may result in asthma 
exacerbations in two different ways. High temperatures 
are associated with asthma exacerbation because of the 
increased sunlight-induced ozone production rather 
than as a direct effect of temperature. At the opposite 
temperature extreme, studies have suggested that very 
cold, dry air may act as an airway irritant, resulting in 
asthma exacerbations,9,10 although this effect has been 
documented principally with exercise-induced asthma. 
Additionally, aeroallergens, such as pollen and mold, 
may trigger allergy-induced asthma symptoms. Although 
whole pollen grains are unable to enter the lower respira-
tory system, tiny pieces (~0.6−2.5 mm) of pollen grains, 
called amyloplasts, are small enough to enter and induce 
an asthmatic response.11 Given that neural reflexes con-
nect the nose and lungs, nasal provocation by larger aller-
gens also may result in bronchoconstriction.12 Plants that 
produce allergenic pollen are typically divided into three 
types: trees, weeds, and grasses. In Washington, DC, the 
customary seasons for these pollen types are as follows13:

•	 Tree pollen: February through June
•	 Grass pollen: May through August
•	 Weed pollen: July through October

The beginning, peak, end, and severity of these pollen 
seasons are influenced by preseason weather, diurnal 
cycle fluctuations, and land use.14–16 Airborne pollen 
concentration and size fluctuate as plants respond to 
current weather conditions. Whole pollen particles pro-
duced by trees, weeds, and grasses can be dispersed up 
to 400 miles in windy, warm, and low-humidity condi-
tions.14,17 When humidity increases, plants may close 
their anthers to prevent pollen grains from being washed 
away by precipitation.11 However, heavy thunderstorms 
may fracture grass pollen into amyloplasts even while 
contained within the closed anther.11 Amyloplasts are 
then dispersed into the air when the anther reopens as 
a result of decreasing relative humidity after the thun-

in DC is shared equally by local and federal governments. 
The DC government has been expanding Medicaid eligi-
bility for certain segments of the population over the last 
few years. In 2003, eligibility for the Medicaid program 
was extended to childless adults ages 50–64 who earn up 
to 50% of the U.S. federal poverty level. Over the last 
few years, there has also been a shift in Medicaid services 
from institutional-based to managed care and home- and 
community-based programs.

Methods 

Data Characterization
The DC DOH provided air quality data measured 

at different locations within DC in the form of hourly 
concentrations of ozone in parts per million (ppm) and 
daily concentrations of PM2.5 and PM10 in mg/m3. The 
hourly ozone data were converted into daily averages by 
using standard 8-h daily maximum ozone conversion 
calculations from the U.S. Environmental Protection 
Agency (EPA). The PM2.5 and PM10 data were already 
in the form of daily averages. Table 1 lists the sites, the 
air pollutants measured, and the date ranges in which 
measurements were made. Table 2 shows how daily con-
centrations are correlated with health effects according 
to the EPA’s air quality index as indicated by color codes. 
The colors toward the bottom of the table correlate with 
progressively worse effects on respiratory health. There 
was a relative lack of significant spatial variation in pol-
lutant values (Fig. 1) among measurement sites (Fig. 2) 
during the time period of the study, consistent with the 
primary source being exhaust from vehicular traffic that 
is almost uniformly congested within the relatively com-
pact 159-km2 land area of DC. Because of this lack of 
spatial variation and because there were commonly days 
in which one or more of the sites had missing data, it 
was decided to use the maximum daily concentration of 

Table 2. E PA air quality index code colors and pollutant concentrations.

Code Color Ozone (ppm) PM2.5 (µg/m3) PM10 (µg/m3)
Green 0 0 0

0.064 15.4 54.9
Yellow 0.065 15.5 55

0.084 40.4 154.9
Orange 0.085 40.5 155

0.104 65.4 254.9
Red 0.105 65.5 255

0.124 150.4 354.9
Purple 0.125 150.5 355

0.374 250.4 424.9
Maroon >0.374 >250.4 >424.9

derstorm.17 Airborne pollen con-
centrations will not increase after 
rainstorms until plants reopen 
their anthers when the humidity 
decreases.18

Some recent studies have noted 
that, compared with those with pri-
vate insurance, Medicaid enrollees 
have higher risks of respiratory hospi-
talizations from increases in ambient 
air pollution.8,19 Medicaid, a locally 
administered and federally assisted 
program, pays for the health care of 
pregnant women, low-income fami-
lies with children, permanently dis-
abled individuals, and elderly indi-
viduals who cannot pay all of their 
medical costs. The cost of Medicaid 
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each pollutant across the measurement sites to represent 
that pollutant’s daily value. This approach thereby elim-
inated problems attributable to missing measurements. 
The maximum daily pollutant concentrations typically 
occurred during the summer months (June through 
August), similar to variations found in other studies. 

Pollen and mold counts (in units of grains and spores 
m−3, respectively) for Washington, DC, were collected at 
a single location within DC and were provided by the 
Department of Allergy and Immunology at the Walter 
Reed Army Medical Center. Pollen and mold counts 
are gathered by using a Rotorod Sampler and a Bur-
khard Spore Trap over a 24-hour period. Samples are  
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Figure 1. Weekly average ozone concentrations among different measurement sites (see also Table 1 and Fig. 2) within DC.
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Figure 2. Map of DC showing ward boundaries (ward numbers are 
in red) as well as locations of weather measurements (green star), 
pollen and mold measurements (red circle), and air pollutant mea-
surements (blue triangles).

collected at least 3 days per week, as directed by the 
National Allergy Bureau of the American Acad-
emy of Allergy, Asthma, and Immunology, usually 
from Sunday through Thursday. Pollen and mold 
data were available for the years 1998–2005. Daily 
weather data measured at Reagan National Airport 
in DC for the years 1994–2005 were obtained from 
the U.S. National Climatic Data Center. Figure 2 

U.S. state, and DC is divided into eight wards. Medicaid 
enrollee numbers also were provided by the DC DOH, 
but these data were available only by ward, so a ward-
based denominator was used to determine ED visit rates. 
When daily counts of ED visits were calculated for use in 
the analysis, multiple records for the same patient on the 
same day of service were counted as a single visit. From 
analysis of these data using census population figures, 
the Medicaid patient age group with the highest rate 
for asthma-related ED visits was the 50- to 64-year-old 
group, followed by the 0- to 4-year-old group, and then 
the 21- to 49-year-old group (Fig. 3). The daily number 
of visits was observed to be highly variable over time, 
with the highest ED visit rates occurring before 1998 
and a significant decrease after 1997. When these ED 
visit rates were stratified by age group (Fig. 3), it was seen 
that these changes in rates were predominantly in chil-
dren. This post-1997 drop appears to result from imple-
mentation of the State Children’s Health Insurance Pro-
gram (SCHIP, authorized under U.S. Title XXI of the 
Balanced Budget Act of 1997 for all states and DC to 
provide health insurance to eligible uninsured children). 
This program reduced the number of Medicaid-billed 

shows the locations of the measurement sites.
Records of Medicaid patient daily 
asthma-related hospital ED visits of DC 

residents were made anonymous and 
provided by the DC DOH. The record 

fields included patient age, ZIP code of resi-
dence, date of visit, and ward of residence. A 

ward in DC is somewhat analogous to a county in a 
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services by providing more primary health care coverage 
for children. The implementation of SCHIP would be 
expected to reduce the number of children using the ED 
for primary care. After 1997, the years with the highest 
rates of asthma-related ED visits were 2003 and 2004, 
while 2000 and 2001 had the lowest rates.

The Medicaid data generally had two annual peaks 
in asthma-related ED visits: the highest peak in the fall 
(September to December) and the second-highest peak 
in late spring (May). Because peaks in ozone, PM2.5, 
and PM10 occurred in June through August, the peaks 
in Medicaid patient asthma data did not correspond 
to peaks in the air-pollutant concentrations. This lack 
of agreement between peak dates does not mean that 
there is no short-term relationship between increases in 
air-pollutant levels and asthma exacerbations because 
strong seasonal effects associated with other factors20 
obscure this relationship. For example, there is ample 
biological and statistical evidence (e.g., see the review 
by Gern and Busse21) that asthma attacks are triggered 
by the respiratory viral infections that occur during the 
autumn cold season. Air quality effects on asthma exac-
erbations are difficult to discern because of masking by 
these seasonal effects over long time scales. 

Therefore, we used a long-term trend curve-fitting 
approach22–24 to control both for strong seasonal varia-
tions in asthma-related health care visits and for tem-
poral variations in Medicaid enrollment, so that the  

short-term impacts of ozone, PM2.5, and PM10 con-
centrations might be revealed. We examined several 
techniques for controlling for known confounders such 
as day-of-week effect, Medicaid eligibility changes, and 
seasonal effects. Different covariates were used to model 
these longer-term variations. Because the asthma data 
for the 5- to 12-year-old age group showed all of the 
long-term effects most clearly (Fig. 4), data from this age 
group were used as the basis of the modeling efforts to 
control for confounding.

Statistical Methods
After collecting all of the above data and creating a 

database in an integrative statistical software package,25 
we classified each variable as either an independent vari-
able or a dependent variable. Concentrations of tree 
pollen, grass pollen, weed pollen, mold spores, ozone, 
PM2.5, and PM10; maximum and minimum daily tem-
perature; and daily average dew point temperature were 
categorized as independent variables. For the dependent 
variables, ED daily visit counts were further tabulated by 
the following age groups based on the patient’s age on the 
visit date: 0–4 years, 5–12 years, 13–20 years, 21–49 years, 
50–64 years, >65 years, and all ages combined. Based on 
similar previous studies,22,23 we chose a Poisson regres-
sion analysis to seek associations of asthma-related visits 
with the environmental data. This regression assumes 
that counts of independent, rare events follow a Poisson 
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Figure 3. Asthma-related ED visit rates for Medicaid patients by age group and year.
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distribution and that the logarithm of daily visit counts is 
a linear function of the explanatory variables.

Before this Poisson analysis could be applied, the lon-
ger-term effects mentioned previously had to be taken 
into account in order for the shorter-term air quality 
effects to be revealed. Several data-fitting approaches 
were tried. One approach was to fit the data by using a 
cubic spline24,26 with the spline knot (i.e., turning point) 
dates chosen from the most significant long-term turning 
points in data for the 5- to 12-year-old age group (Fig. 4). 
The selection of turning-point dates reflected both year-
to-year variation in long-term health trends and signifi-
cant Medicaid eligibility changes, so that not every year 
had the same number of knots nor were the knots evenly 
spaced in time. Using this cubic spline approach meant 
that the same knots were used for curve fitting regard-
less of which variables were being compared in the  
Poisson regression.

Another approach was to use a set of linear spline 
functions (with each linear spline section fitted to data 
between two knots) to create new variables that served 
to create continuous functions of time (i.e., date). These 
continuous functions of time were different depending 
on which variables were being compared in the Pois-
son regression because the actual data fitting was done 
for each regression. Once selected, the knots for these 
splines were kept constant for all regressions using 

the corresponding variables. By using the turning-
point dates derived for the 5- to 12-year-old age group 
described above, 68 knots were chosen to create a set of 
69 variables for the continuous functions of time (i.e., 
date) used in the custom spline covariate. Using this 
approach meant a refitting of long-term effects for each 
analysis relative to the specific daily visit counts and risk 
factors analyzed.

To decide objectively the best approach to modeling 
long-term data trends, we applied McFadden’s R2 and 
the Bayesian Information Criterion (BIC) to residuals 
obtained by using the different modeling approaches. 
The McFadden’s R2 statistic is a nonlinear generaliza-
tion of the R2 goodness-of-fit statistic of ordinary least-
squares regression, and this statistic is similarly measured 
on a scale from 0 to 1, with a value near 1 indicating 
a good fit. The BIC, also called the Schwarz’s Bayesian 
criterion,27 provides another relative measure of good-
ness-of-fit but also takes into account the complexity of 
the model. The BIC is a large negative number, and the 
farther it is from zero, the better the model fit, with a 
bias toward simpler models. The BIC is used to deter-
mine when additional model complexity is not justified 
by corresponding improvement in the capability of the 
model to explain the data. Based on these two objective 
criteria, the least complicated model that best fits the 
data was chosen. The chosen model was a linear spline/
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Figure 4. Weekly Medicaid patient asthma-related ED visits for 5- to 12-year-old patients. The dates of major turning points in the plot 
were used to create the knots used in fitting the spline curves.
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continuous time approach that took into account day-
of-week effects. Therefore, these covariates were used 
to remove known confounding effects for the remain-
der of the analysis. This approach generates a different 
modeled function of time as a baseline for each analy-
sis, depending on the variables being compared in the 
Poisson regression. Note that each analysis is performed 
separately, with no statistical combining of the results.

Results 
For same-day effects (i.e., no time lag in days between 

increases in air quality risk factors and in daily ED 
visits), we determined the statistically significant asso-
ciations among the various risk factors (ozone, PM2.5, 
PM10, tree pollen, grass pollen, weed pollen, mold, tem-
perature, dew point). No statistically significant effects of 
dew point were observed except that dew point appeared 
to be negatively correlated with pollen, consistent with 
the studies described earlier.11,18 Furthermore, when all 
seasons and all age groups were combined, no statisti-
cally significant associations with the above risk factors  
were found.

As noted earlier, the spring and summer months typi-
cally had the highest daily values of ozone, PM2.5, and 
PM10, and these months also have the lowest incidence 
of viral respiratory infections, an important risk factor 
unavailable in our data. When only spring and summer 
seasons were examined, statistically significant relation-
ships were found, but only for the 5- to 12-year-old age 
group. The results are shown in Table 3. The first column 
is the risk factor (e.g., ozone), and the second column is 
the reference unit of increase in this risk factor, based 
on the data scale and EPA risk levels (Table 2). These 
reference units were used to calculate the mean percent-
age change in the daily ED visits per unit change in the 
risk factor (column three). The third column also par-
enthetically lists the upper and lower 95% confidence 
limits for the percentage change. Column four lists the 

Table 3. R esults for asthma-related ED visits for 5- to 12-year-old Medicaid patients, spring and summer seasons 
only (95% confidence interval is given in parentheses).

Risk factor Unit of increment

Mean % change in daily 
visits per unit of increment 
(95% confidence interval)

Student’s t test  
P value

Ozone 0.01 ppm 4.6 (0.9, 8.4) 0.015

PM2.5 1 mg m−3 −0.2 (−1.3, 0.9) 0.733

PM10 1 mg m−3 −0.1 (−1.4, 1.2) 0.885

Grass pollen 10 grains m−3 0.8 (−0.2, 1.8) 0.112

Tree pollen 100 grains m−3 2.4 (−0.5, 5.4) 0.111

Weed pollen 10 grains m−3 7.1 (−6.5, 22.6) 0.323

Mold 1000 spores m−3 −0.8 (−4.8, 3.4) 0.704

P values from Student’s t test, with values ≤0.05 repre-
senting a statistically significant relationship (95% prob-
ability of null hypothesis rejection). It is important to 
note both the P value and the sign and magnitude of the 
mean percentage change in daily visits per unit change 
in risk factor. While a P value may be low and therefore 
significant, the percentage change in daily visits may 
be almost zero or even slightly negative. We considered 
these results to show a significant positive association 
when both the percentage change in daily visits was 
relatively large (e.g., a few percent) for a unit risk factor 
increase and the P value was significant. From Table 3, 
a 0.01-ppm increase in ozone was associated with a 4.6% 
increase in the number of asthma-related ED visits by 
Medicaid patients in the 5- to 12-year-old age group.

We also investigated associations between counts of 
asthma-related Medicaid visits by residents of particular 
wards (see Fig. 2 for ward boundaries) and the ambient 
ozone, PM2.5, and PM10 concentrations. Ward-specific 
associations may be weaker than district-wide ones 
because of the fewer number of patients. In this par-
tially ecological study, it was impossible to determine 
whether individuals with pollutant exposure were the 
same people seeking care for asthma exacerbations, so 
there were other possible factors involved in ward-spe-
cific associations. Note in Fig. 5 that Ward 8 has the 
highest Medicaid enrollment, followed by Wards 7, 2, 
5, 6, etc., and that these enrollment differences among 
wards can be large. Ward-specific associations also may 
be confounded by the presence of homeless populations 
and the presence of long-term care facilities such as hos-
pices and nursing homes. Ward 6 had the highest rates 
of asthma-related ED visits for all years combined (Fig. 
6). When individual years were examined, Ward 6 had 
the highest rates except for 1996–1997, when Ward 8 
surpassed those rates. It should be noted that Ward 6 
contains some large homeless shelters with many Medic-
aid enrollees. Wards 2 and 3 had the lowest rates of ED 
visits for all years.
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Medicaid Enrollees by Ward and Year
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Figure 5. Annual numbers of Medicaid enrollees by ward.

In addition, lagged effects were examined. When 
asthma-related ED visits were lagged behind ozone, 
PM2.5, and PM10 levels by 1–7 days, no statistically 
significant associations were found with any of the  
covariates. 

Conclusions
We examined daily time series of Medicaid patient 

asthma-related ED visits from October 1994 through 
November 2005 for DC residents. Associations of these 
data with environmental variables were tested for vari-
ous age groups. The environmental variables included 
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Figure 6. Map of DC showing asthma-related Medicaid patient ED visit rates (visits divided 
by Medicaid enrollment of ward residents) over all of the years of the study. Wards are 
indicated by red boundaries and white numbers.

ozone, PM2.5, and PM10 measure-
ments, as well as aeroallergen and  
weather measurements. 

When all seasons were consid-
ered together for the entire DC 
area, we found no significant ozone 
or particulate associations with the 
Medicaid patient asthma-related 
ED visits. A plausible explanation 
for this finding is that other risk fac-
tors mask environmental effects so 
completely that only an individual-
based case control or longitudinal 
study with appropriate statistical 
power could extract associations of 
air quality effects. 

When we examined ozone effects 
only during the spring and summer 
seasons, we found statistically signif-
icant associations with daily asthma-

related ED visits only for the 5- to 12-year-old age group 
and only with daily ozone concentrations. The 5- to 
12-year-old age group showed that a 0.01-ppm daily ozone 
concentration increase was significantly correlated with a 
4.6% increase in daily ED visits.

Because there is significant variation in Medicaid 
enrollment (Fig. 5), and therefore in socioeconomic 
status by ward within DC, we also examined air quality 
effects by ward on asthma-related ED visits by Medicaid 
patients. While Ward 8 always had higher numbers of 
Medicaid enrollees, Ward 6 showed the largest rate of 
asthma-related ED visits over the study period (Fig. 6). 
This result may be attributable, at least in part, to the 
presence of large homeless shelters in Ward 6.	

For DC, spatial variation in daily air quality measure-
ments among different locations did not appear to be 
significant for the years of this study. Also, during the 
study period, daily PM10 never reached EPA Code Red 
levels (Table 2), and we found no statistically significant 
association between PM10 and Medicaid patient asthma-

related ED visits. Daily PM2.5 con-
centrations reached EPA Code Red 
levels for 3 days during this same 
period. The 8-hour daily maximum 
ozone concentrations reached EPA 
Code Red levels (Table 2) for 21 days 
during the 134-month study period. 
During this period, the facts that 
particulate levels were not very high 
and that ozone was the most frequent 
high-level pollutant suggest why we 
only found significant associations  
with ozone.

Several additional limitations of 
this study should be noted. Because 
of the lack of any capability to track 
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individual exposures in these data, investigation was lim-
ited to a partially ecological study with no confirmation 
that patients represented by the hospital visit records 
were outside on days when the measured air quality was 
low. Thus, patient-based odds ratios estimating relative 
risks could not be calculated by comparing, for example, 
visit rates of asthma patients exposed to the effects of air 
pollution with rates of unexposed patients. The patient 
database included only Medicaid patients who had an 
asthma ICD-9 code listed in one of the first three diag-
nosis fields in their Medicaid records. Because our sample 
included only Medicaid patients, it represents a specific 
population with potentially unique characteristics, such 
as level of exposure to outdoor and indoor air quality, 
health-seeking behavior, and susceptibility to asthma. 
Therefore, our findings should not be generalized to 
represent the entire population. Medicaid eligibility and 
enrollment varied considerably during the 134-month 
period of this study (Fig. 5). The ozone, PM2.5, and 
PM10 data were measured at only three stations within 
DC during the study period, thereby limiting the spatial 
resolution of outdoor air quality. The available weather 
data were measured only at a single location, so spatial 
variations could not be analyzed. 

Our data consisted only of asthma-related visits by 
Medicaid enrollees, and the Medicaid program is tar-
geted toward those with lower-than-average socioeco-
nomic status. Although some studies have suggested 
that asthma prevalence is higher among those of low 
socioeconomic status,28 there are conflicting reports in 
the literature (see the review by Rona29). Finkelstein 
et al.30 concluded that underuse of asthma-controlling 
medications among Medicaid-insured children is wide-
spread. It is possible that, in general, the DC Medicaid 
population similarly undercontrols their asthma and 
postpones seeking treatment of asthma-related symp-
toms until they become relatively serious. Although this 
partially ecological study has the limitations described 
above, these results should be useful in hypothesis gen-
eration and designing future individual-based, epidemio-
logical cross-sectional and case-control studies aimed at 
refinement of program interventions. From the broader 
health surveillance perspective, knowledge of the spa-
tiotemporal variations in daily asthma-related ED visits 
should be useful to public health surveillance programs 
designed to target infectious disease outbreaks or bioter-
rorist attacks.
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