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GLOBAL RANDOM OPTIMIZATION

P

Global Random Optimization by Simultaneous 
Perturbation Stochastic Approximation

John L. Maryak and Daniel C. Chin

ractitioners of iterative optimization techniques want their chosen algorithm to reach 
the global optimum rather than get stranded at a local optimum value. In this article, 
we discuss two theorems on the global convergence of an algorithm called Simultane-
ous Perturbation Stochastic Approximation (SPSA) that has performed well in complex 
optimization problems. The fi rst provides conditions under which SPSA will converge in 
probability to a global optimum using the well-known method of injected noise. In the 
second theorem we show that, under different conditions, “basic” SPSA without injected 
noise can achieve convergence in probability to a global optimum. This global conver-
gence without injected noise can have important benefi ts in the setup and performance of 
the algorithm. We present a numerical study comparing the global convergence of SPSA 
to that of a genetic algorithm.

INTRODUCTION
Simultaneous Perturbation Stochastic Approxima-

tion (SPSA) is a powerful algorithm for optimization in 
complex systems. This APL-developed algorithm has 
been successfully used in numerous applications around 
the world. This article describes two theoretical results 
pertaining to the global convergence performance of 
SPSA. We set the stage in this section with a discussion 
of optimization, stochastic optimization, and stochastic 
approximation (SA) in general. We then briefl y describe 
the SPSA algorithm, introduce the issue of global con-
vergence of a recursive optimization scheme, and pres-
ent our main results.

Optimization Algorithms
Many, if not most, problems in mathematical opti-

mization can be expressed as fi nding the setting of 

certain “adjustable” parameters so as to minimize a “loss” 
function. To make this discussion more concrete, con-
sider the problem of setting traffi c light timing sched-
ules (the length of the red, yellow, and green cycles) in a 
portion of a city to minimize the total time spent by 
vehicles in that area waiting at intersections during rush 
hour (Fig. 1). In this context, the parameters are all of 
the numbers needed to express the traffi c light timing 
strategy, and the loss function is the resulting average 
(over several days, say) total delay time for vehicles in 
that area during rush hour. In the following discussion, 
we suppose that the parameters are strung together into 
a column of numbers, a vector that we denote by �. The 
loss that occurs using the setting � is denoted by L(�). 
Typically, the loss function is a single number (scalar) 
expressing a quantity, like the average total delay time, 
that one wants to minimize. Suppose for now that there 
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is a unique single value of � that minimizes L(�). We will 
designate this optimum value of � as �*.

Optimization algorithms are ubiquitous and essential 
in our technical society, with applications ranging from 
control systems, estimation, modeling, design methods, 
and system simulation to stock market analysis. At APL, 
optimization methods have been used in optimal target-
ing of weapon systems, signal timing for traffi c control, 
locating buried ordnance, and optimization of queuing 
and missile guidance systems. 

Many approaches have been devised for numerous 
applications over the long history of this type of prob-
lem. Perhaps the most common approach is to use an 
iterative (recursive) search algorithm, i.e., an algorithm 
that starts with an initial guess, say ˆ ,�0  of the value of 
�*, and then uses some information about the loss func-
tion at the current guess  ˆ ,�k  to compute the next guess, 
ˆ ,�k + 1  as to the value of �*. These steps are repeated to 

improve the guesses as the iterations continue so that 
eventually the iterates �̂k  converge to �*. Figure 2 is a 
simple example of this process where the dimension of 
� is 2. In these algorithms, the “information about the 
loss function” often includes some form of information 
about the gradient (derivative), ∂ ∂L ,( ˆ ) /� �k  of the loss 
function at ˆ .�k  The gradient is a vector that expresses 
information about the slope of the loss function at the 
current iterate ( ˆ )�k  of �, which can be useful in indicat-
ing where to look for a better value of �. In the discus-
sion here, we will assume that these derivatives are well 
defi ned (i.e., exist mathematically) and refer to the gra-
dient as g( ) ( ) /� � �� ∂ ∂L .

Stochastic Search Algorithms and Stochastic 
Approximation

The term stochastic optimization is used to indicate 
that there is some randomness in the optimization 
problem scenario. A common example is an application 

in which only noisy measurements 
of the loss function are available. 
For example, in the traffi c control 
problem mentioned earlier, it is clear 
that any particular average of mea-
sured delay times will only be an 
approximation to the true long-term 
average value, i.e., the computed 
average will be a noisy measurement 
of L(�). To refl ect this condition, let 
us defi ne the measurement actually 
obtained as y(�) = L(�) � measure-
ment noise, where the measurement 
noise may or may not be zero. A 
common approach to handling 
stochastic optimizations is to use a 
search algorithm that includes some 
form of averaging in hopes of “aver-
aging out” the effects of the random-

Figure 1. Overall system-wide traffi c control concept. The traffi c control center provides 
timing information to signals in the traffi c network, and information on traffi c fl ow is fed 
back to the traffi c control center.

ness. A useful software “toolbox” for stochastic optimiza-
tion has been developed at APL by Brian Reardon1 in 
connection with work on the performance optimization 
of missile guidance and control algorithms.2

We want to focus here on one very popular type of 
search algorithm called stochastic approximation. The 
general recursive SA form is

 ˆ ˆ ˆ ( ˆ ) ,� � �k k k k ka g+ = −1  (1)

where {ak} is a sequence of positive scalar coeffi cients 
(often called “gains”) that typically decreases to zero,  
and ˆ ˆ )gk(�k  is either the gradient at �̂k  or an approxima-
tion (possibly corrupted by noise) to the gradient g( ˆ )�k  
computed at the kth step of the algorithm. Here, k = 
1, 2, 3, … counts the iterations of the algorithm, which 
essentially repeats Eq. 1 over and over until (it is hoped) 
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Figure 2. Example of a stochastic optimization algorithm mini-
mizing the loss function L(t1, t2). Height of vertical line after each 
optimization step denotes loss function value.
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the iterates �̂k
 converge to �*. The general form shown 

in Eq. 1 occurs in many well-known algorithms such as 
neural network backpropagation, steepest descent, least-
mean-squares, and simulation-based optimization. Intu-
itively, the minus sign in the equation indicates that the 
algorithm is moving, at least roughly, in the “gradient 
descent” direction, i.e., downhill along the loss func-
tion surface, toward the minimum. Also, the recursive 
form of the algorithm effectively results in a weighted 
averaging of the gradient terms, which, under the proper 
conditions, provides a useful averaging effect on the 
inherent randomness. SA algorithms have been used 
effectively for many years, and a large body of theory 
exists describing the convergence and other properties 
of these algorithms (see, e.g., Kushner and Yin3).

Approximate-Gradient Stochastic Approximation
In the fi eld of SA, a distinction is often made between 

problems in which a direct, possibly noisy, measure-
ment or computation of the gradient is available and 
those in which it is not. The available-gradient type 
of SA is often referred to as the Robbins-Monro SA, 
and the approximate-gradient type (also known as the 
gradient-free type) is usually called the Kiefer-Wolfowitz 
type of SA. In many practical problems, the gradient 
is not readily available. For example, in the traffi c con-
trol application, one has no idea of the exact nature of 
the functional relationship of the loss (total delay time) 
to the parameters (signal light settings), much less the 
derivative of that function.

A standard approach to approximating the gradient 
is the “fi nite difference” method of elementary calcu-
lus. In this method, the ith component of the gradient 
approximation is computed as

 

y ce y ce

c
i i( ) ( )

,
� �+ − −

2  
(2)

where (as mentioned above) y(•) is the actual, possibly 
noisy, measurement of L(•); ei is a vector with a one in 
the ith component and zero in all the other compo-
nents; and c is a small positive number. Afi cionados of 
numerical methods will recognize this as a “two-sided” 
gradient approximation. There is also a “one-sided” ver-
sion which is sometimes used, but the distinction is not 
important for our purposes here. Using this gradient 
approximation in Eq. 1 results in an approximate-gra-
dient SA in which the ith component of the gradient 
approximation is
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where {ck} is usually chosen to be a decreasing sequence 
of small positive numbers. This form of SA, often called 

a fi nite difference SA (FDSA), is the classical form of 
the gradient-free SA for stochastic optimization. The 
FDSA has been extensively studied (e.g., Kushner and 
Yin,3 chapters 1, 5, 6, and others; Spall,4 chapters 6 and 
7 and references therein) and is known to converge to 
a local minimum (see the discussion below) of the loss 
function under various conditions.

Simultaneous Perturbation Stochastic
Approximation

The main focus of this article involves the SPSA 
algorithm, which was developed at APL by Jim Spall.5 
SPSA is an approximate-gradient SA that uses the stan-
dard algorithm form shown in Eq. 1 as well as a special 
form of gradient approximation called the “simultaneous 
perturbation” gradient approximation. In SPSA, the ith 
component of the gradient approximation is computed 
as

 y c y c
c i

( ) ( )
,

� �+ � �

�

− −
2

 (4)

where � is a vector having the same size as � and con-
tains elements randomly generated by computer accord-
ing to specifi cations,5 and � i is the ith component of �. 
The � i are usually (but not necessarily) generated from 
the Bernoulli (�1) distribution. Uniformly or normally 
distributed perturbations are not allowed by the condi-
tions in Ref. 5. Substituting the gradient approximation 
shown in Eq. 4 into Eq. 1 results in the approximate-gra-
dient SPSA in which the ith component of the gradient 
approximation is
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Here, �(k) is the vector of random elements generated 
at iteration k, and �(k)i is the ith component of �(k). An 
excellent introductory discussion of SPSA is given in 
Ref. 6.

While the approximations in Eqs. 2 and 4 have 
a superfi cial similarity, they are in fact quite different 
computationally. Since this difference is important to 
our story, let us look more closely at the two approxima-
tions. The FDSA gradient approximation vector is
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(6)

where the dimension of � is p (i.e., � is a p vector), while 
the SPSA gradient approximation is
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Note that the FDSA gradient (Expression 6) needs 
to obtain the measurement y(•) of the loss function at 
2p values of the argument (� � cei), whereas the SPSA 
gradient (Expression 7) only needs two measurements of 
y(•), regardless of the size (p) of �, since the components of 
the approximation in Expression 7 differ only by the � i  
in the denominator. Since the � i  are computer-generated 
random numbers, the cost of obtaining the � i  is essentially 
zero. In contrast, the cost of obtaining the loss function 
measurements can be huge. For example, in the traffi c 
control application, obtaining this measurement might 
require having a large group of people on the streets with 
stopwatches. So in terms of (possibly expensive) loss 
function measurements, the FDSA gradient approxima-
tion costs p times as much to compute as that of SPSA. 
This difference means that SPSA has the potential for 
requiring far fewer measurements than FDSA in fi nding 
�*. On the other hand, the FDSA computation tends (at 
least when the loss function is not corrupted by noise) 
to produce a very good gradient approximation since it 
follows the standard defi nition from calculus. In contrast, 
the SPSA gradient is not a very good approximation to 
the true gradient. This direct connection to the true 
gradient would seem to give FDSA a potential edge in 
fi nding �*. However, Spall5 has shown that the SPSA 
potential advantage is the dominant one for optimization. 
In fact, under reasonably general conditions, SPSA can 
do about as well as FDSA through the use of only 1/p 
times the number of loss function measurements that 
FDSA would require. 

An intuitive explanation of this remarkable perfor-
mance advantage for SPSA is that the algorithm (shown 
in Eq. 1) naturally results in a kind of averaging (con-
trolled by the ak terms) of the gradient approximations 
across iterations. Since the SPSA gradient approxima-
tion is an “almost unbiased estimator” of the gradient,6 
the errors in the approximation tend to average out over 
the long run of iterations. This 1/p advantage for SPSA 
can result in immense savings for a complex (large p) 
application when the loss function measurements are 
costly to obtain. 

This relative effi ciency of SPSA has important impli-
cations for APL’s work for DoD as well as civilian applica-
tions. For one thing, we have a powerful tool for projects 
that require optimization in a complex setting. In addi-
tion, problems that could not previously be attempted 
with conventional methods (because of the infeasibility 
of collecting the loss function measurements or imprac-
tical computation times) may now be solvable. Examples 

are the traffi c control, optimal targeting, and munitions-
locating projects mentioned above, which are discussed 
in more detail in Spall.6  

SPSA has proven to be an effi cient and effective opti-
mization tool in many complex applications. In addition, 
a large body of literature on the theory and practice of 
SPSA has accumulated, generalizing the convergence 
properties of the basic form, introducing modifi ed forms 
of the algorithm and proving their properties, giving 
instruction on how to set up and run the algorithm, and 
describing numerous successful applications. A good 
source of this information is the APL Web site http://
www.jhuapl.edu/spsa.

GLOBAL OPTIMIZATION

Introduction
A common desire in many applications is that 

the algorithm will reach the best possible minimum 
rather than be left at a “local minimum” value of the 
parameter. A glance at Fig. 3 provides an intuitive idea 
of what we mean by this. The “minimum” of L(�) at 
�a

*  is called a local minimum, since all of the � values 
in some small neighborhood of �a

*  give a larger value 
of L(�). However, �a

*  does not give the best possible 
minimum of L(�) available in the “allowable � domain.” 
The smallest value of L(�) in this example is L(�b

*), and 
so �b

*  is called the “global” minimum (�b
*  is sometimes 

also referred to as a local minimum since it satisfi es the 
defi nition, but we will avoid that usage). Figure 4 gives a 
slightly more sophisticated (since � here is a two-vector) 
picture of a function L(�) having both local and global 
minima. In “real life,” it is not always obvious whether 
the situation exhibits both local and global minima, nor 
what the impact would be of using only a locally best 
solution. For example, in the traffi c control scenario, 
we can speculate that the standard fi xed traffi c signal 
timing strategy might produce a local minimum of the 
average delay time, while police offi cers directing traffi c 
at key intersections might produce the truly best result 
since they can more readily react to the traffi c fl ow 
conditions at the moment. Of course, in an application 
where the loss function is directly related to resources 
or fi nances (e.g., timing trades in the stock market), the 
value of fi nding the global optimum solution may be 
more obvious.

Local minimum

�

Global minimum

*
b��

( 
 )

L 
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*
a

Figure 3. Local and global minima.
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Incidentally, the idea of an allowable � domain (men-
tioned above) is an important, and sometimes complex, 
issue in most applications. Usually there are practical 
limits on the � values that can be considered. Indeed, 
sometimes � cannot take on a continuum of values (e.g., 
one component of � might be an integer enumerating the 
amount of some resource); in that case, gradient-based 
methods (approximate or not) may not be applicable. 
One result of this is that the algorithm may need to be 
specially designed to handle these constraints (see, e.g., 
Wang and Spall7). For simplicity in this article, we will 
ignore these complications and assume that the compo-
nents of � are all defi ned on a limitless continuum. 

Also for simplicity, let’s continue to assume just one 
global minimum of L(�). Slightly more general results 
may include the assumption that there are a fi nite or 
infi nite number of global minimum points �i

*  such that 
L(�) has the same value at every �i

*  and for all other 
�, L L i( ) ( ),*� �>  i.e., strictly larger than at the global 
minima. This distinction is not important for our mes-
sage here.

Using Injected Noise to Promote Global 
Optimization

Several authors8–11 have examined the problem of 
global optimization using various forms of gradient-free 
SA. The usual approach involves using the computer 
to add random noise to an algorithm like Eq. 1, where 
ˆ ˆ )gk(�k  may be the FDSA gradient approximation or the 

actual gradient g( ˆ ).�k  In the latter case, which may be 
referred to as “steepest descent with injected noise,” the 
algorithm is

 ˆ ˆ ( ˆ ) ,� � � �k k k k k ka g q+ = − +1  (8)

where qk are appropriately selected scalars and �k are 
random (usually standard Gaussian) p-dimensional 
vectors satisfying certain conditions. It is known that 

carefully injecting noise in this way can result in an 
algorithm that converges (in some sense) to the global 
minimum. For a discussion of the conditions, results, 
and proofs, see, e.g., Gelfand and Mitter,9 Kushner,10 
and Fang et al.12 These results are based on the intuitive 
idea that promoting global convergence by the injection 
of extra noise terms into the recursion may allow the 
algorithm to escape � neighborhoods that produce local 
minimum points of L(�), especially in the early iterations 
of the algorithm. This idea is illustrated in Fig. 5. The 
amplitude of the injected noise is decreased over time 
(a process called “annealing”) so that the algorithm can 
fi nally converge when it reaches the neighborhood of 
the global minimum point.

GLOBAL OPTIMIZATION USING SPSA

Overview
The main goal of this article is to discuss some global 

convergence properties of SPSA. Perhaps this is a good 
point to mention the value of theoretical results in an 
applied science like optimization. An analyst with an 
optimization problem is, of course, interested in using 
an algorithm that will yield a solution that improves the 
performance of the actual (physical) system. Since there 
are many algorithms available, the analyst may look at 
various factors to help in the selection of an algorithm 
such as:

• Numerical studies or recommendations of other 
practitioners. These may be useful if the applications 
are similar to the scenario of interest to the analyst. 
However, the results of an algorithm or study in an 
unrelated application are usually not meaningful in 
themselves. In fact, optimization theory provides 
confi rmation of this common-sense idea in the form 
of “no-free-lunch theorems,” which prove essentially 
that no algorithm will work well on all problems.  
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Figure 4. Local and global minima for a two-dimensional loss 
function. Unique global minimum is near [�2.9, �2.9]T. (Reprinted 
from Ref. 4 with permission of John Wiley & Sons, Inc., © 2003.)
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Figure 5. Injection of random noise can promote convergence to 
the global minimum of L(�). Case I: ˆ ˆ ˆ ( ˆ ).� � �k k k k ka g+ = −1  Case II: 
ˆ ˆ ˆ ( ˆ )� � �k k k k ka g+ = − +1 injected noise.
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• Intuitive notions that an algorithm might work well. 
These approaches, sometimes based on an analogy 
with a successful physical or biological system, can 
seem reasonable, but it may be diffi cult to establish 
that they are useful in a specifi c application.

• Mathematical results that describe the algorithm’s 
performance under various hypotheses. A diffi culty 
with such theoretical results is that the hypotheses 
may not be fully satisfi ed (or may be hard to verify) 
in a real-world application. Furthermore, such results 
tend to refer to the asymptotic (large k) performance 
of the algorithm. But analysts often prefer an algo-
rithm that is proven to perform well (e.g., converges 
to the correct optimum value and exhibits a certain 
rate of convergence) under some conditions, com-
pared to an algorithm that has little or no theoretical 
support. In addition, asymptotic effects often are seen 
after a reasonable number of iterations, and theory 
often can serve as an indication of the type of problem 
in which an algorithm will perform well.  

A considerable body of theory has been developed for 
SPSA, for example, Spall (chapter 7),4 Spall,5,13 Chin,14 
Dippon and Renz,15 and the SPSA Web site given 
previously. Prior to the work that we report here, this 
theory did not include global convergence results. 
Recall that global convergence theory does exist for 
standard implementations of SA. However, because of 
the particular form of SPSA’s gradient approximation, 
existing theory on the global convergence of standard 
SA algorithms is not directly applicable to SPSA. In the 
next section we discuss a theorem showing that SPSA 
can achieve global convergence (“in probability”; see 
the defi nition in Comment (a) after Theorem 1 below) 
by the technique of injecting noise. The convergence-
in-probability results of our Theorem 1 and Theorem 2 
are standard types of global convergence results. Several 
authors have shown or discussed global convergence in 
probability or in distribution.9,12,16–21 Stronger “almost 
sure” global convergence results seem only to be avail-
able by using a generally infeasible exhaustive search22 
or random search methods,23 or for cases of optimiza-
tion, in a discrete � space.24

In the subsequent section, we discuss a theorem show-
ing that SPSA can, under different conditions, achieve 
global convergence without the injection of extra noise. 
As will be seen, this can have advantages in setting up 
the algorithm and can provide a dramatic increase in 
the speed of convergence relative to classical approxi-
mate-gradient SA algorithms that need injected noise.

SPSA with Injected Noise 
Our fi rst theorem applies to the following algorithm, 

which is the basic SPSA recursion indicated in Eq. 1, 
modifi ed by the addition of extra noise terms:

 ˆ ˆ ˆ ( ˆ ) ,� � � �k k k k k k ka g q+ = − +1  (9)

where 
 �k = (usually) a p-dimensional vector of indepen-

dent, identically distributed (i.i.d.) standard Gauss-
ian injected noise, 

 ak = a/k, 

 q q k kk
2 = / log log( ),

a > 0,

 q > 0, and 

 ˆ ( )gk
•  = the simultaneous perturbation gradient de-

fi ned in Eqs. 4 and 5. 

This is similar to Eq. 8, but here the SPSA gradient 
approximation replaces the true gradient.

Our Theorem 1 (below), on the global convergence 
of SPSA using injected noise, is based on a result in Gel-
fand and Mitter.9 The theorem requires eight technical 
hypotheses, which we will not list here. They can be 
found in Maryak and Chin.25 The hypotheses include

• Descriptions of and restrictions on the SPSA setup 
(coeffi cients, choice of �k, etc.)

• Conditions on the measurement noise attached to 
L(�)

• Conditions on the injected noise terms
• Conditions on the loss function, mainly differentia-

bility and boundedness conditions
• A boundedness condition on the iterates �̂k

We can now state the fi rst important result of this 
article as follows:

Theorem 1: Under the hypotheses discussed 
above, �̂k  (in Eq. 9) converges in probability to 
the global minimum �*.
Comments 
(a) Convergence “in probability” is a standard 
type of convergence involving sequences of ran-
dom variables. It means that, for any � > 0, a cer-
tain probability converges to zero as k approaches 
infi nity, i.e., Pr{|ˆ | }*� �k k− > → → ∞� 0 as . 
(b) The proof of this theorem actually illustrates 
a little more than stated here, since it shows con-
vergence in probability to a possible set of global 
minima. That is, it allows for a fi nite set of values 
�i

*,  each giving the same value of L(�i
*),  which is 

smaller than L(�) at all other values of �.
(c) The proof is an application of Theorem 2 in 
Gelfand and Mitter9 and can be seen in Maryak 
and Chin.26

SPSA Without Injected Noise 
As indicated previously in the Overview, the injec-

tion of noise into an algorithm, while providing for 



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004) 97

GLOBAL RANDOM OPTIMIZATION

global optimization, introduces some diffi culties such 
as the need for more “tuning” (e.g., selecting the coef-
fi cients) of the extra terms qk and �k, and retarded con-
vergence in the vicinity of the solution, which is due to 
the continued addition of noise. Also, the defi nition of 
the SPSA approximate gradient (discussed above) offers 
an intuitive reason to suspect that SPSA without the 
addition of extra noise may act somewhat like a standard 
SA algorithm having injected noise. We will expand on 
these ideas in the subsequent discussion.

First, we present Theorem 2, which states the main 
result of this article: that basic SPSA (i.e., without 
injected noise) does indeed achieve the same type of 
global convergence as in Theorem 1, but under a differ-
ent set of conditions. Theorem 2 is based on 12 hypoth-
eses, many of which are similar to those of Theorem 1. 
The major differences in conditions involve some fur-
ther conditions on the iterates ˆ ,�k  and on an ordinary 
differential equation ∂�/∂t = g(�(t)) based on the gradi-
ent of the loss function, where �(t) is an extension of the 
(discrete-time) iterates to a continuous-time function. 
These hypotheses can be seen in Maryak and Chin.25 
Although the conditions are quite technical and diffi -
cult to check in practice, they are standard forms that 
are familiar to specialists.

Let us emphasize here that we are working with the 
basic SPSA algorithm having the same form as Eq. 1:

 ˆ ˆ ˆ ( ˆ ) ,� � �k k k k ka g+ = −1  (10)

where ˆ ( )gk
•  is the simultaneous perturbation approxi-

mate gradient defi ned in Eqs. 4 and 5, and now (obvi-
ously) no extra noise is injected into the algorithm. Now 
we can state our main theorem:

Theorem 2: Under the 12 hypotheses discussed 
above, �̂k  in Eq. 10 converges in probability to the 
global minimum �*.
Comments 
(a) As in Theorem 1, the proof of Theorem 2 actu-
ally shows convergence in probability to the set of 
global minima of L(�).
(b) The details of the proof of our Theorem 2 
are available from the authors. The idea of the 
proof is as follows. This theorem is based on a 
result in Kushner10 in which he discusses an 
algorithm ˆ ˆ [ ( ˆ ) ],� � � �k k k k ka g+ = − +1  where 
�k is i.i.d. Gaussian (injected) noise. To prove 
our Theorem 2, we start by writing the SPSA 
recursion as ˆ ˆ [ ( ˆ ) ],� � � �k k k k ka g+ = − +1

*  where 
� � �k k k kg g* � ˆ ( ˆ ) ( ˆ )−  is the “effective noise” (relative 
to the true gradient, as discussed in Comment (c) 
below) introduced by the inaccuracy of the SPSA 
gradient approximation. So, our algorithm has the 
same form as that in Kushner.10 However, since 

�k
*  is not i.i.d. Gaussian, we cannot use Kushner’s 

result directly. Instead, we use material in Kush-
ner and Yin3 to establish a key “large deviation” 
result related to our algorithm in Eq. 10, which 
allows the global convergence conclusion in Kush-
ner10 to be used with �k

*  replacing the �k
 in his 

algorithm.
(c) The defi nition of the SPSA gradient approxi-
mation provides some intuition on why Theorem 
2 is possible, i.e., on why SPSA might not need 
to use injected noise for global convergence. As 
discussed above, although the SPSA gradient 
approximation tends to work very well in an SA 
recursion, the simultaneous perturbation gradient, 
evaluated at any single point in � space, tends to 
be a poor estimate of the true gradient evaluated 
at �. One is therefore led to consider whether the 
effective noise introduced (automatically) into the 
recursion by this inaccuracy is suffi cient to provide 
for global convergence without a further injection 
of additive noise. This idea can be expressed as 
follows:

• The SPSA gradient approximation = the true 
gradient + SPSA-induced error.

• Therefore, the SPSA algorithm = the steepest 
descent algorithm + “SPSA-induced noise.”

• We know that the steepest descent algorithm 
+ (“carefully selected noise”) will, under the 
proper conditions, converge to the global mini-
mum of the loss function.

• Now, if the SPSA-induced noise acts enough 
like the carefully selected noise, then the SPSA 
algorithm (with no extra noise) might also con-
verge to the global minimum. 

It turns out that the SPSA-induced noise is, in 
general, not the same as the carefully selected 
noise (for example, the i.i.d. Gaussian requirement 
is typically not met), and a formal proof of Theo-
rem 2 was needed.

Importance of Theorem 2: Rate of Convergence 
Theorem 2 describes the global convergence of SPSA 

without the addition of injected noise. This is important 
because the use of injected noise in such an algorithm 
can have a signifi cant negative effect on the algorithm’s 
rate of convergence performance. Let us examine this 
phenomenon in a little more detail. A useful way to 
study the rate of convergence is via asymptotic (i.e., 
large k) convergence results (similar to the “law of large 
numbers”), by which it can be seen25 that, for large k, 
the ratio of the error, ( ˆ ),*� �k −  for the algorithm with 
injected noise to that of the algorithm without injected 
noise is proportional to k k1 3/ / log log ( ).  Figure 6 
shows a plot of this ratio versus the iteration number 
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k, giving an idea of the difference in convergence rates 
possible in these two versions of the SPSA algorithm. 
The fi gure indicates (for example) that, at 100,000 itera-
tions, the algorithm without injected noise is converging 
about 30 times faster than the algorithm with injected 
noise. This advantage for the non–injected-noise algo-
rithm increases as the number of iterations increases, at 
a rate roughly proportional to k1/3 (since the “root log 
log” term changes very slowly). This dramatic difference 
in rate of convergence provided strong motivation to 
establish a global convergence result for SPSA without 
injected noise. 

NUMERICAL STUDY: SPSA WITHOUT 
INJECTED NOISE VERSUS A GENETIC 
ALGORITHM

To test the global performance of SPSA, we applied 
SPSA to a loss function given in Example 6 of Styblinski 
and Tang11:

 L p t p ti
i

p

i
i

p

( ) ( ) cos( ) ,� = −−

= =
∑ ∏2 41 2

1 1

 (11)

where p = 5 and t1, . . . , t5 are the components of �. This 
function has the global minimum value of �20 at the 
origin and a large number of local minima. Our goal is 
to compare the performance of SPSA without injected 
noise to a genetic algorithm (GA). GAs are intuitively 
based on biological evolutionary processes and seek to 
emulate the optimization effects found in nature. These 
algorithms have been popular for many years and have 
often been applied with success in optimization applica-
tions where global convergence is a concern; see Spall4 

(chapters 9 and 10) and Mitchell.27 
We implemented a GA using the popular features 

of elitism (elite members of the old population pass 

unchanged into the new population), tournament selec-
tion (tournament size = 2), and real-number encoding (see 
Mitchell,27 pp. 168, 170, and 157, respectively). We used 
the following settings for the GA algorithm. The popula-
tion size was 80, the number of elite members (those car-
ried forward unchanged) in each generation was 10, the 
crossover rate was 0.8, and mutation was accomplished by 
adding a Gaussian random variable with mean zero and 
standard deviation 0.01 to each component of the off-
spring. All runs of the GA algorithm reported here used 
1000 evaluations of the loss function. 

We experimented with these settings to try to 
enhance the performance of the GA algorithm. In 
particular, the performance of this GA did not change 
much in runs that used up to 5000 evaluations of the 
loss function. The original population of 80 (fi ve-
dimensional) � vectors was created by uniformly ran-
domly generating points in the fi ve-dimensional hyper-
cube centered at the origin, with edges of length 6 
(so that all components had absolute value less than 
or equal to 3 rad). Of course, the GA actually com-
putes with what is often called a “fi tness” function 
(which it tries to maximize), which in this example is 
�L(�). The best loss function value found by the algo-
rithm in each of the 10 independent runs of GA is 
shown in Table 1. Although the algorithm did reason-
ably well in getting close to the minimum loss value of 
�20, it did not fi nd the global minimum in any of the 
10 runs.

We examined the performance of basic SPSA (with-
out adding injected noise) using the algorithm param-
eters ak = a/(k � A)	 and ck = c/k
, with A = 20, a = 0.5, 
	 = 0.602, c = 0.5, and 
 = 0.101. For each run of SPSA, 
we started � at a point randomly chosen in the same 
hypercube mentioned above, and we did not constrain 
the search space for SPSA or for GA. We ran 10 Monte 
Carlo trials (randomly varying the starting point and 
the choices of �k). The SPSA algorithm converged 
within 1000 evaluations of the loss function in 5 out of 
the 10 cases. In most of the other cases, the algorithm 
appeared to get stuck at a local minimum of �18.05 
(Table 1). The difference between the two average 
values shown in Table 1 is statistically signifi cant (T-
test @ 5%). The loss function used in this study was 
chosen for two reasons: (1) the correct answer is known 
(which is often not the case in “real-life” problems), and 
(2) it offers a demanding test of the algorithm, as evi-
denced by the fact that SPSA converged to one of the 
many local minima in some of its trials and the GA did 
so in all of its trials. 

The results of this numerical study show a reasonably 
good performance of the basic SPSA algorithm in this 
diffi cult global optimization problem. Another numeri-
cal study demonstrating good global convergence of 
basic SPSA compared to a GA and to another popular 
algorithm (simulated annealing) often used to promote 

Iterations, k
103 104 105 106

70

60

50

40

30

20

10

0

�
Constant �

k� �
kq >0

=
�k� �

kq = 0

1/
1/k1/3
log log k*

*

Figure 6. Ratio of large-sample estimate errors with (qk > 0) and 
without (qk = 0) injected randomness (modifi ed from http://www.
jhuapl.edu/ISSO/ with permission of the author, Jim Spall).
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global convergence is described in Maryak and Chin.25 
Further details on GAs and a study in which a GA 
out-performed SPSA (with injected noise) are given in 
Spall4 (chapter 9).

SUMMARY
SPSA is an effi cient gradient-free SA algorithm that 

has performed well on a variety of complex optimization 
problems. The work reported here has established that, 
as with some standard SA algorithms, adding injected 
noise to the basic SPSA algorithm can result in a global 
optimizer. More signifi cantly, we showed that, under cer-
tain conditions, the basic SPSA recursion can achieve 
global convergence without the need for injected noise. 
The use of basic SPSA as a global optimizer can ease 
the implementation of the global optimizer (no need 
to tune the injected noise) and result in a signifi cantly 
faster rate of convergence (no extra noise corrupting the 
algorithm in the vicinity of the solution). In the numeri-
cal studies, basic SPSA demonstrated good performance 
as a global optimizer, often fi nding the global minimum 
of a very tricky fi ve-dimensional loss function having 
many local minima.
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