
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004) 91

GLOBAL RANDOM OPTIMIZATION

P

Global Random Optimization by Simultaneous
Perturbation Stochastic Approximation

John L. Maryak and Daniel C. Chin

ractitioners of iterative optimization techniques want their chosen algorithm to reach
the global optimum rather than get stranded at a local optimum value. In this article,
we discuss two theorems on the global convergence of an algorithm called Simultane-
ous Perturbation Stochastic Approximation (SPSA) that has performed well in complex
optimization problems. The fi rst provides conditions under which SPSA will converge in
probability to a global optimum using the well-known method of injected noise. In the
second theorem we show that, under different conditions, “basic” SPSA without injected
noise can achieve convergence in probability to a global optimum. This global conver-
gence without injected noise can have important benefi ts in the setup and performance of
the algorithm. We present a numerical study comparing the global convergence of SPSA
to that of a genetic algorithm.

INTRODUCTION
Simultaneous Perturbation Stochastic Approxima-

tion (SPSA) is a powerful algorithm for optimization in
complex systems. This APL-developed algorithm has
been successfully used in numerous applications around
the world. This article describes two theoretical results
pertaining to the global convergence performance of
SPSA. We set the stage in this section with a discussion
of optimization, stochastic optimization, and stochastic
approximation (SA) in general. We then briefl y describe
the SPSA algorithm, introduce the issue of global con-
vergence of a recursive optimization scheme, and pres-
ent our main results.

Optimization Algorithms
Many, if not most, problems in mathematical opti-

mization can be expressed as fi nding the setting of

certain “adjustable” parameters so as to minimize a “loss”
function. To make this discussion more concrete, con-
sider the problem of setting traffi c light timing sched-
ules (the length of the red, yellow, and green cycles) in a
portion of a city to minimize the total time spent by
vehicles in that area waiting at intersections during rush
hour (Fig. 1). In this context, the parameters are all of
the numbers needed to express the traffi c light timing
strategy, and the loss function is the resulting average
(over several days, say) total delay time for vehicles in
that area during rush hour. In the following discussion,
we suppose that the parameters are strung together into
a column of numbers, a vector that we denote by �. The
loss that occurs using the setting � is denoted by L(�).
Typically, the loss function is a single number (scalar)
expressing a quantity, like the average total delay time,
that one wants to minimize. Suppose for now that there

BASIC RESEARCH

92 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004)

J. L. MARYAK AND D. C. CHIN

is a unique single value of � that minimizes L(�). We will
designate this optimum value of � as �*.

Optimization algorithms are ubiquitous and essential
in our technical society, with applications ranging from
control systems, estimation, modeling, design methods,
and system simulation to stock market analysis. At APL,
optimization methods have been used in optimal target-
ing of weapon systems, signal timing for traffi c control,
locating buried ordnance, and optimization of queuing
and missile guidance systems.

Many approaches have been devised for numerous
applications over the long history of this type of prob-
lem. Perhaps the most common approach is to use an
iterative (recursive) search algorithm, i.e., an algorithm
that starts with an initial guess, say ˆ ,�0 of the value of
�*, and then uses some information about the loss func-
tion at the current guess ˆ ,�k to compute the next guess,
ˆ ,�k + 1 as to the value of �*. These steps are repeated to

improve the guesses as the iterations continue so that
eventually the iterates �̂k converge to �*. Figure 2 is a
simple example of this process where the dimension of
� is 2. In these algorithms, the “information about the
loss function” often includes some form of information
about the gradient (derivative), ∂ ∂L ,(ˆ) /� �k of the loss
function at ˆ .�k The gradient is a vector that expresses
information about the slope of the loss function at the
current iterate (ˆ)�k of �, which can be useful in indicat-
ing where to look for a better value of �. In the discus-
sion here, we will assume that these derivatives are well
defi ned (i.e., exist mathematically) and refer to the gra-
dient as g() () /� � �� ∂ ∂L .

Stochastic Search Algorithms and Stochastic
Approximation

The term stochastic optimization is used to indicate
that there is some randomness in the optimization
problem scenario. A common example is an application

in which only noisy measurements
of the loss function are available.
For example, in the traffi c control
problem mentioned earlier, it is clear
that any particular average of mea-
sured delay times will only be an
approximation to the true long-term
average value, i.e., the computed
average will be a noisy measurement
of L(�). To refl ect this condition, let
us defi ne the measurement actually
obtained as y(�) = L(�) � measure-
ment noise, where the measurement
noise may or may not be zero. A
common approach to handling
stochastic optimizations is to use a
search algorithm that includes some
form of averaging in hopes of “aver-
aging out” the effects of the random-

Figure 1. Overall system-wide traffi c control concept. The traffi c control center provides
timing information to signals in the traffi c network, and information on traffi c fl ow is fed
back to the traffi c control center.

ness. A useful software “toolbox” for stochastic optimiza-
tion has been developed at APL by Brian Reardon1 in
connection with work on the performance optimization
of missile guidance and control algorithms.2

We want to focus here on one very popular type of
search algorithm called stochastic approximation. The
general recursive SA form is

 ˆ ˆ ˆ (ˆ) ,� � �k k k k ka g+ = −1 (1)

where {ak} is a sequence of positive scalar coeffi cients
(often called “gains”) that typically decreases to zero,
and ˆ ˆ)gk(�k is either the gradient at �̂k or an approxima-
tion (possibly corrupted by noise) to the gradient g(ˆ)�k
computed at the kth step of the algorithm. Here, k =
1, 2, 3, … counts the iterations of the algorithm, which
essentially repeats Eq. 1 over and over until (it is hoped)

L(,)

t1

Initial guess

Solution

t2

t1 t2

Figure 2. Example of a stochastic optimization algorithm mini-
mizing the loss function L(t1, t2). Height of vertical line after each
optimization step denotes loss function value.

Time
F

lo
w

 e
ffi

ci
en

cy

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004) 93

GLOBAL RANDOM OPTIMIZATION

the iterates �̂k
 converge to �*. The general form shown

in Eq. 1 occurs in many well-known algorithms such as
neural network backpropagation, steepest descent, least-
mean-squares, and simulation-based optimization. Intu-
itively, the minus sign in the equation indicates that the
algorithm is moving, at least roughly, in the “gradient
descent” direction, i.e., downhill along the loss func-
tion surface, toward the minimum. Also, the recursive
form of the algorithm effectively results in a weighted
averaging of the gradient terms, which, under the proper
conditions, provides a useful averaging effect on the
inherent randomness. SA algorithms have been used
effectively for many years, and a large body of theory
exists describing the convergence and other properties
of these algorithms (see, e.g., Kushner and Yin3).

Approximate-Gradient Stochastic Approximation
In the fi eld of SA, a distinction is often made between

problems in which a direct, possibly noisy, measure-
ment or computation of the gradient is available and
those in which it is not. The available-gradient type
of SA is often referred to as the Robbins-Monro SA,
and the approximate-gradient type (also known as the
gradient-free type) is usually called the Kiefer-Wolfowitz
type of SA. In many practical problems, the gradient
is not readily available. For example, in the traffi c con-
trol application, one has no idea of the exact nature of
the functional relationship of the loss (total delay time)
to the parameters (signal light settings), much less the
derivative of that function.

A standard approach to approximating the gradient
is the “fi nite difference” method of elementary calcu-
lus. In this method, the ith component of the gradient
approximation is computed as

y ce y ce

c
i i() ()

,
� �+ − −

2
(2)

where (as mentioned above) y(•) is the actual, possibly
noisy, measurement of L(•); ei is a vector with a one in
the ith component and zero in all the other compo-
nents; and c is a small positive number. Afi cionados of
numerical methods will recognize this as a “two-sided”
gradient approximation. There is also a “one-sided” ver-
sion which is sometimes used, but the distinction is not
important for our purposes here. Using this gradient
approximation in Eq. 1 results in an approximate-gra-
dient SA in which the ith component of the gradient
approximation is

 ˆ (ˆ)
(ˆ) (ˆ)

,gki �
� �

k
k k i k k i

k

y c e y c e

c
=

− −+

2
 (3)

where {ck} is usually chosen to be a decreasing sequence
of small positive numbers. This form of SA, often called

a fi nite difference SA (FDSA), is the classical form of
the gradient-free SA for stochastic optimization. The
FDSA has been extensively studied (e.g., Kushner and
Yin,3 chapters 1, 5, 6, and others; Spall,4 chapters 6 and
7 and references therein) and is known to converge to
a local minimum (see the discussion below) of the loss
function under various conditions.

Simultaneous Perturbation Stochastic
Approximation

The main focus of this article involves the SPSA
algorithm, which was developed at APL by Jim Spall.5
SPSA is an approximate-gradient SA that uses the stan-
dard algorithm form shown in Eq. 1 as well as a special
form of gradient approximation called the “simultaneous
perturbation” gradient approximation. In SPSA, the ith
component of the gradient approximation is computed
as

 y c y c
c i

() ()
,

� �+ � �

�

− −
2

 (4)

where � is a vector having the same size as � and con-
tains elements randomly generated by computer accord-
ing to specifi cations,5 and � i is the ith component of �.
The � i are usually (but not necessarily) generated from
the Bernoulli (�1) distribution. Uniformly or normally
distributed perturbations are not allowed by the condi-
tions in Ref. 5. Substituting the gradient approximation
shown in Eq. 4 into Eq. 1 results in the approximate-gra-
dient SPSA in which the ith component of the gradient
approximation is

ˆ (ˆ)

(ˆ) (ˆ)
gki �

� �

k
k k k k

k

y c y c

c
=

− −+ () ()

(

� �

�

k k

k2))i

.

(5)

Here, �(k) is the vector of random elements generated
at iteration k, and �(k)i is the ith component of �(k). An
excellent introductory discussion of SPSA is given in
Ref. 6.

While the approximations in Eqs. 2 and 4 have
a superfi cial similarity, they are in fact quite different
computationally. Since this difference is important to
our story, let us look more closely at the two approxima-
tions. The FDSA gradient approximation vector is

[() ()] /

[() ()] /

y ce y ce c

y ce y ce

� �

� �

+ − −

+ − −
1 1

2 2

2

2cc

y ce y ce cp p

M

[() ()] /

,

� �+ − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥2

(6)

where the dimension of � is p (i.e., � is a p vector), while
the SPSA gradient approximation is

94 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004)

J. L. MARYAK AND D. C. CHIN

[() ()] /

[() ()] /

y c y c c

y c y c c

� �

� �

+ − −

+ − −

� � �

� � �

2

2
1

22

2
M

[() ()] /

.

y c y c c� �+ − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥� � �p

(7)

Note that the FDSA gradient (Expression 6) needs
to obtain the measurement y(•) of the loss function at
2p values of the argument (� � cei), whereas the SPSA
gradient (Expression 7) only needs two measurements of
y(•), regardless of the size (p) of �, since the components of
the approximation in Expression 7 differ only by the � i
in the denominator. Since the � i are computer-generated
random numbers, the cost of obtaining the � i is essentially
zero. In contrast, the cost of obtaining the loss function
measurements can be huge. For example, in the traffi c
control application, obtaining this measurement might
require having a large group of people on the streets with
stopwatches. So in terms of (possibly expensive) loss
function measurements, the FDSA gradient approxima-
tion costs p times as much to compute as that of SPSA.
This difference means that SPSA has the potential for
requiring far fewer measurements than FDSA in fi nding
�*. On the other hand, the FDSA computation tends (at
least when the loss function is not corrupted by noise)
to produce a very good gradient approximation since it
follows the standard defi nition from calculus. In contrast,
the SPSA gradient is not a very good approximation to
the true gradient. This direct connection to the true
gradient would seem to give FDSA a potential edge in
fi nding �*. However, Spall5 has shown that the SPSA
potential advantage is the dominant one for optimization.
In fact, under reasonably general conditions, SPSA can
do about as well as FDSA through the use of only 1/p
times the number of loss function measurements that
FDSA would require.

An intuitive explanation of this remarkable perfor-
mance advantage for SPSA is that the algorithm (shown
in Eq. 1) naturally results in a kind of averaging (con-
trolled by the ak terms) of the gradient approximations
across iterations. Since the SPSA gradient approxima-
tion is an “almost unbiased estimator” of the gradient,6
the errors in the approximation tend to average out over
the long run of iterations. This 1/p advantage for SPSA
can result in immense savings for a complex (large p)
application when the loss function measurements are
costly to obtain.

This relative effi ciency of SPSA has important impli-
cations for APL’s work for DoD as well as civilian applica-
tions. For one thing, we have a powerful tool for projects
that require optimization in a complex setting. In addi-
tion, problems that could not previously be attempted
with conventional methods (because of the infeasibility
of collecting the loss function measurements or imprac-
tical computation times) may now be solvable. Examples

are the traffi c control, optimal targeting, and munitions-
locating projects mentioned above, which are discussed
in more detail in Spall.6

SPSA has proven to be an effi cient and effective opti-
mization tool in many complex applications. In addition,
a large body of literature on the theory and practice of
SPSA has accumulated, generalizing the convergence
properties of the basic form, introducing modifi ed forms
of the algorithm and proving their properties, giving
instruction on how to set up and run the algorithm, and
describing numerous successful applications. A good
source of this information is the APL Web site http://
www.jhuapl.edu/spsa.

GLOBAL OPTIMIZATION

Introduction
A common desire in many applications is that

the algorithm will reach the best possible minimum
rather than be left at a “local minimum” value of the
parameter. A glance at Fig. 3 provides an intuitive idea
of what we mean by this. The “minimum” of L(�) at
�a

* is called a local minimum, since all of the � values
in some small neighborhood of �a

* give a larger value
of L(�). However, �a

* does not give the best possible
minimum of L(�) available in the “allowable � domain.”
The smallest value of L(�) in this example is L(�b

*), and
so �b

* is called the “global” minimum (�b
* is sometimes

also referred to as a local minimum since it satisfi es the
defi nition, but we will avoid that usage). Figure 4 gives a
slightly more sophisticated (since � here is a two-vector)
picture of a function L(�) having both local and global
minima. In “real life,” it is not always obvious whether
the situation exhibits both local and global minima, nor
what the impact would be of using only a locally best
solution. For example, in the traffi c control scenario,
we can speculate that the standard fi xed traffi c signal
timing strategy might produce a local minimum of the
average delay time, while police offi cers directing traffi c
at key intersections might produce the truly best result
since they can more readily react to the traffi c fl ow
conditions at the moment. Of course, in an application
where the loss function is directly related to resources
or fi nances (e.g., timing trades in the stock market), the
value of fi nding the global optimum solution may be
more obvious.

Local minimum

�

Global minimum

*
b��

(
)

L
 �

*
a

Figure 3. Local and global minima.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004) 95

GLOBAL RANDOM OPTIMIZATION

Incidentally, the idea of an allowable � domain (men-
tioned above) is an important, and sometimes complex,
issue in most applications. Usually there are practical
limits on the � values that can be considered. Indeed,
sometimes � cannot take on a continuum of values (e.g.,
one component of � might be an integer enumerating the
amount of some resource); in that case, gradient-based
methods (approximate or not) may not be applicable.
One result of this is that the algorithm may need to be
specially designed to handle these constraints (see, e.g.,
Wang and Spall7). For simplicity in this article, we will
ignore these complications and assume that the compo-
nents of � are all defi ned on a limitless continuum.

Also for simplicity, let’s continue to assume just one
global minimum of L(�). Slightly more general results
may include the assumption that there are a fi nite or
infi nite number of global minimum points �i

* such that
L(�) has the same value at every �i

* and for all other
�, L L i() (),*� �> i.e., strictly larger than at the global
minima. This distinction is not important for our mes-
sage here.

Using Injected Noise to Promote Global
Optimization

Several authors8–11 have examined the problem of
global optimization using various forms of gradient-free
SA. The usual approach involves using the computer
to add random noise to an algorithm like Eq. 1, where
ˆ ˆ)gk(�k may be the FDSA gradient approximation or the

actual gradient g(ˆ).�k In the latter case, which may be
referred to as “steepest descent with injected noise,” the
algorithm is

 ˆ ˆ (ˆ) ,� � � �k k k k k ka g q+ = − +1 (8)

where qk are appropriately selected scalars and �k are
random (usually standard Gaussian) p-dimensional
vectors satisfying certain conditions. It is known that

carefully injecting noise in this way can result in an
algorithm that converges (in some sense) to the global
minimum. For a discussion of the conditions, results,
and proofs, see, e.g., Gelfand and Mitter,9 Kushner,10
and Fang et al.12 These results are based on the intuitive
idea that promoting global convergence by the injection
of extra noise terms into the recursion may allow the
algorithm to escape � neighborhoods that produce local
minimum points of L(�), especially in the early iterations
of the algorithm. This idea is illustrated in Fig. 5. The
amplitude of the injected noise is decreased over time
(a process called “annealing”) so that the algorithm can
fi nally converge when it reaches the neighborhood of
the global minimum point.

GLOBAL OPTIMIZATION USING SPSA

Overview
The main goal of this article is to discuss some global

convergence properties of SPSA. Perhaps this is a good
point to mention the value of theoretical results in an
applied science like optimization. An analyst with an
optimization problem is, of course, interested in using
an algorithm that will yield a solution that improves the
performance of the actual (physical) system. Since there
are many algorithms available, the analyst may look at
various factors to help in the selection of an algorithm
such as:

• Numerical studies or recommendations of other
practitioners. These may be useful if the applications
are similar to the scenario of interest to the analyst.
However, the results of an algorithm or study in an
unrelated application are usually not meaningful in
themselves. In fact, optimization theory provides
confi rmation of this common-sense idea in the form
of “no-free-lunch theorems,” which prove essentially
that no algorithm will work well on all problems.

�

(
)

L
 �

 = (,)

t1

t1 t2
T

t2

�4
�2

2
4

0

�80

�60

�40

�20

0

20

4
2

0
�2

�4

Figure 4. Local and global minima for a two-dimensional loss
function. Unique global minimum is near [�2.9, �2.9]T. (Reprinted
from Ref. 4 with permission of John Wiley & Sons, Inc., © 2003.)

*�

(
)

L
 �

Without injected
noise (Case I)

With injected
noise (Case II)

Difference due to
random injection

k� �k�1 �k�1 �

Figure 5. Injection of random noise can promote convergence to
the global minimum of L(�). Case I: ˆ ˆ ˆ (ˆ).� � �k k k k ka g+ = −1 Case II:
ˆ ˆ ˆ (ˆ)� � �k k k k ka g+ = − +1 injected noise.

96 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004)

J. L. MARYAK AND D. C. CHIN

• Intuitive notions that an algorithm might work well.
These approaches, sometimes based on an analogy
with a successful physical or biological system, can
seem reasonable, but it may be diffi cult to establish
that they are useful in a specifi c application.

• Mathematical results that describe the algorithm’s
performance under various hypotheses. A diffi culty
with such theoretical results is that the hypotheses
may not be fully satisfi ed (or may be hard to verify)
in a real-world application. Furthermore, such results
tend to refer to the asymptotic (large k) performance
of the algorithm. But analysts often prefer an algo-
rithm that is proven to perform well (e.g., converges
to the correct optimum value and exhibits a certain
rate of convergence) under some conditions, com-
pared to an algorithm that has little or no theoretical
support. In addition, asymptotic effects often are seen
after a reasonable number of iterations, and theory
often can serve as an indication of the type of problem
in which an algorithm will perform well.

A considerable body of theory has been developed for
SPSA, for example, Spall (chapter 7),4 Spall,5,13 Chin,14
Dippon and Renz,15 and the SPSA Web site given
previously. Prior to the work that we report here, this
theory did not include global convergence results.
Recall that global convergence theory does exist for
standard implementations of SA. However, because of
the particular form of SPSA’s gradient approximation,
existing theory on the global convergence of standard
SA algorithms is not directly applicable to SPSA. In the
next section we discuss a theorem showing that SPSA
can achieve global convergence (“in probability”; see
the defi nition in Comment (a) after Theorem 1 below)
by the technique of injecting noise. The convergence-
in-probability results of our Theorem 1 and Theorem 2
are standard types of global convergence results. Several
authors have shown or discussed global convergence in
probability or in distribution.9,12,16–21 Stronger “almost
sure” global convergence results seem only to be avail-
able by using a generally infeasible exhaustive search22
or random search methods,23 or for cases of optimiza-
tion, in a discrete � space.24

In the subsequent section, we discuss a theorem show-
ing that SPSA can, under different conditions, achieve
global convergence without the injection of extra noise.
As will be seen, this can have advantages in setting up
the algorithm and can provide a dramatic increase in
the speed of convergence relative to classical approxi-
mate-gradient SA algorithms that need injected noise.

SPSA with Injected Noise
Our fi rst theorem applies to the following algorithm,

which is the basic SPSA recursion indicated in Eq. 1,
modifi ed by the addition of extra noise terms:

 ˆ ˆ ˆ (ˆ) ,� � � �k k k k k k ka g q+ = − +1 (9)

where
 �k = (usually) a p-dimensional vector of indepen-

dent, identically distributed (i.i.d.) standard Gauss-
ian injected noise,

 ak = a/k,

 q q k kk
2 = / log log(),

a > 0,

 q > 0, and

 ˆ ()gk
• = the simultaneous perturbation gradient de-

fi ned in Eqs. 4 and 5.

This is similar to Eq. 8, but here the SPSA gradient
approximation replaces the true gradient.

Our Theorem 1 (below), on the global convergence
of SPSA using injected noise, is based on a result in Gel-
fand and Mitter.9 The theorem requires eight technical
hypotheses, which we will not list here. They can be
found in Maryak and Chin.25 The hypotheses include

• Descriptions of and restrictions on the SPSA setup
(coeffi cients, choice of �k, etc.)

• Conditions on the measurement noise attached to
L(�)

• Conditions on the injected noise terms
• Conditions on the loss function, mainly differentia-

bility and boundedness conditions
• A boundedness condition on the iterates �̂k

We can now state the fi rst important result of this
article as follows:

Theorem 1: Under the hypotheses discussed
above, �̂k (in Eq. 9) converges in probability to
the global minimum �*.
Comments
(a) Convergence “in probability” is a standard
type of convergence involving sequences of ran-
dom variables. It means that, for any � > 0, a cer-
tain probability converges to zero as k approaches
infi nity, i.e., Pr{|ˆ | }*� �k k− > → → ∞� 0 as .
(b) The proof of this theorem actually illustrates
a little more than stated here, since it shows con-
vergence in probability to a possible set of global
minima. That is, it allows for a fi nite set of values
�i

*, each giving the same value of L(�i
*), which is

smaller than L(�) at all other values of �.
(c) The proof is an application of Theorem 2 in
Gelfand and Mitter9 and can be seen in Maryak
and Chin.26

SPSA Without Injected Noise
As indicated previously in the Overview, the injec-

tion of noise into an algorithm, while providing for

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004) 97

GLOBAL RANDOM OPTIMIZATION

global optimization, introduces some diffi culties such
as the need for more “tuning” (e.g., selecting the coef-
fi cients) of the extra terms qk and �k, and retarded con-
vergence in the vicinity of the solution, which is due to
the continued addition of noise. Also, the defi nition of
the SPSA approximate gradient (discussed above) offers
an intuitive reason to suspect that SPSA without the
addition of extra noise may act somewhat like a standard
SA algorithm having injected noise. We will expand on
these ideas in the subsequent discussion.

First, we present Theorem 2, which states the main
result of this article: that basic SPSA (i.e., without
injected noise) does indeed achieve the same type of
global convergence as in Theorem 1, but under a differ-
ent set of conditions. Theorem 2 is based on 12 hypoth-
eses, many of which are similar to those of Theorem 1.
The major differences in conditions involve some fur-
ther conditions on the iterates ˆ ,�k and on an ordinary
differential equation ∂�/∂t = g(�(t)) based on the gradi-
ent of the loss function, where �(t) is an extension of the
(discrete-time) iterates to a continuous-time function.
These hypotheses can be seen in Maryak and Chin.25
Although the conditions are quite technical and diffi -
cult to check in practice, they are standard forms that
are familiar to specialists.

Let us emphasize here that we are working with the
basic SPSA algorithm having the same form as Eq. 1:

 ˆ ˆ ˆ (ˆ) ,� � �k k k k ka g+ = −1 (10)

where ˆ ()gk
• is the simultaneous perturbation approxi-

mate gradient defi ned in Eqs. 4 and 5, and now (obvi-
ously) no extra noise is injected into the algorithm. Now
we can state our main theorem:

Theorem 2: Under the 12 hypotheses discussed
above, �̂k in Eq. 10 converges in probability to the
global minimum �*.
Comments
(a) As in Theorem 1, the proof of Theorem 2 actu-
ally shows convergence in probability to the set of
global minima of L(�).
(b) The details of the proof of our Theorem 2
are available from the authors. The idea of the
proof is as follows. This theorem is based on a
result in Kushner10 in which he discusses an
algorithm ˆ ˆ [(ˆ)],� � � �k k k k ka g+ = − +1 where
�k is i.i.d. Gaussian (injected) noise. To prove
our Theorem 2, we start by writing the SPSA
recursion as ˆ ˆ [(ˆ)],� � � �k k k k ka g+ = − +1

* where
� � �k k k kg g* � ˆ (ˆ) (ˆ)− is the “effective noise” (relative
to the true gradient, as discussed in Comment (c)
below) introduced by the inaccuracy of the SPSA
gradient approximation. So, our algorithm has the
same form as that in Kushner.10 However, since

�k
* is not i.i.d. Gaussian, we cannot use Kushner’s

result directly. Instead, we use material in Kush-
ner and Yin3 to establish a key “large deviation”
result related to our algorithm in Eq. 10, which
allows the global convergence conclusion in Kush-
ner10 to be used with �k

* replacing the �k
 in his

algorithm.
(c) The defi nition of the SPSA gradient approxi-
mation provides some intuition on why Theorem
2 is possible, i.e., on why SPSA might not need
to use injected noise for global convergence. As
discussed above, although the SPSA gradient
approximation tends to work very well in an SA
recursion, the simultaneous perturbation gradient,
evaluated at any single point in � space, tends to
be a poor estimate of the true gradient evaluated
at �. One is therefore led to consider whether the
effective noise introduced (automatically) into the
recursion by this inaccuracy is suffi cient to provide
for global convergence without a further injection
of additive noise. This idea can be expressed as
follows:

• The SPSA gradient approximation = the true
gradient + SPSA-induced error.

• Therefore, the SPSA algorithm = the steepest
descent algorithm + “SPSA-induced noise.”

• We know that the steepest descent algorithm
+ (“carefully selected noise”) will, under the
proper conditions, converge to the global mini-
mum of the loss function.

• Now, if the SPSA-induced noise acts enough
like the carefully selected noise, then the SPSA
algorithm (with no extra noise) might also con-
verge to the global minimum.

It turns out that the SPSA-induced noise is, in
general, not the same as the carefully selected
noise (for example, the i.i.d. Gaussian requirement
is typically not met), and a formal proof of Theo-
rem 2 was needed.

Importance of Theorem 2: Rate of Convergence
Theorem 2 describes the global convergence of SPSA

without the addition of injected noise. This is important
because the use of injected noise in such an algorithm
can have a signifi cant negative effect on the algorithm’s
rate of convergence performance. Let us examine this
phenomenon in a little more detail. A useful way to
study the rate of convergence is via asymptotic (i.e.,
large k) convergence results (similar to the “law of large
numbers”), by which it can be seen25 that, for large k,
the ratio of the error, (ˆ),*� �k − for the algorithm with
injected noise to that of the algorithm without injected
noise is proportional to k k1 3/ / log log (). Figure 6
shows a plot of this ratio versus the iteration number

98 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004)

J. L. MARYAK AND D. C. CHIN

k, giving an idea of the difference in convergence rates
possible in these two versions of the SPSA algorithm.
The fi gure indicates (for example) that, at 100,000 itera-
tions, the algorithm without injected noise is converging
about 30 times faster than the algorithm with injected
noise. This advantage for the non–injected-noise algo-
rithm increases as the number of iterations increases, at
a rate roughly proportional to k1/3 (since the “root log
log” term changes very slowly). This dramatic difference
in rate of convergence provided strong motivation to
establish a global convergence result for SPSA without
injected noise.

NUMERICAL STUDY: SPSA WITHOUT
INJECTED NOISE VERSUS A GENETIC
ALGORITHM

To test the global performance of SPSA, we applied
SPSA to a loss function given in Example 6 of Styblinski
and Tang11:

 L p t p ti
i

p

i
i

p

() () cos() ,� = −−

= =
∑ ∏2 41 2

1 1

 (11)

where p = 5 and t1, . . . , t5 are the components of �. This
function has the global minimum value of �20 at the
origin and a large number of local minima. Our goal is
to compare the performance of SPSA without injected
noise to a genetic algorithm (GA). GAs are intuitively
based on biological evolutionary processes and seek to
emulate the optimization effects found in nature. These
algorithms have been popular for many years and have
often been applied with success in optimization applica-
tions where global convergence is a concern; see Spall4

(chapters 9 and 10) and Mitchell.27
We implemented a GA using the popular features

of elitism (elite members of the old population pass

unchanged into the new population), tournament selec-
tion (tournament size = 2), and real-number encoding (see
Mitchell,27 pp. 168, 170, and 157, respectively). We used
the following settings for the GA algorithm. The popula-
tion size was 80, the number of elite members (those car-
ried forward unchanged) in each generation was 10, the
crossover rate was 0.8, and mutation was accomplished by
adding a Gaussian random variable with mean zero and
standard deviation 0.01 to each component of the off-
spring. All runs of the GA algorithm reported here used
1000 evaluations of the loss function.

We experimented with these settings to try to
enhance the performance of the GA algorithm. In
particular, the performance of this GA did not change
much in runs that used up to 5000 evaluations of the
loss function. The original population of 80 (fi ve-
dimensional) � vectors was created by uniformly ran-
domly generating points in the fi ve-dimensional hyper-
cube centered at the origin, with edges of length 6
(so that all components had absolute value less than
or equal to 3 rad). Of course, the GA actually com-
putes with what is often called a “fi tness” function
(which it tries to maximize), which in this example is
�L(�). The best loss function value found by the algo-
rithm in each of the 10 independent runs of GA is
shown in Table 1. Although the algorithm did reason-
ably well in getting close to the minimum loss value of
�20, it did not fi nd the global minimum in any of the
10 runs.

We examined the performance of basic SPSA (with-
out adding injected noise) using the algorithm param-
eters ak = a/(k � A)	 and ck = c/k
, with A = 20, a = 0.5,
	 = 0.602, c = 0.5, and
 = 0.101. For each run of SPSA,
we started � at a point randomly chosen in the same
hypercube mentioned above, and we did not constrain
the search space for SPSA or for GA. We ran 10 Monte
Carlo trials (randomly varying the starting point and
the choices of �k). The SPSA algorithm converged
within 1000 evaluations of the loss function in 5 out of
the 10 cases. In most of the other cases, the algorithm
appeared to get stuck at a local minimum of �18.05
(Table 1). The difference between the two average
values shown in Table 1 is statistically signifi cant (T-
test @ 5%). The loss function used in this study was
chosen for two reasons: (1) the correct answer is known
(which is often not the case in “real-life” problems), and
(2) it offers a demanding test of the algorithm, as evi-
denced by the fact that SPSA converged to one of the
many local minima in some of its trials and the GA did
so in all of its trials.

The results of this numerical study show a reasonably
good performance of the basic SPSA algorithm in this
diffi cult global optimization problem. Another numeri-
cal study demonstrating good global convergence of
basic SPSA compared to a GA and to another popular
algorithm (simulated annealing) often used to promote

Iterations, k
103 104 105 106

70

60

50

40

30

20

10

0

�
Constant �

k� �
kq >0

=
�k� �

kq = 0

1/
1/k1/3
log log k*

*

Figure 6. Ratio of large-sample estimate errors with (qk > 0) and
without (qk = 0) injected randomness (modifi ed from http://www.
jhuapl.edu/ISSO/ with permission of the author, Jim Spall).

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004) 99

GLOBAL RANDOM OPTIMIZATION

global convergence is described in Maryak and Chin.25
Further details on GAs and a study in which a GA
out-performed SPSA (with injected noise) are given in
Spall4 (chapter 9).

SUMMARY
SPSA is an effi cient gradient-free SA algorithm that

has performed well on a variety of complex optimization
problems. The work reported here has established that,
as with some standard SA algorithms, adding injected
noise to the basic SPSA algorithm can result in a global
optimizer. More signifi cantly, we showed that, under cer-
tain conditions, the basic SPSA recursion can achieve
global convergence without the need for injected noise.
The use of basic SPSA as a global optimizer can ease
the implementation of the global optimizer (no need
to tune the injected noise) and result in a signifi cantly
faster rate of convergence (no extra noise corrupting the
algorithm in the vicinity of the solution). In the numeri-
cal studies, basic SPSA demonstrated good performance
as a global optimizer, often fi nding the global minimum
of a very tricky fi ve-dimensional loss function having
many local minima.

REFERENCES
 1Reardon, B. E., Description of Stochastic Optimization Toolbox, v1.0,

A1E(04)U-4-005, JHU/APL, Laurel, MD (20 Feb 2004).
 2Reardon, B. E., Palumbo, N. F., and Casper, S. G., “Simulation-Based

Performance Optimization of Missile Guidance and Control Algo-
rithms,” in Proc. 11th Ann. AIAA/MDA Technology Conf. and Exhibit,
Williamsburg, VA (29 Jul–2 Aug 2002).

Table 1. Final loss function value in each of 10 inde-
pendent runs of two algorithms.

 Run SPSA GA

 1 �18.05 �11.52
 2 �20.00 �15.64
 3 �16.09 �13.61
 4 �18.05 �13.84
 5 �18.05 �17.10
 6 �20.00 �15.55
 7 �20.00 �17.85
 8 �20.00 �17.21
 9 �18.05 �17.21
 10 �20.00 �16.02
 Average value �18.83 �15.56
 Number of function 1000 1000
 evaluations

 3Kushner, H. J., and Yin, G. G., Stochastic Approximation and Recursive
Algorithms and Applications, Springer, New York (2003).

 4Spall, J. C., Introduction to Stochastic Search and Optimization, John
Wiley & Sons, Hoboken, NJ (2003).

 5Spall, J. C., “Multivariate Stochastic Approximation Using a Simulta-
neous Perturbation Gradient Approximation,” IEEE Trans. Automat.
Control 37, 332–341 (1992).

 6Spall, J. C., “An Overview of the Simultaneous Perturbation Method
for Effi cient Optimization,” Johns Hopkins APL Tech. Dig. 19(4),
482–492 (1998).

 7Wang, I.-J., and Spall, J. C., “Stochastic Optimization with Inequal-
ity Constraints Using Simultaneous Perturbations and Penalty
Functions,” in Proc. IEEE Conf. on Decision and Control, Maui, HI,
pp. 3808–3813 (9–12 Dec 2003).

 8Chin, D. C., “A More Effi cient Global Optimization Algorithm Based
on Styblinski and Tang,” Neural Net. 7, 573–574 (1994).

 9Gelfand, S. B., and Mitter, S. K., “Recursive Stochastic Algorithms
for Global Optimization in Rd,” SIAM J. Control Optim. 29, 999–1018
(1991).

10Kushner, H. J., “Asymptotic Global Behavior for Stochastic Approxi-
mation and Diffusions with Slowly Decreasing Noise Effects: Global
Minimization via Monte Carlo,” SIAM J. Appl. Math. 47, 169–185
(1987).

11Styblinski, M. A., and Tang, T.-S., “Experiments in Nonconvex Opti-
mization: Stochastic Approximation with Function Smoothing and
Simulated Annealing,” Neural Net. 3, 467–483 (1990).

12Fang, H., Gong, G., and Qian, M., “Annealing of Iterative Stochastic
Schemes,” SIAM J. Control Optim. 35, 1886–1907 (1997).

13Spall, J. C., “Adaptive Stochastic Approximation by the Simultane-
ous Perturbation Method,” IEEE Trans. Automat. Control 45, 1839–
1853 (2000).

14Chin, D. C., “Comparative Study of Stochastic Algorithms for System
Optimization Based on Gradient Approximations,” IEEE Trans. Sys-
tems Man Cybernetics, Part B: Cybernetics 27, 244–249 (1997).

15Dippon, J., and Renz, J., “Weighted Means in the Stochastic Approxi-
mation of Minima,” SIAM J. Control Optim. 35, 1811–1827 (1997).

16Chaing T-S., Hwang, C-R., and Sheu, S-J., “Diffusion for Global
Optimization in Rn,” SIAM J. Control Optim. 25, 737–753 (1987).

17Gelfand, S. B., and Mitter, S. K., “Metropolis-Type Annealing Algo-
rithms for Global Optimization in Rd,” SIAM J. Control Optim. 31,
110–131 (1993).

18Geman, S., and Geman, D., “Stochastic Relaxation, Gibbs Distribu-
tions, and the Bayesian Restoration of Images, IEEE Trans. Pattern
Anal. Machine Intel. PAMI-6, 721–741 (1984).

19Hajek, B., “Cooling Schedules for Optimal Annealing,” Math. Oper.
Res. 13, 311–329 (1988).

20Yakowitz, S., L’Ecuyer, P., and Vazquez-Abad, F., “Global Stochastic
Optimization with Low-Dispersion Point Sets,” Operations Res. 48,
939–950 (2000).

21Yin, G., “Rates of Convergence for a Class of Global Stochastic Opti-
mization Algorithms,” SIAM J. Optim. 10, 99–120 (1999).

22Dippon, J., and Fabian, V., “Stochastic Approximation of Global
Minimum Points,” J. Statist. Plan. Inference 41, 327–347 (1994).

23Yakowitz, S., “A Globally Convergent Stochastic Approximation,”
SIAM J. Control Optim. 31, 30–40 (1993).

24Alrefaei, M. H., and Andradottir, S., “A Simulated Annealing Algo-
rithm with Constant Temperature for Discrete Stochastic Optimiza-
tion,” Management Sci. 45, 748–764 (1999).

25Maryak, J. L., and Chin, D. C., “Global Random Optimization by
Simultaneous Perturbation Stochastic Approximation,” in Proc. Am.
Control Conf., Arlington, VA, pp. 756–762 (Jun 2001).

26Maryak, J. L., and Chin, D. C., “Effi cient Global Optimization Using
SPSA,” in Proc. Am. Control Conf., San Diego, CA, pp. 890–894
(1999).

27Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, Cam-
bridge, MA (1996).

ACKNOWLEDGMENT: This work was supported by the APL Independent
Research and Development Program.

100 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004)

J. L. MARYAK AND D. C. CHIN

THE AUTHORS

JOHN L. MARYAK received a Ph.D. in mathematics from the University of Mary-
land in 1972. He has worked at APL since 1977 on diverse tasks involving the
analysis and performance assessment of complex military systems, mainly the Navy’s
Trident submarine systems. This work has involved methodology development, soft-
ware development, planning and coordination of studies and analyses, and leading
projects for the statistical analysis and reporting of the performance of these systems.
In addition, Dr. Maryak has participated in several IR&D projects on statistical
theory and methodology and has published a number of papers on statistical meth-
ods and mathematical modeling. His e-mail address is john.maryak@jhuapl.edu.

DANIEL C. CHIN is a Senior Professional Staff mathematician who has worked
at APL in the Strategic Systems Department for more than 20 years. He received
a B.S. in mathematics from Chung Yuan University, Taiwan, in 1966 and an M.S.
in mathematics from Northern Illinois University in 1970. Mr. Chin has primarily
worked as a weapon system accuracy evaluator for the Navy’s Trident system. He is
experienced in stochastic approximation, data fusion, Bayesian analysis, statistical
estimation and simulation, and image data processing. He has also participated in
IR&D projects in statistical theory and methods, adaptive traffi c control, and dis-
crimination analysis for buried objects. Mr. Chin has published a number of papers
on statistical estimation methodology, mathematical modeling, system-wide traffi c
control, and discrimination analysis. He is a member of the American Statistical
Association (ASA), the Institute of Electrical and Electronics Engineers (IEEE),
and Sigma Xi. He was on the team that won the Hart Prize for the most outstanding
IR&D project at APL in 1990. His e-mail address is daniel.chin@jhuapl.edu.

