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Detection Systems Information Fusion

William G. Bath, Christopher M. Boswell, Suzette Sommerer, and I-Jeng Wang

he transformation of the U.S. military from Cold War to current operations includes 
a greater reliance on distributed systems and on sensor data fusion as a force multiplier. 
The highly mobile fighting force will depend on the distributed operation and fusion of 
data to achieve net sensor performance greater than could be practically achieved by any 
single sensor. Detection systems information fusion (DSIF) is the fundamental enabling 
technology for this force multiplier. APL has a long history in designing, prototyping, and 
transitioning DSIF applications. In this article we summarize past APL accomplishments 
in DSIF and present a science and technology vision on how we should move forward to 
ensure APL’s leadership position in this important area, building on our past successes.

BACKGROUND
Detection systems information fusion (DSIF) is a pro-

cess that combines information from multiple sources to 
improve detection, tracking, characterization, identifica-
tion, estimation, and entity/situation assessment to affect 
human or automated responses. Successes of many DoD 
and homeland protection applications critical to national 
security rely on the efficient and timely execution of the 
DSIF process to provide key information for effective 
decision making. APL has long been involved in DSIF 
activities that have led to significant advances in the 
performance of major DoD systems. To motivate our sci-
ence and technology (S&T) vision in DSIF technologies, 
we discuss APL’s past accomplishments with two prime 
examples and summarize the key enabling components 
that led to our past successes.

APL’s Accomplishments in DSIF
Among the many APL accomplishments in DSIF are 

the Cooperative Engagement Capability (CEC) and the 

Trident programs. In both cases, APL was involved from 
the initial design phase, through overall system design 
and optimization, and finally to the deployment and 
testing of the prototype systems. These two programs 
demonstrate the significant impact APL can have when 
addressing the design of DSIF applications from an over-
all systems perspectives.

CEC
The CEC was conceived by APL in the early 1970s. 

Requirements development and critical experiments 
were performed primarily by APL as Technical Direction 
Agent for a Navy program to explore air defense coor-
dination called Battle Group Anti-Air Warfare (AAW) 
Coordination. The first critical at-sea experiment with 
a system prototype occurred in 1990. CEC  became an 
acquisition program in 1992. Additional system tests fol-
lowed, including a trial deployment in 1994–1995 with a 
battle group of the Sixth Fleet. CEC was fielded in 1998.
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CEC  is an AAW system designed to maximize the 
utility of existing air defense systems in a battle group. 
By sharing high-quality measurement data from all the 
sensors among all the participants, each ship or aircraft 
gains access to a common air picture of the battle space 
of sufficient quality and timeliness that the data can be 
used by fire control systems to control weapons—just 
as though the information had been generated by the 
platform’s local sensors.

Such a system has many advantages, for both the 
individual participants and the battle group as a whole. 
With all participants working from the same informa-
tion, confusion is minimized, and information about 
which participant is engaging what can be shared. 
Rather than relying on tracks from a single sensor, com-
posite tracks are formed based on measurements from a 
number of platforms. All sensors have limitations, and 
for the radars that provide the majority of the data to 
this system, sensor-target geometry and environmental 
factors have a strong influence on target detectability 
and measurement quality. By building up tracks from the 
measurements of multiple sensors on different platforms, 
target tracks in the air picture are much more continuous, 
errors in estimated target position are reduced by includ-
ing measurements on targets from multiple angles, and 
perhaps most importantly, all participants have access to 
all tracks, even those on targets completely undetectable 
by the local sensors. For platforms with older and less 
capable sensors, this also gives them access to the capa-
bilities of the most modern sensors in the battle group 
without upgrading older systems.

CEC  improves the common picture by cueing indi-
vidual sensors that could acquire targets but have not 
yet done so. When such a sensor applies the additional 
resources needed to acquire the target (concentrat-
ing only on the known location and not expending 
resources over a broader search area), an additional data 
source becomes available to all of the participants. CEC 
has logic for joining pieces of track for a target for which 
there are no measurements during a gap in data scans. 
This is particularly valuable in cases where the target is 
identified before the gap. One of CEC’s most impressive 
accomplishments is the ability of one platform to engage 
a target using data supplied entirely by other platforms. 
This can be a major advantage when the ship with the 
best geometry for detecting and tracking the target is not 
the one best positioned to engage it.

CEC builds an identical high-quality air picture on 
each platform, interfaced with the combat system. The 
Cooperative Engagement Processor (CEP) receives unfil-
tered sensor measurements (range, bearing, elevation, 
sometimes Doppler) from the platform’s sensors through 
the local combat system. Depending on the platform, 
either the local combat system or the CEP  associates 
each measurement with a particular track using statis-
tical measures to determine the best association. CEC 

shares information with other participating platforms 
through its own data distribution system, a high-capac-
ity jam-resistant point-to-point communication system. 
The communication system provides very low latency 
data from every member to every member of the net-
work. On arrival at the other CEPs, each measurement 
is incorporated into the track with which it is associated 
using a Kalman filter to estimate the target’s position and 
velocity. By sharing all the information at the measure-
ment level, and by providing identical data association 
and filtering algorithms at every platform, CEC allows 
each participant to build its own nearly identical copy of 
the same air picture. The minor differences among the 
databases resulting from delays in communication and 
limitations in bandwidth are very small compared with 
those among the completely independent platforms’ 
track pictures that would occur without CEC.

Fusing data at the measurement level is key to CEC’s 
success. By combining all the measurements of a target 
into a single composite track, the target becomes vis-
ible to and engageable by all participants with appropri-
ate weapons. By maintaining track continuity through 
maneuvers and crowded environments that would hope-
lessly muddle the track picture from a single sensor, CEC 
provides a cleaner, much less ambiguous picture with 
more persistent target identification. C oordination of 
engagements based on data from all of the AAW sensors 
transforms a battle group from a collection of individual 
combatants into a much more powerful networked air 
defense system.

Trident
Beginning in 1975, as a result of APL’s involvement 

in the Polaris and Poseidon programs and the foresight 
of the N avy sponsor S trategic S ystems P rograms, the 
Laboratory was able to play a significant role in the Tri-
dent Strategic Weapon System Improved Accuracy Pro-
gram.1 M ethods for understanding the causes of inac-
curacy during flight tests of the Trident I weapon system 
were developed that included advanced instrumentation 
and telemetry as well as system accuracy error estima-
tion techniques. For the Trident I weapon system, these 
allowed system-level model validation.

To improve the accuracy of the more advanced Tri-
dent II  weapon system, mere model “validation” was 
inadequate to effect significant precision enhancement; 
rather, system performance would need to be estimated 
with sufficient fidelity. In addition, flight tests were lim-
ited in number and constrained by expense and other 
logistical concerns, resulting in the commitment to 
maximize the information used from these tests.

The current Trident II  accuracy instrumentation 
suite includes an acoustic-based submarine veloc-
ity and position reference system, a GPS  translator 
on the missile, reentry body inertial measurement 	
instrumentation, and an acoustic sea-based portable 
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impact location system, among others. In other words, 
it is a constellation of sensors using various modalities 
or types of physical measurements to enable observa-
tion of a complex phenomenon (Trident II accuracy 
performance). The proper fusion of the data gathered 
by the instrumentation is required to ensure a high-
confidence accuracy evaluation capability. To accom-
plish this, stochastic models of accuracy contribute at 
a fundamental level, independent of the test environ-
ment, and are based on physics, first principles, and 
engineering test experience. Complete mathematical 
descriptions of these stochastic and physical processes, 
which include, for example, gyroscopic and acceler-
ometer hardware misalignments, scale factors, cross 
coupling, and functional dependence on accelera-
tion, were developed. The structure of these models 
provides the fundamental parameters that can affect 
accuracy. These parameters are then estimated, the 
estimates (and uncertainties on the estimates, cor-
related where appropriate) being derived from flight 
test data from the test sensor constellation and other 
system tests.

Information theory provides the groundwork for 
estimating the parameters and uncertainties or states 
of the model. Based on the data collected using maxi-
mum likelihood methods, the estimation process solves 
the nonlinear equations for the means, variances, and 
Markov parameters defined by the model structure. 
The confidence is quantified by the uncertainty on the 
parameters. This model-based evaluation allows a fur-
ther benefit: Since the parameters are at the fundamen-
tal level (suppose they include a bias and scale factor 
that do not depend on acceleration, plus terms that 
depend on acceleration linearly, plus terms that depend 
on acceleration squared), their effect on accuracy can 
be predicted on untested scenarios (for instance, with a 
different acceleration history). The models and detailed 
physical and engineering simulations are used to “propa-
gate” the model parameter states and uncertainties (at 
the fundamental level) to the untested scenario of inter-
est. The resulting uncertainty encapsulates both the 
measurement uncertainties and the parameter sample 
statistics through the states of the model and quantifies 
the ability of the model to make estimates in the new 
scenario.

The propagation of estimates with uncertainties 
in untested regions is a powerful result of this type of 
model-based test and evaluation (T&E) and has led to 
many important contributions, including the quanti-
fied understanding of system performance and confi-
dence in system performance predictions. Anomalies 
in flight tests can be more easily detected and their 
cause more easily isolated. I mproved understanding of 
the accuracy has also allowed optimization of control-
ling software, feeding the information gained from tests 
into system performance improvements. In addition, the 	

development of the accuracy T&E system, along with a 
rigorous analytical understanding of information fusion 
techniques, and the development of a proper instru-
mentation suite with information fusion as a key part 
of the systems engineering design, has enabled maximal 
use of limited flight test assets, allowing the reduction of 
follow-on testing.2,3

Key Enabling Components to APL’s Past  
Accomplishments

Careful studies of the above (and many other) past 
successes in DSIF applications at the Laboratory show 
that these outcomes would not have been possible with-
out the breadth and depth of relevant expertise at APL, 
our commitment to an approach driven by the overall 
system perspective, and our deep operational under-
standing of the applications. The breadth and depth of 
our expertise enables us to address technical challenges 
arising in multiple facets of a complex system in an 
integrated framework. The system-perspective think-
ing focuses our effort on optimizing designs of a system 
based on system-level performance (instead of indepen-
dent optimization of each component in isolation). A 
solid understanding of the operational view ensures 
the definition of relevant performance metrics and the 
dynamic optimization of trade-offs among them. As we 
address new and increasingly more complex challenges 
in DSIF, we will leverage our strengths and investigate 
strategic enabling research and technology areas where 
those strengths can best be used. At the same time, we 
will explore new and emerging applications for DSIF 
technologies, continuing to direct our research and 
development toward tackling longer-term critical chal-
lenges faced by the nation. Figure 1 summarizes the 
S&T vision in DSIF as defined by the APL DSIF Work-
ing Group (an S&T cross-enterprise initiative with rep-
resentatives from multiple business areas, including Air 
and Missile Defense, I nfocentric Operations, Strategic 
Systems, S&T, and Undersea Warfare).

STRATEGIC TECHNOLOGIES  
AND RESEARCH AREAS

Three technologies and research areas are well 
aligned with our strengths (Fig. 1) and also critical to the 
success of future DSIF applications: distributed human 
decisions, model-based fusion algorithms, and fusion-
driven resource management. We recognize that funda-
mental research areas such as sensor technology, esti-
mation and optimization techniques, signal processing 
algorithms, and human-machine interface technology 
are also key to the success of DSIF applications. APL, 
as well as many peer research organizations, has strong 
expertise in all of these areas. These three areas have 
been selected because of their strategic importance. We 
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believe that the Laboratory is well and uniquely posi-
tioned to make critical contributions in these areas that 
will lead to significant advances in DSIF technologies 
and ensure APL’s continuing leadership in this arena.

Distributed Human Decisions
Defining the role of the human in sensor data fusion 

has always been a challenge. Almost 40 years ago, during 
the Vietnam War, APL instrumented destroyers in the 
Gulf of Tonkin to determine how effectively humans 
could track targets on radar screens. The limited capac-
ity of the observer to handle large numbers of simulta-
neous targets was documented and led to the develop-
ment of automatic detection and tracking systems at 
the Laboratory in the 1970s. These automated systems 
eventually removed human involvement in sensor data 
processing and fusion for many Navy sensors. However, 
human involvement in sensor data processing remains 
key in many applications. Airborne sensor platforms 
such as the N avy’s E -2C  and the Air Force Airborne 
Warning and Control System (AWACS) have tradition-
ally relied heavily on human interpretation of the radar 
screen before making a target declaration and on human 
interaction to keep reliable track of targets over time. 
Most intelligence data are subject to human interpreta-
tion before use, and most identification (ID) decisions in 
the military remain human decisions. The Laboratory 
has developed automated I D systems such as Auto-ID 

sensor data, making inferences that 
could not have been made using 
the sensor data alone. E 2-C  and 
AWACS operators work with infre-
quent sensor measurements. During 
data gaps they often can extrapolate 
the measured sensor data using their 
a priori knowledge of what this par-
ticular target can and is likely to do, 
whereas automatic algorithms are 
generally unable to know enough 
about the “situation” to do this. 

Sensor data on a target (envi-
sion an SU V traveling through a 

Strategic enabling technologies

• Distributed human decisions
• Model-based fusion algorithms
• Fusion-driven resource management

Breadth and depth
of expertise

Systems
engineering

APL’s strength in DSIF

Operational
understanding

New and emerging applications

• Sensor networks
• Specific target identification
• Strategic situation awareness
• Global strike
• Affordable test and evaluation
• Biological threats detection

Figure 1.  S&T vision on DSIF defined by the Laboratory’s DSIF Working Group.

city) can be spotty and eventually the target disappears, 
leaving no systematic way to predict its movement. The 
human, however, can use unstructured a priori informa-
tion (the existence of a roadblock, the history of past 
target road choices) to make the best extrapolation. 

Although automatic systems can certainly be devel-
oped to use a priori information, applying the well-
known principles of B ayesian inference, this requires 
putting the information into a structured mathematical 
framework, which is difficult with a voice radio report 
of a roadblock or a collection of observations by other 
operators on past target tendencies. B ut the human 
mind excels at combining divergent types of informa-
tion arriving in very unstructured formats. The key 
challenge arises when one wishes to fuse together inputs 
from different nodes at which humans are collabora-
tively making inferences (Fig. 2 illustrates a possible sce-
nario). While techniques and algorithms for automatic 
fusion of sensor data are well understood and have been 
researched extensively, the necessary tools to support 
effective collaborative human decisions remain an open 
and potentially fruitful area for the Laboratory.

Model-based Fusion Algorithms
Many fusion approaches are limited to the corre-

lation of different sources of data, resulting in a mul-
tiply co-registered, yet still complex and disparate, 	
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Figure 2.  Distributed human decisions scenario.

and CEC ; however, these systems 
generally are not the last word in 
ID but instead provide an input to 
a final human decision. The recent 
Defense S cience B oard investiga-
tion of the Iraqi Freedom Campaign 
called for more human involvement 
in ID decisions—not less.

One common attribute in these 
uses of human decision making is 
the human’s ability to gather and 
organize unstructured, a priori infor-
mation about a problem and then 
mix that information with measured 
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collection of data points. These approaches have some 
use in relatively data-sparse tracking applications but 
may not employ the majority of the information con-
tent available to the fusion process. Some more com-
plex approaches use a feature-level fusion based on 
estimates of the feature fusion methods (probabilities). 
These estimates may be empirically derived, or at best 
derived for a limited portion of the operational envelope 
of the detection systems whose data are intended to be 
fused. Any deviation from that setting (for example, a 
change in sensor/object relative geometries, velocities, 
and accelerations or new data from an untested sce-
nario) would at least necessitate a rederivation of the 
feature fusion result, and feature-level fusion may not 
work at all for raw measurement-only methods. 

However, there are methods of fusion theory, includ-
ing methods of model-based fusion, that allow the 
simultaneous operation of changes in sensor geometry 
and measurement effectiveness, changes in the object, 
and environmental or other “nuisance” parameters. The 
word “model” here does not connote a cardboard or 
plastic object with which to view aspects of the problem, 
nor is it meant to be limited to a family of computer-
aided design and engineering results. Rather, the term 
is understood to be a mathematical abstraction for the 
purpose of representing parameters of interest and the 
structure of the dynamics of the system, which includes 
the system model, measurement model, state parameters 
to be estimated in the state vector, initial conditions, 
physical constraints, other assumptions (e.g., measure-
ment noise is usually statistically uncorrelated with 
process noise), etc.4 S uch a mathematical abstraction 
may be based on the physics of the target common to 
all sensor modes and must model states that can poten-
tially be observed.

Information fusion processes that can be performed 
using likelihoods of data fusion (or data prediction, with 
probabilities conditioned on the previous data through 

with measurement sensitivities of high fidelity and other 
states estimated in the aggregate.

Model-based fusion—with evaluations of probabili-
ties (including the multiple hypothesis methods neces-
sary to nearly optimally combine multiple measurements 
and the careful B ayesian computations of likelihood 
ratios) as well as estimates of the parameters of model 
states and the uncertainty in those parameters—can 
yield the most accurate account of the actual amount of 
information available from all measurements. I n addi-
tion to estimating the parameters, the uncertainty in 
the estimates can show where new data can make the 
greatest impact on the fused estimate, allowing feedback 
to tasking future measurements for a full use of quantita-
tive inductive logic (see, e.g., Ref. 5).

Fusion-Driven Resource Management
Efficient management of resources (i.e., sensing, com-

puting, communications) is important to the success of 
DSIF applications. Traditionally, resource management 
in a data fusion process is treated as a separate compo-
nent that is part of the so-called level-4 process refine-
ment as defined in the JDL data fusion process model6 
(Fig. 3). Consequently, the designs of resource manage-
ment techniques are focused on ensuring the timely 
delivery and processing of data/information to support 
the data fusion processes for source processing and level 
1–3 fusions. As DoD systems become more net-cen-
tric and rely on shared resources, this simplistic view 
of resource management as part of the DSIF process 
is no longer adequate. One challenge is the increasing 
need for distributed information fusion over limited and 
dynamic network connectivity for operations in urban 
and complex environments. Management of communi-
cation resources for distributed fusion requires effective 
dynamic topology management and information shar-
ing strategies that are tightly coupled with the design 
of fusion algorithms.7 Furthermore, for many emerging 
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Figure 3.  JDL data fusion process model.

the states of the model) permit a 
much broader range of applicabil-
ity when the model states describe 
a sufficiently fundamental or invari-
ant representation of the sources of 
the data being fused. M odels that 
can be used range in fidelity from 
simply statistical (with little regard 
for the reasons behind the states) 
to intricate and accurate stochastic 
representations of any observable 
physics of the target or observed 
phenomena, depending on the 
purpose for the estimation and the 
observability that can be operation-
ally expected. M ost often a model 
is a combination of the two, with 
some crucial states being modeled 
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DSIF applications involving large networks of low-power 
devices, resources need to be tightly managed to ensure 
the necessary operating system lifetime while maintain-
ing strong detection and classification performance. 
Figure 4 illustrates the strong couplings and interdepen-
dencies among the three functional components in a 
network-centric DSIF application: sensing control, data 
processing, and communications. 

Existing techniques for handling limited resources 
for distributed fusion applications are focused on local 
optimization of individual resources. For example, power 
constraints may be dealt with by sleep cycles that are 
planned locally, with a goal of minimizing power usage 
within a subsection of the system, without reference to 
the needs of the detection system’s information state. 
However, a small amount of (locally) nonoptimal power 
usage resulting in an increased information gain (and 
thus performance) for the entire system is globally prefer-
able. We believe that an effective approach is to focus on 
global resource management driven by system-level per-
formance defined by the information fusion application. 

Working with the U ndersea Warfare and I nfocen-
tric O perations business areas, the S &T business area 
is investigating fusion-driven resource management 
techniques to improve the detection performance and 
energy efficiency of autonomous sonobuoy networks for 
the ASW application under independent R&D funding 
(preliminary concept design and analysis are reported 
in Ref. 8). The emphasis of this effort is on providing 
an example of optimization of global resource utilization 
for a system in which such optimization is not currently 

being done. The successful result would be a quanti-
fication for increased performance (measured by the 
detection goal of the entire system or network) using 
the fusion process as the standard for optimization, even 
when a subsystem or aspect of the system in question 
appears to be nonoptimal.

NEW APPLICATION AREAS
In this section, we briefly describe a number of 

important new application areas for the DSIF technolo-
gies. These applications define novel and significant 
technical challenges being considered as we formulate 
our S&T vision in DSIF. One new application critical 
to national security is the distributed surveillance and 
detection of biological threats. APL has played a key 
role in the development and deployment of large-scale 
syndromic surveillance infrastructures. The S&T vision 
for this important area is discussed in this issue in the 
article by Demirev et al. and references therein.  

New Sensor Networks
Sensor networks are poised to revolutionize the way 

we interact with the environment. Fueled by M oore’s 
law, we can now manufacture inexpensive computing 
nodes equipped with sensors that can be deployed very 
close to the physical phenomena we want to observe and 
possibly alter. These nodes are battery operated and can 
communicate with each other using low-power radios, 
enabling easy deployment, low-maintenance, and long-
duration observation of physical phenomena. I n the 
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Figure 4.  Coupling of three high-level functions in net-centric DSIF.

civilian sector, sensor networks 
have been deployed for environ-
mental monitoring, remote moni-
toring of the behavior of animal 
species, and structural monitoring 
of buildings and equipment. Sensor 
networks have already seen active 
duty deployments in the military. 
They have been used to detect 
enemy movements and locate snip-
ers in urban environments.

Although these early applications 
indicate the potential offered by 
sensor networks, they only scratch 
the surface in terms of complexity 
of the applications and the size of 
the network deployments. S pecifi-
cally, most sensor networks today 
are used to transfer measurements 
taken by individual nodes to a cen-
tralized location for post-process-
ing. In this way, the sensor network 
acts as a wireless telemetry network 
passing measurements from the field 
to the lab for analysis. However, the 
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full benefit of sensor networks is realized by in-network 
processing, where sensor nodes collaborate to process 
collected information inside the network and pass the 
results to the remote site, thereby reducing the amount 
of data transmitted, and in turn reducing power con-
sumption and increasing the network’s lifetime.

DARPA’s Sensor Information Technology9 (SensIT) 
and Networked Embedded Systems Technology (NEST) 
programs have made great strides in developing collab-
orative signal processing algorithms, power-efficient 
communication protocols, and middleware and pro-
gramming tools for wireless sensor network applications. 
Nevertheless, successful deployment of any large-scale 
wireless sensor network application remains a signifi-
cant technical undertaking. The key challenge lies in 
the complexity of developing such applications with the 
software tools available today. E ven with nesC,10 the 
state-of-the-art programming language for sensor net-
work applications, application programmers are forced 
to write low-level system code that resembles the assem-
bly code used in the 1950s and 1960s for writing main-
frame applications because sensor nodes are resource 
constrained and therefore the application must control 
low-level details to optimize resource use. H owever, 
many of these resource constraints are temporary. We 
expect that the next generation of sensor nodes will 
have an order of magnitude higher processing speed and 
memory capacity. Nevertheless, domain experts in rel-
evant fields are not expected anytime soon to learn to 
write low-level code for their sensor networks.

The Laboratory has engaged in several important 
DoD initiatives that involve deployment of large wire-
less sensor networks, including the Giant Shadow Exer-
cise, O peration S ilence H ammer, and the sonar buoy 
network for the ASW application. O ur strengths in 
addressing end-to-end system optimization driven by 
operational understanding will provide key insights into 
the development of effective tools and enabling algo-
rithmic techniques for the deployment of future sensor 
network applications.

Specific Target Identification and Modeling  
for Ground Targets

After the measurements from a set of sensors indicate 
a number of objects, there may follow a gap in the col-
lection of data scans. O nce new data arrive after the 
gap, the determination of the likelihood that the objects 
measured before and after the gap are identical is called 
the process of specific target identification (STI). Con-
sider a scenario where the objective is the surveillance 
of a vehicle traveling close to similar vehicles as they 
enter a tunnel. Later, a vehicle emerges: Is it the one of 
interest? Another example is a set of unattended aerial 
vehicles watching some military threats across some 
border when priorities change and the sensors must be 

retasked. After a while, the same border is under surveil-
lance again, and similar military threats are observed. 
Are these the same threats? What is the total number of 
such threats? Questions such as these are addressed by 
STI. Target classification may help the STI process but 
is not required. It may be sufficient in some applications, 
even when the classification is unknown, to know that, 
whatever its classification, the target is the same before 
and after. 

Most real-world applications for STI will be in the 
context of multiple sensor data fusion. Any sensors that 
can detect the target or signature of interest will likely 
also have other tasks, so they cannot simply “stare and 
keep staring” at the object of interest. In addition, if the 
importance of the object is high enough, disparate types 
of sensors may be configured to provide scans of the data 
(occasional “looks,” “listens,” etc.) that would include 
the object of interest. The need to use data from mul-
tiple scans and multiple sensor types, with potentially 
varying ability to observe the appropriate signatures, 
would argue for a type of model-based fusion. If the STI 
likelihoods could be computed using multiple hypoth-
esis methods and model-based fusion with appropriate 
fidelity, the results would contain the maximal data 
available for STI.

Strategic Situation Awareness
A great deal of the actual data that eventually 

inform decisions by the N ational C ommand Author-
ity are likely in some kind of electronic form before any 
human actually evaluates the data. In addition, develop-
ing a response to any situation of strategic importance 
involves the work of many people, most of whom are 
probably not located where different specific courses of 
action are being developed or decisions are being made. 
With the advent of global networks, it is possible to 
instantly share data and collaborate on evaluation and 
possibilities. How much of this has gone beyond “chat-
room”-type discussions and I nternet “phone lines”? 
Using the various DSIF technology areas, it would be 
possible for computer networks to fuse and correlate 
data into a clearer picture of the actual situation, allow-
ing the humans to spend more of their resources doing 
what they do best—providing creative alternatives, 
being ready for any coup d’oeil resulting in a successful 
plan, and making decisions based on complex and some-
times poorly quantified human factors. This informa-
tion fusion bridge between and among intelligence/sur-
veillance/reconnaissance (ISR), strategic command and 
control, and all levels of national response may prove to 
be a crucial tool in future strategic calculations.

Global Strike
The S trategic C ommand G lobal S trike mission 

requires sufficient information to assess a potential 
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threat anywhere in the world, define a course of action, 
and implement the action in an extremely expedited 
time frame. The resultant needs for fast battle-space 
awareness, fast decision making, and fast damage assess-
ment can all benefit from information fusion technolo-
gies and expertise. Multiple sensor “strategic targeting” 
employing multiple hypothesis methods and optimized 
ISR allocation tools, all using model-based fusion and 
validated sensor performance models, can allow the best 
application of available assets to find, locate, and track 
the types of threats involved in the shortest time pos-
sible. The understanding of this fused data, correlated 
with other needed information in a collaborative envi-
ronment, will be aided by the distributed human deci-
sions technologies of the type discussed previously. No 
operation is complete until an assessment of success 
shows that no further action is necessary, and this can 
be demonstrated in the most timely manner by the opti-
mizing and quick methods similar to those used for the 
initial ISR picture.

Affordable Test and Evaluation
Constraints on testing budgets and range safety and 

other logistical issues make operational T&E difficult at 
times. O ne of the main purposes of operational T&E 
is to provide the quantified assurance that the system 
under test will perform as required in an operational set-
ting. In model-based T&E, common fundamental models 
of those factors that can affect system performance are 
developed that are independent of exact mode of opera-
tion, location in the design envelope, or environment 
across multiple potential missions. Sufficient instrumen-
tation and test systems engineering allow a data fusion 
approach for estimating the scenario-independent 
common performance models to accumulate informa-
tion on model parameters from data across both tradi-
tional “operational tests” and to properly constructed 
laboratory and simulated environment tests, analogous 
to the Trident II T&E outlined earlier.

With high-fidelity fundamental models, regions of 
performance in many environments (acceleration, vibra-
tion, heat, etc.) are estimated with the terms that show 
the effect of the environment but are themselves inde-
pendent of them. Enhanced ground tests, plus properly 

instrumented flight tests, will show the predicted per-
formance of the system to untested scenarios and also 
provide the quantification of how well that performance 
is known, pointing to areas of need for future testing. 
This results in the best use of all test data and an objec-
tively quantified confidence in performance predictions. 
Experience has shown that this combination can dra-
matically reduce the assets required to perform opera-
tional tests to attain a given confidence and provide a 
robust, analytical means to deal with the fact that not 
all potential operational scenarios are possible in a test 
environment.

CONCLUSION
In this article we have reviewed past APL accomplish-

ments in DSIF and presented an S&T vision on how we 
should move forward to ensure APL’s leadership position 
in this important area, building on our past successes. 
Motivated by the new and emerging DSIF applications 
for DoD and homeland protection applications, we see 
the three key research areas covered in this article that 
are well aligned with the Laboratory’s strengths. 
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