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Sensor Fusion Architectures for Ballistic Missile Defense
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he project described in this article is developing sensor fusion techniques, within the 
framework of Bayesian belief networks, that will be feasible for operational missile defense 
systems. As full Bayesian nets may be too computationally intensive for the engagement 
timeline, we investigated techniques that combine outputs of several small nets operating 
in parallel. An important application is the handover problem wherein a ground-based 
radar transmits its track picture to the intercepting missile to be combined with the inter-
ceptor’s track picture to maximize the likelihood of selecting the true target from among 
other objects. We discuss net architectures addressing this problem. Since Dempster- 
Shafer algorithms have also been proposed as a solution, we compare our results with a 
Dempster-Shafer approach to understand the advantages and disadvantages of each. 

Introduction
The Missile Defense Agency has been tasked to 

develop missile defense systems to protect both deployed 
forces from tactical missiles and the United States from 
strategic threats. These systems rely on information from 
a variety of sources, including a priori knowledge of the 
threat and ship-, space-, and interceptor-based sensors, 
to enhance their ability to select and intercept the lethal 
object in an inbound threat complex (usually the reentry 
vehicle or RV). Figure 1 is a schematic showing various 
functions that must be performed in order to select and 
guide the intercepting missile to the RV. The scenario 
depicted on the right is an overview of a ballistic missile 
engagement illustrating how data gathered from various 
sensors—including satellites, ground- and ship-based 
radars, and the intercepting missile’s IR seeker—are 
combined to support target selection. Target selection is 
difficult because, in all but the simplest cases, the threat 

complex will consist of multiple objects, for example, a 
booster, an attitude control module (ACM), and an RV. 
In addition, there will likely be spent fuel debris and var-
ious countermeasures that further obscure the RV. Iden-
tifying the true target among all of the objects tracked 
by the various sensors is therefore a significant challenge 
and provides the rationale for combining complemen-
tary information from different sensors through a fusion 
process. 

Although all relevant sensor information should be 
brought to bear against advanced threats, only IR/radar 
fusion is envisioned for near-term systems. In future 
work, we anticipate extending our fusion concepts to 
include more general sensor suites. Even with only two 
sensors, however, fusion is a complex process, as outlined 
in Fig. 1: the radar detects, tracks, and classifies objects 
in the threat complex; the information is transmitted to 
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the missile to cue the IR seeker; and, once the seeker has 
developed its tracks, the information is combined with 
the track classification information developed from the 
IR data. A critical step is achieving gridlock between 
the IR and radar coordinate frames so that tracks corre-
sponding to the same object can be paired. As an exam-
ple of the problems encountered in this process, missile 
position and pointing error can manifest as a common 
offset bias between the two track sets. The green blocks 
in Fig. 1 indicate the specific target selection functions 
addressed by our project.

A decision methodology for target selection will be 
developed later in the project, so we focus here on effec-
tive information fusion techniques to provide the opti-
mal probabilistic data on which to base target selection. 
Ideally, the information fusion process will make maxi-
mal use of all available sensor evidence while properly 
accounting for any interrelationships among the evi-
dence. For example, track state estimates and covariance 
(i.e., metric data) are currently used to correlate tracks in 
the radar handover with tracks from the IR seeker. The 
inclusion of feature information should improve correla-
tion accuracy; however, if feature measurements that are 
strongly correlated with one another are treated as being 
independent, performance may degrade. 

We consider target selection in terms of Bayes-
ian belief networks (BBNs). These networks provide a 
framework for fusing metric and feature data with prior 
information that can, theoretically, properly account for 
interdependencies among data sources. Moreover, there 
is interest in the Bayesian approach within the ballistic 
missile defense community because of recent progress in 

developing computationally efficient methods for carry-
ing out probability calculations with BBNs. 

In view of the short timeline allowed for target dis-
crimination, computational complexity is a major con-
cern. This motivates our approach of combining the out-
puts of several small nets operating in parallel. To this 
end, we first investigate networks for single-sensor track 
classification and then combine them into a system to 
fuse information provided by two sensors. A well-known 
alternative to information fusion is the Dempster-Shafer 
theory.1 Since this is a competing technique in the mis-
sile defense community, we also present a brief compari-
son of the Bayesian and Dempster-Shafer approaches.

To avoid classification issues related to realistic threat 
characterizations, engagement scenarios, and high- 
fidelity performance data, we do not discuss our archi-
tectures in terms of the operational performance of real 
systems; rather, our intent is to show how target selec-
tion functions can be synthesized in the case of generic 
sensors and scenarios. Our results, therefore, are summa-
rized as functions of parameterized sensor performance 
levels that bracket operational system performance. 

The modifications required to apply these algorithms 
to real systems are nominal. The near-term threat con-
sists of relatively simple two- and three-object ballistic 
missile threat complexes without debris or countermea-
sures. Thus, the major modification is to implement 
the current suite of features for both the radar and IR. 
(In our notional scenario, only two generic features are 
defined for each sensor.) The value distributions for 
these features, which depend on the characteristics of 
the specific sensors, threats, and interceptors, have been 

Figure 1.  Flow diagram summarizing the major target selection processes in a ballistic missile defense engagement. The green blocks 
highlight the specific functions that are addressed in this article. Also shown is an overview of an engagement involving data from a 
number of sensors.
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developed from realistic, but simulated, engagement 
analyses.

Realistic test data are difficult to obtain since mea-
surements from the various sensors must be correlated 
with a common engagement scenario. Given the wide 
range of models being used to generate such data, this is 
a significant logistics problem. We have addressed this 
issue with respect to radar and IR sensors by implement-
ing a process for generating IR/RF-correlated test data for 
the near-term threat. Current data generation models, 
however, will not support this process for the advanced 
threats we intend to address in the future. Therefore, 
lower-fidelity sensor models and scenario generators, 
along with parametric variation studies that span the 
expected battle space, will continue to be important 
validation techniques. These tools also allow greater 
flexibility in determining critical algorithm stressors and 
breakpoints. Finally, because the studies presented here 
are parametric, our algorithms have applicability beyond 
the missile defense realm.

Basic Concepts
Consider a simplified example in which an IR sensor 

tracks a ballistic missile complex consisting of an RV, 
an ACM, a booster, and debris. Assume that the IR 
intensity of each type of object differs sufficiently from 
the intensities of the other objects. Then the sensor can 
measure the intensity of each tracked object to deter-
mine which track corresponds to the RV (in reality, of 
course, the situation may not be this clear-cut). How-
ever, intensity measurements from the RV will not be 
identical to measurements obtained from another RV 
in a different engagement, or even from the same RV 
at different times, because of multiple unknown factors 
such as environmental and flight variations. Therefore, 
the intensity I of a tracked object is treated as a random 
variable. The ability to identify the RV is based on the 
degree of separation between the probability distribution 
function PRV(I) and PX(I) for the other types, where X is 
an ACM, a booster, or debris.

The PX(I) can be combined in a single binary, or 
joint, distribution P(I, X), where the random variables X 
and I are object type and intensity, respectively. Then 
P(I, X) = m means that m is the probability of an inten-
sity measurement I and object-type X. Moreover,

	 P I P I X
X

( ) ( , )= ∑ 	

is simply the probability distribution for I alone. P(X) 
is similarly defined; however, since I is continuous, the 
summation in the definition of P(X) should be replaced 
by an integration over the range of I.

The fundamental concept in the Bayesian treat-
ment of uncertainty is conditional probability. In our 

example, the conditional probabilities are P(I|X) and 
P(X|I).  P(I|X) = m means that m is the probability that 
the intensity is I given X; that is, P(I|X) = PX(I). Simi-
larly, P(X|I) = m means that m is the probability that the 
object is X given I. The joint and conditional probabili-
ties are related by the factorization

	 P(I, X) = P(X|I)P(I).	

By symmetry, we also have P(I, X) = P(I|X)P(X), and 
comparing these two factorizations for P(I, X) yields 
Bayes’ theorem:

	 P X I
P I X P X

P I
( | )

( | ) ( )
( )

.= 	

Bayes’ theorem provides the mechanism for using 
measurements of one variable to make inferences about 
another variable. For example, the conditional proba-
bilities P(I|X) may be determined beforehand, based on 
the physical characteristics of each object type. Before 
any intensity measurements have been made, P(X) 
is the a priori object-type distribution. Unless there is 
prior information favoring one object type over another, 
this should be uniform; e.g., in our example, there are 
four object-type classes, and so P(I, X) = 0.25. When an 
intensity measurement I is obtained, the updated class 
distribution P(X|I), which includes the information 
provided by the measurement, is calculated using Bayes’ 
theorem. This procedure can be repeated to incorporate 
multiple measurement updates. A simple target selec-
tion technique is to select as the RV the track for which 
P(X|I) is maximal if X = RV. 

Now, intensity is influenced by factors other than 
object type, such as whether the sensor is looking at 
an object broadside or head on (i.e., aspect). If aspect is  
modeled as a random variable A, we then must deal 
with the joint distribution P(I, X, A) and associated con-
ditional probabilities. In particular, the factorization for 
a binary distribution extends to three variables as fol-
lows:

	 P(I, X, A) = P(I|X, A)P(X, A)

	 = P(I|X, A)P(X|A)P(A).

Both factorizations are special cases of a general product 
formula 

	 P x x P x P x x xn n i i n
i

n
( , , ) ( ) ( | , , ) ,1 1

1

K K= +
=
∏ 	

showing that any joint probability distribution, P(x1, ..., 
xn), is uniquely determined by its associated conditional 
probabilities. However, xi may not be dependent on all 
the xi + 1, ..., xn, so a more concise expression is
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1

K =
=
∏ 	

where parents(xi) is the subset of the xi + 1, ..., xn on which 
xi does depend. For instance, object type is independent 
of aspect, so the above factorization for P(I, X, A) reduces 
to P(I, X, A) = P(I|X, A)P(X)P(A).

A Bayesian net is a compact, graphical representation 
of P(xi, ..., xn) reflecting this factorization. It consists of a 
set of vertices, or nodes, corresponding to the random 
variables and a set of directed edges between pairs of 
vertices (the initial and terminal nodes that determine 
a directed edge are called, respectively, parent and child 
nodes). Together they form a directed acyclic graph (i.e., 
there are no directed paths xi1→ ... →xik such that xi1 = 
xik) in which the parents of the vertex corresponding to  
xi are precisely the set parents(xi). Nodes without par-
ents are called root nodes. In addition to node connec-
tions, the network specification includes the conditional 
probabilities P[xi|parents(xi)] and the a priori probabil-
ity densities for the root nodes. Thus, the conditional 
independence structure of the random variables is repre-
sented in graphical form. In this article, we assume that 
all variables are discrete, although this constraint can be 
relaxed. Therefore, the net probabilities can be specified 
in tables. Finally, it is worth noting that different factor-
izations are possible, and each one determines a different 
Bayes net representation of P(x1, ..., xn), while each Bayes 
net, on the other hand, corresponds to a unique joint 
distribution. Standard references2–4 are available that 
provide a more detailed exposition of the theory. 

As a first example, consider the simple network shown 
in Fig. 2a for gauging the power of a single feature to 
discriminate objects, where the root node a represents 
the object class variable. The root node is discrete and 
takes on as many values as there are object types. We 

assume that the a priori probability distribution p(a) is 
uniform unless more specific information is available. 
The child node d represents the feature-value random 
variable. Observed values (i.e., sensor measurements) 
are denoted by e1 in Fig. 2a and are also indicated graph-
ically by a nondirected line segment connected to the 
proper node.

On the other hand, if we want to determine the per-
formance improvement gained by fusing multiple fea-
tures, the simplest architecture for doing so is shown in 
Fig. 2b. Since the feature nodes are independent, this net 
may ignore some dependencies. In many cases, however, 
networks with such implied independence assumptions 
actually outperform more complex models.5 Figure 2c is 
a more advanced network that includes an additional 
root node b, which can be used to model a parameter 
that may influence the feature nodes. For instance, some 
feature measurements may depend on the angle at which 
the sensor views an object, and this dependency on the 
aspect angle can be represented by the directed edges 
from node b, where b denotes aspect angle. The increase 
in computational demand over the simple networks is 
relatively small. Although the nets in Fig. 2 show at most 
two features, denoted by the variables c and d, they can 
be extended in an obvious way to include any number. 
The primary output is the a posteriori probability distri- 
bution of the class variable a after the net has been 
updated based on evidence in the form of measured 
values for a subset of the feature set. Node b is not mea-
sured directly, but is estimated along with the object 
class and can be considered as another output.

The product formula corresponding to the multiple-
feature classifier with scenario variable is p(a, b, c, d) 
= p(c|a, b)p(d|a, b)p(a)p(b); thus, the a posteriori joint 
distribution is

	 p a b e e p a p b

p c e a b p d e a b
c d

c d

( , , , ) ( ) ( )

( | , ) ( | ,

=

× = = )) ,
	

where e =(ec, ed) denotes a vector of feature measure-
ments. Hence, the a posteriori probability distribution 
for a is
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where the summations range over the domains of 
the indicated random variables. Similarly, p(b|e) can 
be obtained by interchanging a and b in the above  Figure 2.  Simple Bayesian classification nets.
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equation. If, for instance, there is no measurement for 
feature c (e.g., e = ed), then the term p(c = ec|a, b) must 
be replaced by 1 in the update equation for p(a|e). This 
result generalizes to any number of features. Although 
other net structures are possible, our objective here is 
to illustrate ways of combining multiple Bayes nets into 
fusion architectures. 

Application of a Single-Sensor 
Bayesian Net

Our first step was to investigate Bayesian nets for 
single-sensor discrimination in order to develop a basic 
building block for multisensor architectures. In this sec-
tion we discuss the application of single-sensor nets to 
analyze the discriminatory power of a set of features 
and select an optimal subset for classification. Smith6 
proposed a set of 13 radar features for discriminating 
a cone from a cylinder. (The RV is roughly conical 
and the ACM is roughly cylindrical.) These included, 
among others, several length-related features, the power 
returned by various types of scatterers, and the maxi-
mum of the absolute value of the return.

A database of feature measurements was generated 
by an X-band radar simulation and included, for each 
object, values of each feature indexed by the aspect 
angle between the object and the radar. (The aspect 
angle is zero when the front of the object—the point of 
the cone, for example—is facing the radar and increases 
to 180° when the back of the object is facing the radar.) 
The aspect angle varied in steps of either 0.10° for the 
cone or 0.05° for the cylinder. (No roll angle is assumed 
since the radar properties of these objects are roll-angle 
invariant.) Figure 3a is a plot of the first length feature as 
a function of the aspect angle of the target. The data are 
without noise, so the measured features are determinis-
tic functions of the object class and its aspect angle. 
However, we assume the aspect angle to be stochastic 
with a uniform distribution, and thus the radar features 
become stochastic as well. But without noise, the train-

probability density for the class node is uniform, i.e.,  
P(cone) = p(cylinder) = 0.50, and the conditional prob-
ability table for P(d|a), shown in Fig. 3b for the length 
feature, was derived by binning the data in Fig. 3a. A 
separate BBN is assigned to each object, but the condi-
tional probability tables are the same. Since this net does 
not contain a node for aspect angle, body orientation 
must be incorporated in the conditional distributions. 
The time since the two objects separated is assumed to 
be long enough for their aspect angles to be independent 
of one another. Thus, we may assume that the aspect 
angles for each object are independent and uniformly 
distributed. 

Feature measurements are simulated by first randomly 
drawing an aspect angle and then generating the mea-
surement from a lookup table. True aspect angles are 
only used to generate the data and are never passed 
to the BBN, since they would not be available in an 
actual engagement. The BBN processes the measure-
ment data to arrive at the probabilities P(cone|feature) 
and P(cylinder|feature) for each object. Target selection 
can be performed as a simple hypothesis test by select-
ing the object with the highest P(cone|feature) or, if the 
number of targets is unknown (e.g., engagements with 
threats consisting of multiple RVs), all objects for which 
P(cone|feature) exceeds some threshold can be selected. 

Although the individual performance of several of 
the features was very good, we also wanted to determine 
the improvement gained by fusing multiple features. 
One fusion approach is the naïve multiple-feature classi-
fier (Fig. 2b), so named because it ignores dependencies 
among the features and does not fully exploit the aspect 
information contained in the measurement data. On 
the other hand, the features as modeled all have a corre-
lated noise input: the aspect angle. Thus, an alternative 
is the multiple-feature classifier with an additional node 
to model aspect angle (Fig. 2c). 

To construct the conditional probability tables for 
this new node, the full range of aspect angles is divided 
into bins and a separate feature histogram is created for 

Figure 3.  (a) Raw data (simulated) characterizing radar length measurements of a threat 
object as a function of aspect angle. (b) A discrete conditional probability distribution 
derived from the data. (Red denotes cone; blue denotes cylinder.)

ing data used to create the condi-
tional probability distributions are 
the same as the test data, which 
could result in an overly optimistic 
performance expectation.

To gauge the discriminatory 
power of each feature individually, 
we use the single-feature classifier 
(Fig. 2a) consisting of a class node 
with possible states of cone and 
cylinder and a measurement node 
consisting of possible measurement 
states (although measurements are 
continuous, they can be divided 
into separate bins to simplify pro-
cessing within a BBN). The a priori 
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each bin. The a priori probability density for aspect angle 
is assumed to be uniform across the bins. The perfor-
mance of these two network architectures was examined 
for several subsets of features to try to determine an opti-
mal choice. Both architectures were able to accurately 
discriminate the cone from the cylinder; however, the 
design that estimates aspect angle performed better, even 
when the number of features was reduced. The strongest 
overall performer used only four features but was 99.9% 
accurate when configured as the simple hypothesis test 
described in the previous paragraph (selecting the most 
“cone-like” object) and had one of the lowest computa-
tional demands. 

When comparing the a posteriori probabilities to a set 
threshold rather than across objects (again, as described 
in the previous paragraph), the results can be represented 
as a “receiver operating characteristic” (ROC) curve that 
plots the probability of detection (the object is declared 
a cone when it is actually a cone) as a function of the 
probability of false alarm (the object is declared a cone 
when it is not a cone). The detection threshold governs 
the relationship between the two values. Varying that 
threshold will produce multiple pairs of detection and 
false alarm probabilities that can be plotted as the ROC 
curve. An ideal ROC curve will have very high probabil-
ities of detection for very low probabilities of false alarm, 
resulting in a sharp “elbow” on the graph. Although 
these curves are generally used to detect a signal in noisy 
data, the representation of the aspect angle as a random 
variable replaces the noise of our system and allows us 
to use a similar representation to empirically evaluate 
the performance of our classifier. The ROC curves for 
the two nets are plotted Fig. 4. We selected the multiple- 
feature classifier with the additional aspect angle vari-
able as our fundamental net for single-sensor discrimina-
tion based on this analysis. 

Bayesian Net-Based Sensor 
Fusion Architectures

Recall that the success of multiple-sensor fusion 
depends on several factors, including the ability of indi-
vidual sensors to determine what objects their tracks 
correspond to, how well the transmitted information 
can be correlated with the appropriate seeker-developed 
tracks, and how the object-type probabilities can be 
combined to extract the optimal targeting information. 
We developed several fusion architectures incorporat-
ing these factors by combining the fundamental sensor 
nets in various ways to attain a unified target selection 
system. Two examples are discussed in this section.

The effectiveness of these architectures was analyzed 
using the notional test scenario shown in Fig. 5, which 

Figure 4.  ROC curves, obtained by incorporating information on 
the aspect angle between radar and target object, showing the 
improvement in the probability that a cone is correctly classified 
as a cone.

Figure 5.  A diagram illustrating a test scenario involving two generic sensors, each tracking three objects. During the engagement, the 
sensors move along their respective linear trajectories, making measurements at regular time increments as indicated by the tick marks. 
Aspect is considered to be a binary variable. The table summarizes the variation in aspect with respect to each sensor and object through-
out the engagement.
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models two sensors collecting infor-
mation on a threat complex con-
sisting of an RV, a booster, and an 
ACM. The information collected 
by each sensor consists of measure-
ments of two generic features from 
each object. In this scenario the 
objects are assumed to be stationary, 
and only the sensors move. As the 
sensors move along their linear tra-
jectories, they measure features on 
each object at equally spaced inter-
vals as indicated in the figure. Gen-
erally, features depend on a number 
of variables defining the geometry of 
the encounter and the environmen-
tal conditions. As noted earlier, the 
aspect angle is important because it 
determines the target cross section 
presented to the sensor (e.g., head-
on vs. broadside). Our simplified 
scenario, therefore, includes aspect 
angle as a representative scenario-
dependent variable. The table in 
Fig. 5 summarizes the aspect varia-
tion for each sensor and object. 

We can fairly accurately model 
a real sensor’s time series of mea-
surements for a variety of features 
derived from IR intensity, radar 
reflectivity, and rotational proper-

first sensor is tracking m objects and the second sensor 
is tracking n objects (without loss of generality, we shall 
assume m # n). A correlation hypothesis is a mapping  
ch:{1, 2, ..., m} → {0, 1, 2, ..., n}, such that ch(i) = 0 if the first 
sensor’s ith track does not correspond to any track from 
the second sensor, and ch(i) = j if it corresponds to the 
jth track. We shall also assume that the following holds: 
if ch(i)=/ 0, then ch(j) = ch(i) if and only if j = i. 

Our first architecture is based on a simple system, 
shown in Fig. 2d, for determining whether a track pair 
from two sensors should be correlated. It consists of a 
fundamental net attached to each track for each sensor. 
All pairs of nets, one from each sensor, are connected 
via nodes corresponding to a binary random variable 
X, where X = 1 if the corresponding tracks are from the 
same object and X = 0 otherwise. The connection is 
such that the two class nodes are the parents of node 
X. We denote probabilities related to this net by P and 
use primes to reference the second sensor. The a priori 
probabilities for the root nodes are uniform. Defining 
the conditional probability 
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Figure 6.  Conditional probabilites: (a) the strong discrimination case and (b) the weak 
discrimination case. In these histograms the vertical axes represent the probability of 
each of the three possible feature values (1, 2, or 3) being measured by each sensor. 
The probabilities are functions of target type, aspect to the target, and the feature being 
measured (1 or 2). 

ties of the target objects by appropriate adjustments of 
the feature node conditional probabilities. In particu-
lar, we consider two capability levels that bracket the 
expected performance of these sensors. In the first case, 
the sensors provide relatively strong class discrimina-
tion through their feature measurements; in the second 
case, they provide relatively weak class discrimination. 
The conditional probabilities defining the first case  
are shown graphically in Fig. 6a and those defining  
the second case are shown in Fig. 6b. The scenario 
proceeds through 12 time steps, and independent mea-
surements of the features for each track are made at 
each time. Drawing random values from these distri-
butions simulates this sequence of measurements. The 
aspect angles to the target objects are unknown to the  
sensors.

The goal of this scenario is to determine which object 
is the RV based on information provided by the mea-
surement data. Each sensor can independently process 
its measurements and make a decision, or they can com-
bine their information to make a more accurate deci-
sion. Before fusion can occur, it is necessary to attempt 
to correlate, or pair, the tracks of one sensor with those 
of the other, such that the paired tracks correspond to 
the same ground truth object. Specifically, suppose the 
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completes this system definition, where “≈” denotes 
equality up to a multiplicative normalization factor. It 
can be shown that
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Hence, each net can be updated independently of X. To 
determine the most likely correlation hypothesis, we cal-
culate P(X|e, e9) for all possible track pairs and use an 
assignment algorithm, such as Munkres7 or its general-
ization,8 to find a set of pairings that maximizes the sum 
of these probabilities. 

In the fusion architecture, each track net operates 
independently. Probabilities are updated each time the 
sensor makes a measurement: the updated root node 
probabilities become the a priori probabilities for the  
next update, whereas the conditional probabilities 
remain unchanged. Also, the distributions of the random 
variables X are updated and the assignment algorithm 
is applied to determine a correlation hypothesis at each 
time step. The class node distributions for the correlated 
net pairs are then fused using a net of the type shown 
in Fig. 2b.

Figure 7 compares the statistical performance of this 
architecture to a single-sensor net. The data are the 
averaged results for 1000 independent realizations of 
the notional scenario. The strong and weak discrimi-
nation cases are shown in Figs. 7a and 7b, respectively. 
The curves show the time evolution of the average prob-
ability that each object is classified as an RV. In both 
strong and weak discrimination cases, the fused result 
is only marginally better than it is for the simple track 
net. However, the separation between the curve for the 

true RV and the curves for the non-RV objects is greater 
with fusion, especially in the weak discrimination case. 
Evidently, the performance advantage of this simple 
architecture is limited. Moreover, it requires a link 
between all pairs of nets from the two sensors (although 
the fusion nets can be operated in parallel) as well as an 
external assignment algorithm. 

A more integrated concept is shown in Fig. 8. This 
architecture processes feature and metric data. It fuses a 
single track observed by sensor 1 with one of two tracks 
observed by sensor 2. The network structure is easily 
generalized to M-to-N track mappings for an arbitrary 
number of sensors. Each individual track is processed 
by a fundamental sensor net, where for the ith track  
(i = 1, a, b), ai is the classification, bi is the aspect angle,   
ci and di represent two features, and ei

x( )  represents evi-
dence for feature (or metric) x. Primes denote variables 
associated with the second sensor. Node %ai  is the fused 
classification for track 1 as determined by the combined 
evidence of both sensors. Node ch enumerates track cor-
relation hypotheses that map either track a or track b 
to track 1. For an M-to-N track mapping problem, the 
number of possible correlation hypotheses, and hence 
the computational load, increases rapidly with M and N. 
Therefore, an external algorithm may still be required to 
limit the number of possible track mappings considered 
by the BBN. Here, node m represents metric evidence 
that supports selection of an association hypothesis  
(e.g., estimated track position). 

A given track correlation hypothesis establishes the 
conditional dependence relationship between %ai  and 

′ai . Specifically, the conditional distributions defined by

	
p a a c

p a a ch

i

i

( | , )

( | ) for values of that

ma′ =

′
%

%

1

1

h pp track to track
( ) otherwise

i
p ai

1
′









	

Figure 7.  These subplots show the temporal evolution of the probability that each of the 
three objects is an RV as generated by the first simple fusion concept for both the strong 
(a) and weak (b) discrimination cases. Solid curves denote results generated by single-
sensor track nets; curves with asterisks denote fused results.

are used, where i = a, b. Note that 
in the second part of this definition 

′ai . is independent of %a1.  Further-
more, the relationship
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(where a = a1, ′a
a, or ′a

b ) enforces 
the requirement that a track have 
one true classification. In effect, if 
the state of ch is known, all but one 
of the links between %ai  and the 
various ′ai . nodes is removed. The 
remaining link connects track 1 to 
the sensor 2 track with which it is 
correlated. 
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Both feature and metric evidence influence the 
probabilities assigned to the various track correlation 
hypotheses. A pair of tracks from different sensors that 
are correlated with each other should share both the 
same classification (e.g., RV tracks map to RV tracks) 
and the same metric state (e.g., the same position and 
velocity). If an external algorithm is used to select a cor-
relation hypothesis, then the selection can be instanti-
ated as evidence for node ch.

This architecture was extended to include three tracks 
from each sensor and multiple measurement times, and 
then exercised using the same test scenario as in Fig. 5. 
To incorporate multiple measurement times, each track 
is given an aspect node and two feature nodes for each 
time t, which represent the values of these variables at t. 
The aspect nodes are all root nodes. The feature nodes 
for time t are children of their tracks’ aspect node for time 
t and also of their tracks’ classification node. In addi-
tion to the strong and weak discrimination cases, two 
track correlation cases are also considered. In the first 
case, evidence provided for node ch selects the true track 
association with unity probability. In the second case, 

need to be considered.) The two possible aspect angles 
are taken to have equal prior probability at every time 
for every track, so p(b) = 1/2 for both angles and any 
aspect node b.

Figure 9a shows the average probability assigned to 
the classification hypothesis %ai = rV  for each object as 
a function of time as calculated by this architecture for 
the strong discrimination case. As noted previously, the 
average is over 1000 independent realizations of the fea-
ture measurement process for both sensors. The curves 
without asterisks show the results for the case where the 
correct track correlation is known with unity probability 
via external evidence. The curves with asterisks show 
the results for the case where the correct correlation is 
unknown. In both cases, the RV is assigned probability 
≈1 of being an RV by the second measurement, while 
the booster and ACM are given probability ≈0 of being 
RVs. Certain knowledge of the track correlation slightly 
increases the probability assigned to the RV hypothesis 
for the actual RV and slightly reduces the probability 
assigned to the RV hypothesis for the booster and ACM, 
relative to the case where the correlation is uncertain.

Figure 9b shows similar curves for the weak discrim-
ination case. The average trend with time is toward 
assigning probability ≈1 to the RV classification hypoth-
esis for the RV and ≈0 to the RV hypothesis for the 
booster and ACM. The primary result of the weaker dis-
crimination capability is that more time (i.e., more fea-
ture evidence) is required to classify the objects with a 
given level of confidence, relative to the strong discrimi-
nation capability case of Fig. 9a. Again, if the correct 
correlation is uncertain, and therefore must be inferred 
from feature evidence, the average trend is toward the 
correct classification, but the probability assigned to the 
true classification hypothesis for each track grows more 
slowly with time than when the correct association 
is known. Conversely, the weak class discrimination  

Figure 8.  A Bayesian network for multisensor track handover and 
fusion. The first sensor tracks one object and the second tracks 
two objects.

Figure 9.  Subplots for the strong (a) and weak (b) discriminaton cases for the second 
fusion arcitecture. Solid curves show the results when the correct track association is 
known with unity probability; asterisks show the results when the correct correlation is 
unknown and must be inferred from feature evidence. For the strong discrimination case 
(a), the results are nearly identical whether or not correct correlation is known.

no evidence is provided for node 
ch, and no metric measurement is 
available, so the correct correlation 
hypothesis must be inferred from 
feature measurements.

The prior probability for the 
fused classification of each track 
is taken to be uniform so that 
p ai( )% =  1/3 for each object track and 
class (i = 1, 2, 3). Six possible cor-
relation hypotheses map the three 
tracks of sensor 2 to the three tracks 
of sensor 1. Each of the six correla-
tion hypotheses is given equal prior 
probability so that p(ch) = 1/6 for 
every state of ch. (In reality, addi-
tional correlation hypotheses in 
which sensor 2 tracks do not corre-
late with any sensor 1 tracks would 
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provided by the feature evidence impairs the architec-
ture’s ability to infer the correct track correlation hypoth-
esis. This, in turn, interferes with the ability of the two 
sensors to work together. As a result, performance is 
worse than when the track correlation is known and the 
sensors can readily combine their evidence.

Finally, consider the probability assigned to the cor-
rect track correlation hypothesis. As noted earlier, per-
formance at small values of t is important. In the strong 
discrimination case, as expected, the feature evidence 
rapidly generates support for the true track correlation 
hypothesis, which attains probability 0.9 by t = 2. In the 
weak discrimination case, however, the true correlation 
hypothesis probability increases gradually (and almost 
linearly) from 1/6 at t = 0 to 1/2 at t = 12 after all evi-
dence is collected. 

CompariSON OF Bayesian and  
Dempster-Shafer Architectures

Recall that there are alternative approaches to infor-
mation fusion, notably the Dempster-Shafer theory. 
Since the advocates of Bayesian and Dempster-Shafer 
methodologies are generally highly polarized, it is inter-
esting—at least briefly—to compare the performance of 
these techniques on a common scenario. 

Although the Dempster-Shafer theory of evidential 
reasoning1,9 deals with concepts of the belief and plau-
sibility of hypotheses, the theory is a generalization of 
Bayesian probability. For instance, the fundamental 
object is a set Q called the frame of discernment, the ele-
ments of which we may think of as the possible target 
types (more generally, they could also be hypotheses or 
propositions). Bayesian theory would refer to these ele-
ments as elementary events and Q as the set of possible 
outcomes. A mapping, m:2Q → [0, 1], of the power set 2Q 

(i.e., the set of all subsets of Q) into the unit interval is 
called a basic probability assignment (BPA) if it satisfies 
the following two conditions:

	
m

A

( ) ,
( ) ,
[ =

=
⊆
∑

0
1m A
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where [ denotes the empty set, and the sum is taken 
over all subsets A of Q. Note also that m(A) = 0 for A =/  [ 
is possible. Now, if m were defined on all the singleton 
subsets of Q, it would be an ordinary probability distri-
bution on the elementary events. The generality of the 
Dempster-Shafer theory lies in its ability to operate with 
less information than a probability distribution requires. 
Thus, we may interpret m(A) = 0.2 as our having a con-
fidence of 0.2 that the object under consideration is one 
of the types in A, but having no additional information 
indicating which one.

The belief function, defined as

	 Bel A
B A

( ) ( ) ,=
⊆
∑ m B 	

is interpreted as the degree of belief in A, while Bel( )A  
expresses one’s degree of doubt in A, where A  is the 
complement of A in Q. The plausibility of A, 

	 P A Bel A*( ) ( ) ,= −1 	

expresses one’s belief in all those subsets of Q that 
“have anything to do with A.” We see immediately that 
Bel(A) # P*(A). Dempster called P* and Bel upper and 
lower probabilities, respectively.10

The fundamental operation in the theory is Demp-
ster’s rule of combination, a method for combining two 
BPAs. It is defined as follows. If m(A) > 0, then A is called 
a focal element of the belief function. The collection of 
all focal elements of a belief function is called its core. 
Now, suppose we define two belief functions over the 
same frame. Let Bel1 have BPA m1 with a core consisting 
of focal elements A1, …, Am. Let m2 be the BPA for Bel2 
and denote the focal elements of its core by B1, …, Bn, 
where n need not equal m. Dempster’s rule defines the 
new BPA as follows:
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where k is defined by
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The combined belief function, associated with m, 
is called the orthogonal sum of Bel1, and Bel2 and is 
denoted by Bel1 ≈ Bel2. The denominator is a measure of 
the extent of conflict between the two belief functions. 
The greater the number of table entries committed to 
[, the greater the amount of conflict. A useful measure 
of the conflict,

	 Con(Bel1, Bel2) = 2ln(1 2 k) ,	

is called the weight of conflict between Bel1 and Bel2. 
If there is no conflict, k = 0 and Con(Bel1, Bel2) = 0. If, 
on the other hand, Bel1 and Bel2 flatly contradict each 
other, then k = 1 and Con(Bel1, Bel2) = ∞.
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Now, consider a Dempster-Shafer fusion architec-
ture in which each measurement step defines a BPA on 
Q = {RV, ACM, booster}, which is fused with the BPA 
from the previous step using Dempster’s rule. The theory 
tells us how to use BPAs once they are defined; how-
ever, it does not tell us how to construct them in the 
first place. 

Recall that Figs. 6a and 6b plot the conditional prob-
ability distributions of features (c and d) for each of the 
objects in our scenario. Suppose the measured evidence 
points only to singleton sets oj. Then, BPAs can be con-
structed as follows:

	 m o
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where 

(o1, o2, o3,)  =		(RV, ACM, booster), 
	 (a1, a2) =	(left aspect, right aspect) (see Fig. 5), 
	 p(oj) =	the prior probability that the object ob-

served is oj,
	 p(ak) =	the prior probability that the aspect of the 

observed object is ak, and  
	p(ci|oj, ak) =	the conditional probability that feature c 

takes the value ci, given that the object is 
oj (e.g., the conditional probabilities defined 
in Figs. 6a and 6b). 

Under this formulation, we can prove that the Demp-
ster combination rule reduces to Bayes’ theorem, and the 
combined BPA is just the posterior probability.

On the other hand, suppose the measured evidence 
points to arbitrary sets. We will address two possible 
BPA constructions. Without loss of generality, we may 
assume p(ACM|ck) < p(booster|ck) < p(RV|ck) for a fea-
ture measurement for which c = ck. Then, define the 
mapping m using Shafer’s consonance (i.e., define m on a 
sequence of nested subsets) as follows:
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The Dempster-Shafer approach with this definition 
of the BPAs was applied to the same scenario and 1000 
Monte Carlo cycles used to test the Bayesian net archi-
tectures. Figure 10a compares the evolution of the belief 
and plausibility of the RV for the strong (top) and weak 
(bottom) correlation cases to the second Bayesian archi-
tecture average probability curves in Fig. 9, under the 
assumption that the sensor track correlation is known. 

Figure 10. Comparing Bayesian and Dempster-Shafer architec-
tures for the first (a) and second (b) definition of the BPA. Bayesian 
probability = the average probability assigned to the classification 
hypothesis that the object = RV when the object is the RV.
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Although the plots only show results for the RV, the belief 
and plausibility for all objects converge to steady-state 
values, asymptotically approaching the corresponding 
object probability curves calculated by the Bayesian net. 
As may be expected, convergence occurs quickly for the 
strong discrimination case but slowly for the weak case. 
Moreover, for the weak discrimination case, that con-
vergence lies below the Bayesian probability curve. This 
behavior is entirely due to the way we have constructed 
the BPA. (The scenario was designed to be perfectly 
suited to a Bayesian approach.)

Now, suppose we construct slightly different BPAs as 
follows:
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the remainder of the variables being defined as above.
Figure 10b compares the evolution of the belief and 

plausibility of the RV with the Bayesian net architec-
ture as before. Again, convergence occurs quickly for the 
strong discrimination case (top). However, in the weak 
case (bottom), convergence is attained more rapidly, 
and the limiting value lies above the Bayesian probabil-
ity curve. These results show good agreement between 
the Dempster-Shafer and Bayes techniques. This second 
BPA construction, therefore, produces more satisfactory 
results than those of the previous construction. 

Summary and Further Research
This section summarizes our conclusions based on 

the parametric analyses presented in this article, as well 
as the results of higher-fidelity simulated engagements 
that were not described here. These studies indicate a 
performance enhancement over single-sensor target 
selection. We have shown that even for a pair of weakly 

discriminating sensors, the fusion architectures provide 
a performance improvement over either sensor used 
alone by at least increasing the separation between RV 
probability curves. 

Furthermore, if the track-to-track correlation is 
known beforehand to a high degree of probability, the 
improvement relative to the case where the correlation 
is uncertain can be significant. There is an intrinsic dif-
ficulty in the unknown case that is not evident in our 
test scenario, where the number of possible correlation 
hypotheses is relatively small. If more objects, such as 
debris and countermeasures, are present, the total 
number of hypotheses increases exponentially, making it 
impossible, in practice, to evaluate the conditional prob-
ability table for a correlation node. Therefore, it appears 
that an external preprocessing step may be necessary to 
prune the correlation hypotheses to a manageable few.11 
However, more work is required to settle this issue.

Even if the individual sensors are strong discrimi-
nators, fusion allows faster discrimination. Processing 
speed is important for time-limited operations such 
as intercepting an incoming missile. We have shown 
good performance, with low computational burden, by 
neglecting some correlations between features. This 
was shown here, for example, by our single-sensor radar 
feature results. This conclusion, moreover, is supported 
by results from a number of independent investigators 
who have shown that naïve nets often perform nearly as 
well as complex nets that more carefully model all cor-
relations. However, we plan further work to determine 
the impact of including evident correlation between 
features. In addition, based on the comparison results 
shown here and in our more realistic threat engage-
ment studies, the Bayesian architecture is competitive 
with Dempster-Shafer approaches in both classification 
performance and processing speed. Thus, a Bayes net 
target-selection architecture, along the lines described 
in this article, appears to be a feasible approach to an 
operational system. 

To develop a capability against future advanced 
threats, we intend to investigate the utility of combin-
ing an extended onboard missile sensor suite, such as 
multi-color IR and ladar, with Aegis/SPY-1 and another 
sea-based sensor, where fusion of the sea-based sensors 
occurs before missile handover. These handover data 
would be fused again with onboard sensor data. The  
Mk-99 illuminator is a candidate for the second sea-based 
sensor. In conjunction with the SPY radar, the Mk-99 
can potentially provide a description of the incoming 
threat that includes whether it is unitary or separating; 
the number of booster stages; expected countermeasures 
sophistication; spin, precession rate, and relative mass 
ratios; and more accurate propagation of track errors. 
This application will require our net architectures to be 
expanded to include fusion across multiple sensors and 
time periods.
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