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O
An Automated Target Detection System for 
Hyperspectral Imaging Sensors

Marc A. Kolodner

ver the past several years, hyperspectral sensor technology 
has evolved to the point where real-time processing for opera-

tional applications is achievable.  Algorithms supporting such sen-
sors must be fully automated and robust. Our approach for target detection applications 
is to select signatures from a database of target reflectance libraries and project them 
to the at-sensor and collection-specific radiance domain using the weather forecast or 
radiosonde data. This enables platform-based detection immediately following data 
acquisition without the need for further atmospheric compensation. One advantage 
of this method for reflective hyperspectral sensors is the ability to predict the radiance 
signatures of targets under multiple illumination conditions. A three-phase approach 
is implemented, where the library generation and data acquisition phases provide the 
necessary input for the automated detection phase. In addition to employing the target 
detector itself, this final phase includes a series of automated filters, adaptive threshold-
ing, and confidence assignments to extract the optimal information from the detection 
scores for each spectral class. Our prototype software is applied to 50 reflective hyper-
spectral datacubes to measure detection performance over a range of targets, back-
grounds, and environmental conditions.

INTRODUCTION
Timely detection of targets continues to be a top pri-

ority for a hyperspectra1 remote sensing capability. A 
hyperspectral imaging (HSI) sensor measures the radi-
ance emanating from each pixel in a scene at multiple  

wavelengths, creating a datacube of the scene. A 
“target” for this discussion is any material surface within 
an imaged scene to be detected. The targets, if pres-
ent, are generally rare in the image and fall into two  



HYPERSPECTRAL IMAGING

Johns Hopkins APL Technical Digest,  Volume 27, Number 3 (2007) 209

categories, resolved targets (RTs) and subpixel targets 
(SPTs). Although many novel detection algorithms1–3 
have been developed for RTs and SPTs, several current 
efforts4–6 are focusing on the automation of HSI detection 
processing for operational use. Examples include search 
and rescue, emergency response (e.g., recovery of shuttle 
parts following the Columbia tragedy), and first responder 
support to natural disasters (e.g., detection of toxic spills 
following Hurricane Katrina). Sensor platforms that tra-
ditionally flew with only an HSI sensor and onboard data 
storage now include a real-time processor that can pro-
duce quick turnaround products from the data. Control-
lers operating from a ground station task these platforms 
to collect HSI data over a particular area of interest and 
provide detection results for specific targets of interest. 
This article describes a prototype software system to sup-
port this emerging capability, including performance of 
the system for both RT and SPT detection.

A flowchart of our Target Detection System is pre-
sented in Fig. 1. The three phases of this system to be 
discussed here are library generation, data acquisition, 
and automated detection. The prototype software is 
controlled by a graphical user interface that simulates 
the entire process, i.e., planning an operation, select-
ing targets of interest, tasking the sensor to collect data, 
calibrating the collected data if necessary, performing 
the detection processing, and downloading and visual-
izing the results.

LIBRARY GENERATION PHASE
The objective of the library generation phase is to pro-

duce a suite of at-sensor and collection-specific radiance 
libraries in the planning stage of an operation. These 
libraries will subsequently be matched against the col-
lected data. Each planned collection will have its own 
unique set of libraries. The software for this phase can 
be installed in the platform ground control station to 
support sensor tasking. This section describes the inputs 
and method.

Collection and Sensor Specifications
The data collection specifications include the sensor 

platform location (latitude and longitude), altitude, 
and collection time. The sensor specifications consist 
of the number of spectral bands, the wavelengths, and 
the FWHMs (full widths at half maximum) to provide 
a custom sensor model, as well as the sensor-to-target 
area viewing geometry (zenith angle and azimuth  
angle). Radiance spectral libraries have been pro-
duced for several nadir-viewing visible/near-IR/short-
wave-IR (VIS/NIR/SWIR) HSI sensors. These include 
the Advanced Visible and IR Imaging Spectrometer 
(AVIRIS),7 the Hyperspectral Digital Imagery Col-
lection Experiment (HYDICE),8 and the Compact 
Airborne Spectral Sensor (COMPASS).9 While both 
nadir-viewing and off-nadir–viewing sensors are sup-

Figure 1.  Three-phase HSI Target Detection System.

ported, our modeling currently 
does not account for adjacency 
effects or a surface’s full bidirec-
tional reflectance distribution 
function. These effects could be 
added if needed for an extreme 
off-nadir–viewing sensor. In 
addition, the generation of tar-
get signatures for longwave-IR 
(LWIR) sensors such as the 
Spatially Enhanced Broadband 
Array Spectrograph System 
(SEBASS)10 is also possible. 
Although our work has focused 
principally on the VIS/NIR/
SWIR spectral regime for mate-
rial surface detection, augmen-
tation of our modeling approach 
for LWIR sensors is briefly  
discussed.

Signature Specifications
The material surfaces to be 

detected are represented by their 
spectral reflectance. Spectral data 
for several materials are collect-
ed under controlled conditions 
in a laboratory. In many cases,  
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spectrometers are taken directly into the field to measure 
surface reflectance. A number of standard reflectance 
libraries are included with the ENVI (Environment for 
Visualizing Images) software package.11 They include 
natural categories such as minerals, rocks, soils, vegeta-
tion, water, and snow as well as manmade materials such 
as galvanized steel, concrete, asphalt, brick, wood, tiles, 
paints, and metals. Their spectral bands cover 0.4–2.5 
mm in the VIS/NIR/SWIR and 6–14 mm in the LWIR.

Environmental Specifications
The intervening atmosphere between the Sun and the 

target, as well as the target and sensor, is characterized 
through incorporation of weather forecast data. Over 
the past 30 years, substantial improvements have been 
made in both short- and long-term weather forecasting. 
Weather satellite platforms provide a continuous stream 
of global weather data for civilian applications. Advances 
in climatological models and the assimilation of model 
and satellite data (called analyses) have also enabled 
more accurate forecasts. There are several weather oper-
ations centers throughout the world, such as the Air 
Force Weather Agency (AFWA), that produce weather 
forecasts in real time for users. The AFWA uses the 
fifth-generation Mesoscale Model (MM5)12 to forecast 
the state of the atmosphere at a given location for up to  
72 h after the time of analysis (or nowcast) in 3-h incre-
ments. An updated nowcast is available every 6 h. By 
contrast, radiosondes are typically launched only twice 
a day. The AFWA provides MM5 gridded weather data 
over 15 theater areas around the world, with spatial reso-
lution ranging from 45 to 15 km.

Our prototype software, through a data pipe estab-
lished with the AFWA, extracts the following surface 
and atmospheric parameters for each MM5 grid point 
over an area of interest: surface elevation, surface visibil-
ity, surface wind speed, terrain type, precipitation type 
(if any), geopotential height profile, temperature pro-
file, and relative humidity profile. The weather profiles 
are provided in pressure levels from the ground up to  
5 kPa (20.6 km above sea level). The weather data for a 
specific grid point are selected graphically by the user. 
Alternatively, when MM5 data (e.g., historical data 
collections) are not available, radiosonde data can be 
read in from the NOAA Forecast Systems Laboratory’s 
Radiosonde Database.13 All of the above required data 
are provided in the radiosonde weather data files except 
for visibility, terrain type, and precipitation type, which 
can be supplied by other sources.

Radiative Transfer Modeling
We use the Air Force Research Laboratory’s Radiative 

Transfer Code MODTRAN414 to generate the radiance 
spectra based on collection, sensor, signature, and envi-
ronmental specifications. MODTRAN4 also provides 

climatological parameters such as ozone and aerosol pro-
files, which are not present in the MM5 or radiosonde 
weather data. For the radiosondes, MODTRAN4 can 
also estimate the surface visibility based on surface wind 
speed for both the sea and barren terrain types. Clouds 
are present when there is supersaturation, detected 
when the relative humidity is 100%. The type of cloud 
(e.g., cumulus, stratus, cirrus) is determined by the cloud 
height and thickness. MODTRAN4 then provides the 
density structure for each cloud type.

Shade Characterization
One of the many advantages of this library generation 

approach is the ability to predict the radiance signatures 
of targets under multiple illumination conditions. In 
the VIS/NIR/SWIR, the total at-sensor radiance Ltotal 
at wavelength  of a target with diffuse reflectance r() 
can be modeled as a linear combination of three terms, 
assuming negligible adjacency effects:

Ltotal(, r) = Ldirect(, r) + Lindirect(, r) + Lscattered() ,	 (1)

where Ldirect is the radiance due to direct solar illumina-
tion, Lindirect is the radiance due to indirect downwelled 
scattered solar illumination (i.e., the sky shine), and 
Lscattered is the radiance due to upwelled, scattered solar 
illumination that is independent of the target reflec-
tance. MODTRAN4 provides the spectra of both Ltotal 
and Ldirect for a given target with reflectance r. The radi-
ance spectra of a target under full Sun Lfull-Sun  equals 
Ltotal, and the radiance spectra of a target under full 
shade Lfull-shade equals the sum of Lindirect and Lscattered. 
Thus, using Eq. 1,

  Lfull-Sun = Ltotal 
Lfull-shade = Ltotal 2 Ldirect  .		  (2)

The radiance spectra of a target under partial shade 
Lpartial is modeled as a linear combination of the full 
Sun and full shade cases:

	 Lpartial = aLfull-Sun 1 (1 2 a)Lfull-shade  ,	 (3)

where a is the percentage of full-Sun illumination on a 
target, ranging from 0 to 1. For each target reflectance, 
we provide the at-sensor radiance spectra for five illumi-
nation conditions, namely, full Sun (a  = 1), full shade 
(a  = 0), and three partial shade cases (a  = 0.25, 0.50,  
and 0.75).

As an example of the differences between a  = 1 and 
a  = 0 cases, Fig. 2 plots the VIS/NIR/SWIR radiance 
spectra of a particular green-painted surface modeled 
under full Sun and full shade from a nadir-viewing HSI 
sensor at a 10-km altitude with a solar elevation of 30°. 
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Note that the paint spectra exhibit the well-known 
“red-edge”’ increase in the NIR due to its chlorophyll 
content. In addition to the reduction in amplitude of 
the surface’s radiance under full shade, there is a spec-
tral shift toward the blue in the VIS portion of the spec-
trum due to the dominance of the Raleigh scattered sky 
shine. The result of this characterization is an illumina-
tion invariant set of target radiance libraries. For LWIR 
sensors, the reflective terms in Eq. 1 are replaced with 
the appropriate self-emitting thermal terms. Instead of 
producing a target’s radiance spectra under multiple 
illumination conditions, the at-sensor spectra are deter-
mined for a range of surface temperatures relative to 
ambient.

Normalization Procedure
Procedures facilitating “spectral shape matching 

only,” such as normalization, can be extremely valuable 
under many circumstances. For RT detection, in gen-
eral, the radiance spectra L() are normalized to unity 
amplitude as follows:

	
   

L(�)norm =
L(�)

L(�)TL(�)
=

L(�)

L
. 	 (4)

This is performed on each of the libraries in the library 
generation phase and on every pixel in the HSI data-
cube in the data acquisition phase, as shown in Fig. 1. 
The normalization procedure is a well-known method 
to facilitate spectral shape matching only between 
spectral libraries and HSI data. The common spectral 
angle mapper classifier performs this inherently. The 
absolute amplitudes are not considered as they generally 
have higher uncertainty than their spectral shapes or  

their amplitudes. 
Approaches using both “amplitude and spectral shape 

matching” are also preferred for HSI sensors with a mini-
mal number of high signal to noise ratio (SNR) bands and 
thus limited spectral shape information. Finally, these 
approaches are advantageous for HSI scenes exhibiting a 
significant number of background pixels with amplitudes 
vastly different than the target library spectra. Thus, a 
decision point is added regarding whether or not to nor-
malize the spectral data and libraries, as indicated in Fig. 
1, based on the target resolution as well as the state of the 
HSI sensor and scene to be imaged. The resulting target 
radiance libraries are read into the automated detection 
processor.

DATA ACQUISITION PHASE
The data acquisition phase simulates the process of 

the data being acquired by the HSI sensor through selec-
tion by the user of a particular datacube with known 
sensor specifications. The raw datacube can be calibrated 
in both amplitude and spectral shape, either through 
onboard calibration techniques or by the process called 
vicarious calibration. The latter approach is often used 
on sensors where the calibration is not well understood 
or is not stable throughout a data collection. It consists 
of repeating the library generation phase for a reference 
on the ground where accurate reflectance measurements 
exist. The reference could be a calibration panel or a 
very uniform background area such as a dry lake bed 
or a crop field. The library generator predicts what a 
calibrated HSI sensor would measure when imaging the 
reference. By comparing the predicted radiance spectra 
with the measured spectra over the reference, gain coef-
ficients are derived and used to vicariously calibrate the 
HSI sensor data.

Figure 2.  The radiance spectra from 400 to 2400 nm of a green-painted surface under 
full Sun (a  = 1) and full shade (a  = 0) from a nadir-viewing HSI sensor at a 10-km alti-
tude with a 30° solar elevation.      

band-to-band changes. These uncer-
tainties arise from absolute calibration 
errors of the sensor and/or errors in the 
intensities of the reflectance measure-
ments that are propagated during the 
reflectance-to-radiance conversion. 
Although the sensor errors can be 
corrected with “vicarious calibration” 
(see the next section), the reflectance 
errors, if present, cannot.

The normalization procedure, 
though, should not be used for SPT 
detection where the datacube contains 
mixed pixels or pixels that are a combi-
nation of target and background mate-
rial. Cross terms from normalization 
of the mixed pixel spectra cause errors 
when matching the normalized target 
radiance libraries to the normalized 
mixed pixel spectra. These errors are, 
in general, greater than any errors in 
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The measurements of the target reflectances, unlike 
the well-known reference, may contain uncertainties in 
their absolute amplitudes that, when converted to spec-
tral radiance, could affect the target’s detectability in 
the HSI data. Thus, as the final step, the normalization 
procedure is conducted on each pixel in the datacube 
when appropriate for RT detection as discussed in the 
previous section. The resulting calibrated data are then 
read into the automated detection processor.

AUTOMATED DETECTION PHASE
The automated detection phase provides a sequence 

of steps, first to match the radiance library spectra to 
the calibrated hyperspectral datacube and then to 
extract the optimal information from the resulting 
detection score images. The number of library spectra 
equals the number of target types, multiplied by the 
number of illumination (or temperature) conditions. 
This is referred to as the total number of classes that 
enter the detection processor. Other input parame-
ters for this phase are read in from an ASCII control 
file. This section discusses each step of the detection  
processor.

Adaptive Matched Filter
The process begins with the application of the adap-

tive matched filter (MF). For all pixels x in the datacube, 
the MF score is computed as follows:

	

  

MFSCORE =
(LT − LM)T (X − LM)−1∑

(LT − LM)T (LT − LM)−1∑
, 	 (5)

where 

	 LT = the target radiance or class spectra, 
	 LM = the mean spectra of the datacube, 
	 X = the image spectra at pixel x, and 
	 ∑ = the datacube covariance matrix.2 

The MF uses the datacube statistics to both suppress 
the background and enhance the target SNR. The filter 
assumes that the target spectra in the image are rare, i.e., 
the datacube statistics (mean plus covariance matrix) are 
approximately equal to the background statistics. Using 
Eq. 5, image spectra equal to the mean have MF scores 
equal to zero, while image spectra identical to the target 
spectra have MF scores equal to 1.

Although the MF is generally applied to RT detec-
tion, it can be used for SPT detection under certain cir-
cumstances, namely, 

1.	 The SPT has a large pixel fill factor
2.	 The amplitude of the SPT’s radiance spectrum is 

large relative to the background 
3.	 Some combination of cases 1 and 2

For SPTs that do not satisfy one of these conditions, the 
MF can be replaced by a true SPT detector that pro-
vides a target abundance estimate. An example of this 
is the adaptive cosine/coherence estimator or ACE algo-
rithm.15 Regardless of the detector that is applied, the 
subsequent steps in the detection processor remain the 
same as they operate on the resultant detection score 
images. The number of score images equals the number 
of classes entered.

Class Filtering
The library generation phase discussed previously 

allows the target libraries or classes to be selected before 
data collection occurs. In some cases, particular classes 
may not be optimal for the imaged scene. The quality 
of a class is determined by its potential for false alarms 
(FAs), regardless of whether the associated target is pres-
ent in the scene. One measure of this is the one sigma 
standard deviation in the target’s detection score his-
togram curve, which is generally Gaussian out to one 
sigma and centered around zero (the background mean). 
If the standard deviation of the histogram curve is large 
(>0.1), it indicates that the target class closely matches 
a large number of pixels in the scene, signifying a high 
probability of FAs. The class filtering step removes such 
classes from the suite of target detection score images.

Bad Line and Spatial Filtering
A number of preselected classes often fall into the 

marginal category in terms of quality. Their potential 
for FAs is low enough to satisfy the class filtering crite-
ria, but they require some “cleaning up” before moving 
to subsequent steps in the detection processor. These 
procedures take place on the remaining detection score 
images at three sigma from the background mean. Bad 
lines are often artifacts that are inadvertently enhanced 
by the matched filter because of a few spurious pixels 
in the cross-track array of a push-broom HSI sensor. 
Similarly, anomalous spatial features in some images 
can create contiguous sets of pixels with irregular shapes 
and/or large sizes relative to the known shapes and sizes 
of the target suite. These sources of FAs are identified 
with standard shape and size filters and nullified in  
the images. Once these cleaning procedures are com-
plete, the classes pass on to the next step in the detec-
tion processor.

Adaptive Thresholding
The ability to assign the optimal threshold adaptively 

to each class is critical to the robustness and automa-
tion of the detection processor. One method found in 
the field of medical image processing16 is particularly 
attractive, especially for RT detection, though it can 
also be applied to SPT detection. The approach is based 
on the tracking of “blobs,” defined as any single pixel or 
contiguous set of pixels in the detection score images. 
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The general trend for scenes with no targets is for the 
number of blobs to decrease as the threshold is raised, 
starting at three sigma from the background mean. For 
scenes with RTs, though, the number of blobs increases 
slightly as the threshold is raised when contiguous sets 
of target pixels first begin to break apart. This increase 
is detectable, allowing the threshold between target and 
background to be drawn just before the increase.

To illustrate this process, Fig. 3 plots the number of 
blobs versus the threshold for four different detection 
score images of a scene containing several RTs. Note in 
some cases that a series of local minimums result in the 
curves. The optimal threshold occurs at the first local 
minimum, which is unique for each detection score 
image as indicated by the vertical dashed lines on the 
plots. For SPTs, a flattening or leveling off in the blob 
number curve occurs instead of an increase as the opti-
mal threshold is approached. While not as precise for 
SPTs, this technique does provide a good estimate to first 
order. When there are no targets or target-like objects 
in the detection score image, the number of blobs will 
continue to decrease and the threshold will eventually 
exceed the largest detection score value, resulting in no  
detections.

Confidence Assignments
For each remaining class, all pixels in the score image 

with magnitudes that meet or exceed their associated 
thresholds are tagged. The number of tags or hits each 

Figure 3.  Illustration of adaptive thresholding, with plots of the blob number versus the 
threshold for four different detection score images of a scene containing several resolved 
targets.  The pixels in each score image are tagged based on an optimal and unique 
threshold, as indicated by the vertical dashed lines.
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pixel receives from different classes is summed. The fre-
quency of these hits can be used as a measure of detec-
tion confidence for both RTs and SPTs for the following 
reasons. First, for VIS/NIR/SWIR sensors, recall that we 
compute the radiance spectra of a material surface under 
five illumination conditions. In many cases, the degree 
of illumination on a surface may vary across the surface 
itself based on the position of the Sun and the surface 
topography. Similarly for LWIR sensors, the temperature 
across a surface might vary, resulting in numerous hits. In 
addition, a particular surface may contain different but 
spectrally similar materials (e.g., various shades of green 
paint) that are included in our suite of targets. Thus, 
the natural variability in illumination (or temperature)  
and material of the surfaces provides the potential for 
multiple hits on those surfaces and the assignment of 
confidences.

The latter case, though, does depend on the selection 
of the targets to be detected when planning an opera-
tion. Specifically, the number and variety of selected 
targets should include all possible target types being 
sought and capture the expected material variability 
in the target surfaces. An example of the tag summa-
tion process is illustrated in Fig. 4 on a scene containing 
multiple RTs. As pixels receive more hits across the suite 
of detection score images, their confidences increase. In 
this case, confidences of “low,” “medium,” and “high” 
are assigned to those pixels receiving at least 2, 5, or 10 
hits, respectively. Background pixels are labeled with 

either a zero or 1 tag, indicating 
“no confidence” in terms of being  
target pixels.

Geolocation and Visualization
Pixels with assigned detection 

confidences are stored as regions 
of interest and linked to the origi-
nal datacube for geolocation and 
visualization purposes. Overlaying 
the confidence-based color-coded 
detection tags onto a true color 
image of the scene is our standard 
method for visualization of the 
final results. The software for the 
automated detection phase can be 
installed onto a platform-based pro-
cessor, from which the results can 
be transmitted via a low-bandwidth 
link to operators on the ground.

APPLICATIONS 

Resolved Target Detection
Extensive testing has been done 

to ensure that the presented Target 
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Detection System performs robustly over a range of tar-
gets, backgrounds, and environmental conditions. For 
RT detection, we use HYDICE test data collected over 
both desert and rural areas. The vicarious calibration 
procedure is not required as these data are well cali-
brated. The shapes and sizes of the targets in the data 
are vehicle-like in nature, with a variety of painted 
surfaces. The sensor collected HSI data from a 1.7- to 

1.9-km altitude, providing multiple pixels on target 
depending on size, and from a 3.4- to 3.8-km altitude, 
producing a small number of pixels on target. The tar-
gets in the desert background are deployed in two con-
figurations. In the “open” configuration, the targets are 
placed in open areas with very little obstruction. In the 
“closed” configuration, the targets are either partially 
or almost fully obstructed by natural and manmade 
canopies in the various desert wash areas. The tar-
gets in the rural background are deployed in a “mixed”  
configuration, with some targets in the open and 
others either partially or nearly fully obstructed by 
canopies.

Our Target Detection System is tasked to search 
for all targets using 8 surface types for the desert areas 
and 10 surface types for the rural areas. Co-located 
radiosonde data are used as a proxy for weather forecast 
data in the generation of the target radiance libraries. 
The weather profiles were acquired close in time to the 
HSI data collections. Our RT detection performance 
over 26 datacubes is summarized in Table 1, with the 
probability of detection Pd measured by the percentage 
of targets detected, versus the FA rate, measured by the 
number of FAs per square kilometer. The performance is 
provided at three levels of confidence (low, medium, and 
high) from both the lower- and higher-altitude data for 
each background and configuration. The total number 
of pixels processed and targets imaged for each case is 
also given. These results are plotted in Fig. 5. Unlike 
typical receiver operating characteristics curves, which 
vary based on the assigned threshold, these curves vary 
according to the level of detection confidence. Recall 
that the adaptive thresholding procedure is part of the 
automated detection phase. As expected, low confidences 
result at higher Pd and FA rates, whereas high confidences 
result at lower Pd and FA rates. Fig. 5 also provides a best-
fit curve over all conditions, establishing an average Pd 
of 77% with 10 FA/km2.

Figure 4.  Illustration of the tag summation process for the assign-
ment of confidences on a scene containing multiple resolved tar-
gets. In this scene, confidences are allocated to pixels based on 
the following number of tags: none for 0–1 tag, low for 2–4 tags, 
medium for 5–9 tags, and high for 10 or more tags.

  Table 1. 

	 Desert background, open configuration	 Desert background, closed configuration	 Rural background, mixed configuration

	 1.7-km altitude	 3.8-km altitude	 1.7-km altitude	 3.8-km altitude	 1.9-km altitude	 3.4-km altitude
	 (307 3 7360 pixels	 (307 3 3200 pixels	 (307 3 6720 pixels	 (307 3 1920 pixels	 (307 3 6400 pixels	 (307 3 1600 pixels
	 over 6 datacubes	 over 4 datacubes	 over 6 datacubes	 over 2 datacubes	 over 6 datacubes	 over 2 datacubes
	 with 71 targets)	 with 68 targets)	 with 61 targets)	 with 56 targets)	 with 174 targets)	 with 44 targets)

	 Pd (%)	 FA/km2	 Pd (%)	 FA/km2	 Pd (%)	 FA/km2	 Pd (%)	 FA/km2	 Pd (%)	 FA/km2	 Pd (%)	 FA/km2

	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.
	 Med. conf.	 Med. conf.	 Med. conf.	 Med. conf.	 Med. conf.	 Med. conf.	 Med. conf.	 Med conf.	 Med. conf.	 Med. conf.	 Med. conf.	 Med. conf.
	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.

	 96	 65	 94	 38	 90	 67	 66	 04	 82	 41	 82	 08
	 90	 26	 90	 24	 84	 30	 50	 03	 79	 19	 64	 03
	 80	 10	 62	 12	 79	 08	 34	 01	 75	 05	 57	 00

Table 1.  Resolved target detection performance on HYDICE test data.
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Subpixel Target Detection
For SPT detection, we use COMPASS test data col-

lected over rural areas, with targets placed atop dirt, 
short grass, and tall grass terrain. The vicarious cali-
bration procedure is conducted for these data using a 
uniform dirt background as a reference, where detailed 
in situ reflectance measurements were made. The tar-
gets considered in these data are mock land mines 
that vary from 15 to 30 cm across with a variety of 
painted casings. The sensor collected HSI data from a  
1.2-km altitude, imaging SPTs with fill factors between 
25 and 50%; from a 0.6-km altitude, imaging partially 
resolved (i.e., one or two) pixel targets; and from a  
0.3-km altitude, imaging RTs with two to four pixels on 
target. The targets from the 0.6-km altitude are on the 
border between SPTs and RTs. They are treated as SPTs 
since the majority of those pixels will contain some 
mixture of target and background. The normalization 
procedure is only carried out on the 0.3-km altitude data 
when the targets become fully resolved.

Our Target Detection System is tasked to search for 
targets that are dispersed on the dirt, short grass, and tall 
grass backgrounds using nine surface types. Radiosonde 
data are again used as a surrogate for weather forecast data 

in the generation of the target radi-
ance libraries. In this case, though, 
the nearest radiosonde station was 
not co-located at the test site, and 
the weather profile measurements 
were not time-coincident with the 
HSI data collections. Our perfor-
mance for both SPT and RT detec-
tion over 24 datacubes is presented 
in Table 2 and Fig. 6, using the same 
format described in the previous 
section. Table 2 also lists the per-
centage of targets imaged over each 
of the three backgrounds at every 
altitude. Note that the FA rates 
are much higher than those previ-
ously reported in Table 1 and Fig. 
5. In reality, the number of FAs per 
image in the HYDICE and COM-
PASS datacubes of comparable size 
is quite similar. The principal differ-
ence is that the COMPASS sensor 
collected HSI data at much lower  
altitudes than HYDICE because of 
the smaller sizes of the targets, result-
ing in less area coverage. In addi-
tion, for specific comparisons, note 
that the COMPASS sensor operated 
in whisk-broom mode at the 1.2-km 
altitude, imaging 3 times fewer lines 
per image along-track than most of 
the HYDICE datacubes collected in 

Figure 5.  Resolved target detection performance curves on HYDICE data collections over a 
range of backgrounds, target configurations, and altitudes. The targets are vehicle-like in 
shape and size. A best-fit curve over all cases is also provided. (L, M, and H = low, medium, 
and high confidence, respectively.)
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push-broom mode at the 1.7-km altitude. There is also 
more uncertainty in the weather profiles used for the 
COMPASS data, but this has less impact on the accu-
racy of the target radiance libraries since the COM-
PASS sensor was imaging through a much shorter atmo- 
spheric path.

To assist in assessing detection performance, stoplight 
criteria have been established for target detection at the 
COMPASS test site as indicated in Fig. 6. In particular, 
a Pd of at least 50% at a FA rate of 1000/km2 separates 
very good “purple” from satisfactory “green” perfor-
mance. We achieve purple status at high confidence at 
the 0.3-km altitude and at all confidences at the 0.6- and 
1.2-km altitudes, with the best performance attained at 
0.6 km. Finally, for both the HYDICE and COMPASS 
test data, the entire automated procedure—from target 
library selection to visualization of the results—is com-
pleted in single-digit minutes on a PC workstation for 
most datacubes, depending on size.

SUMMARY AND FUTURE WORK
A unique three-phase approach for an automated 

Target Detection System in support of hyperspectral 
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  Table 1. 

	 2–4 pixel resolved targets	 1–2 pixel targets	 Subpixel targets

	 0.3-km altitude	 0.6-km altitude	 1.2-km altitude
	 (246 3 14,800 pixels over	 (246 3 5900 pixels over	 (246 3 2442 pixels over
	 12 datacubes with 287 targets:	 6 datacubes with 260 targets:	 6 datacubes with 271 targets:
	 33% on dirt, 32% on short	 25% on dirt, 40% on short	 52% on dirt, 35% on short
	 grass, 35% on tall grass)	 grass, 35% on tall grass)	 grass, 13% on tall grass)

	 Pd (%)	 FA/km2	 Pd (%)	 FA/km2	 Pd (%)	 FA/km2

	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.	 Low conf.
	 Med. conf.	 Med. conf.	 Med. conf.	 Med. conf.	 Med. conf.	 Med. conf.
	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.	 High conf.

	 98.3	 1770	 90.0	 665	 65.3	 349
	 98.0	 1210	 86.9	 316	 64.9	 239
	 97.0	 879	 82.7	 133	 51.3	 119

Table 2.  Subpixel and resolved target detection performance on COMPASS test data.
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Figure 6.  Subpixel and resolved target detection performance curves on COMPASS data 
collections over dirt, short grass, and tall grass backgrounds at various altitudes. The tar-
gets are mock land mines. Stoplight criteria of at least 50% Pd at 1000 FA/km2 separate 
very good from satisfactory performance. (L, M, and H = low, medium, and high confi-
dence, respectively.) Target sizes range from 15 to 30 cm across.

sensor systems has been developed, consisting of a 
library generation phase, a data acquisition phase, and 
an automated detection phase. Testing of the system has 
been conducted on data collected by the HYDICE and 
COMPASS sensors over both desert and rural area test 
sites at multiple altitudes. The resulting detection per-
formance approaches the requirements for future opera-
tional sensor platforms that warrant quick turnaround 
products for subsequent action by decision makers or 
first responders. Future efforts will focus on evaluat-
ing the accuracies of target radiance spectral libraries  

generated using weather forecast data. Sensitivity of 
the radiance spectra to uncertainties in temperature, 
relative humidity, and aerosol loading will be quantified. 
Such understanding will be valuable in demonstrating 
this capability over more challenging test sites in littoral 
areas and even urban areas for the timely detection of 
spectral targets. (See Ref. 17 for further information on 
aspects of this work.)
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