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MODELING RADAR PROPAGATION IN 3D ENVIRONMENTS

A

Modeling Radar Propagation in Three-Dimensional 
Environments

Ra’id S. Awadallah, Jonathan Z. Gehman, James R. Kuttler, and Michael H. Newkirk

PL’s Tropospheric Electromagnetic Parabolic Equation Routine (TEMPER) was 
developed with the assumption that the terrain/ocean surface along the great circle con-
necting the source (radar) and the receiver (target) varies only in the range dimension. 
The lateral (cross-range) variations of the terrain are ignored in TEMPER. The main 
advantage of this assumption is that it greatly enhances the computational effi ciency of 
the propagation model; however, it neglects the out-of-plane scattering and diffraction 
effects associated with lateral variations in the realistic terrain. In this article we report 
on the use of full three-dimensional propagation simulations to assess the impact of these 
out-of-plane effects on radar coverage, both in urban environments and over realistic two-
dimensional digital terrain maps.

INTRODUCTION
A shipboard radar trying to interrogate a low-altitude 

target in a littoral environment invariably receives a 
signal containing the target signature buried in unwanted 
terrain and/or ocean clutter. This clutter results from 
the interaction of the radar signal with the interven-
ing ocean surface/terrain profi le as the signal propagates 
from the radar to the target and back. Effective detection 
of the target hinges on the design of appropriate clutter 
fi lters that separate the target signature from unwanted 
clutter. Design of the proper clutter fi lters requires the 
accurate characterization of ocean and terrain clutter, 
which in turn necessitates accurate prediction of the 
radar coverage. 

Figure 1 depicts the propagation domain for radar 
coverage in a three-dimensional (3D) atmosphere over a 
two-dimensional (2D) terrain profi le with hills, buildings, 

etc. The properties of a 3D atmosphere vary as a function 
of three spatial variables (x, y, z), while the height and 
slopes of a 2D terrain vary as a function of two spatial 
variables (x, y). The rigorous prediction of radar cover-
age over such a terrain profi le entails solving the “vector 
wave equation,” which is derived from Maxwell’s electro-
magnetic fi eld equations. Such a solution is challenging 
for two primary reasons. First, the slopes of the irregular 
terrain couple the three components of the vector fi eld in 
an intricate fashion. Second, the inhomogeneity of the 
atmosphere complicates the nature of the fi eld equations. 
These complications rule out analytical closed-form solu-
tions, leaving numerical simulations as the only resort. 

The numerical methods applied to the 3D propa-
gation problem are generally categorized as integral 
equation methods and differential equation methods. 
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Integral equation methods result in extremely large, full 
matrices that need to be inverted in order to determine 
the unknown fi elds. In addition, rigorous treatment of 
a general, inhomogeneous troposphere via an integral 
equation method is extremely diffi cult.1 Consequently, 
this method is not the method of choice for treating 
long-distance radar coverage problems. Further discus-
sion of integral equation propagation methods is beyond 
the scope of this article; the interested reader may con-
sult Refs. 1 and 2 for a detailed treatment. The differ-
ential equation method, on the other hand, accounts 
for atmospheric inhomogeneity (ducting) in a straight-
forward fashion and results in sparse matrix systems 
that can be effi ciently inverted numerically.3 In addi-
tion, since the problem at hand involves propagation 
at low grazing angles, where electromagnetic energy is 
predominantly propagating in the forward direction, 
the backscattered fi eld component can be neglected. 
This assumption replaces the exact vector differential 
wave equation with a simpler, forward-marching vector 
wave equation known as the vector parabolic equation 
(VPE).4

In long-distance propagation scenarios, the effects 
of Earth’s curvature must be considered. To this end, 
although the fi nal numerical calculations are conducted 
in a Cartesian coordinate system, the 3D propagation 
problem is naturally formulated in a spherical coordinate 
system (r, �, �), with the origin located at the Earth’s 
center. An Earth-fl attening transformation is then used 
to map the resulting equations onto a Cartesian coor-
dinate system. In the spherical coordinate system, the 
radar transmitter is located on the z axis, and the r-� 
propagation plane containing the transmitter and the 
receiver is located at � = �0 = constant.

Solving the full 3D vector problem for realistic radar 
coverage scenarios involving distances on the order of 
hundreds of kilometers is computationally impractical 
for today’s desktop processors. Instead, a tractable solu-
tion can be developed by invoking two major assump-
tions. First, the 2D terrain surrounding the propagation 
plane is assumed to be azimuthally uniform and hence 
can be approximated by a one-dimensional (1D) terrain 

slice along the great circle located 
within the propagation plane.5 
Second, the intervening atmo-
sphere is assumed to be azimuthally 
uniform. These two assumptions 
decompose the original 3D propa-
gation problem into two scalar 2D 
problems known as the horizontally 
polarized (HPOL) and the vertically 
polarized (VPOL) problems.4 The 
HPOL problem involves a single 
electric fi eld component, whereas 
the VPOL problem involves a single 
magnetic fi eld component. Both of 

Figure 1. Typical propagation geometry for radar coverage in a 3D atmosphere over an 
irregular terrain profi le with buildings, hills, etc.

these components are perpendicular to the propagation 
plane. To further simplify the resulting 2D problems, the 
polar r-� propagation plane is typically mapped onto the 
x-z Cartesian plane via the appropriate Earth-fl attening 
transformation.4 In this new coordinate system, the 1D 
terrain profi le is a function of the range coordinate x 
only, while the 2D atmosphere is assumed to vary only 
with range x and altitude z.

The simplifi ed 2D propagation problem described 
above is formulated in terms of a scalar parabolic equa-
tion (PE) governing the fi eld components Ey (HPOL) 
and Hy (VPOL). This PE is amenable to effi cient numer-
ical techniques such as the split-step Fourier method 
(SSFM)6,7 and the fi nite difference method (FDM).4 
These methods march the propagating fi eld from the 
transmitter to the receiver over range increments ∆x. 
The SSFM affords longer range steps than the FDM but 
requires the terrain boundary condition to be enforced 
on a fl at boundary in the transform domain. To accom-
modate irregular terrain in the SSFM, a shift map is 
employed to fl atten the terrain at the expense of modi-
fying the governing PE.8 The FDM, on the other hand, 
enforces the terrain boundary condition in the spatial 
domain and therefore treats irregular terrain in a more 
straightforward fashion.4

Lateral terrain uniformity is an important assump-
tion because it facilitates the reduction of the formida-
ble 3D vector propagation problem into a tractable 2D 
scalar problem. This assumption is reasonable in sce-
narios involving smooth terrain profi les, where out-of-
plane scattering and diffraction effects caused by lateral 
terrain slopes are negligible. In scenarios involving steep 
terrain features, such as propagation in urban environ-
ments, substantial out-of-plane scattering will take place, 
rendering the 2D assumption inadequate. In this article, 
the lateral terrain effects on the fi eld propagating in a 
3D environment are investigated via direct propagation 
simulations. Two types of 3D domains are examined: 
an urban environment and a digital terrain map. The 
full 3D VPE results are compared with results obtained 
via a pseudo-3D version of the 2D propagation model 
TEMPER (Tropospheric Electromagnetic Parabolic 
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Equation Routine), referred to herein as P3DTEMPER, 
which is implemented by running 2D TEMPER on mul-
tiple azimuths that span the 3D domain of interest and 
combining the azimuths to approximate propagation in 
a 3D environment.9

THE VECTOR PARABOLIC EQUATION 
PROPAGATION MODEL

Recall that the VPE is based on the assumption that 
the radar wave energy propagates predominantly in 
the forward direction. This assumption is good for low-
grazing-angle propagation over a smooth terrain or 
ocean surface where the small backscattered fi eld com-
ponent can be neglected. The propagation domain used 
in this article is rectilinear, where x, y, and z represent 
the range, cross-range, and altitude coordinates, respec-
tively (Fig. 2). In this propagation domain, the VPE gov-
erning the vector fi eld propagating forward away from 
the source (radar) is given, in free space, by
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The standard VPE (SVPE), also known as the narrow-
angle VPE, is derived from Eq. 1 by using the binomial 
expansion to replace the radical and keeping the fi rst 

two terms in the expansion. The SVPE is given by
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In Eqs. 1 and 2, the electric fi eld E has three compo-
nents, Ex, Ey, and Ez; k = 2�/� (� is the radar operating 
wavelength); and i = −1.  Equation 1 propagates the 
fi eld from the source plane (Plane A) to the subsequent 
planes (B, C, etc.). 

The propagating fi eld is subject to the terrain bound-
ary condition, which represents the relationship that 
must hold between the different fi eld components at 
the different points of the irregular terrain. For highly 
conducting terrain, a simple approximate form of the 
terrain boundary condition known as the impedance 
boundary is given by

 ˆ ˆ (ˆ ) .n E n n E× × × ∇ ×= Z  (3)

In Eq. 3, the terrain impedance is given by Z ik r= 1/ ( ),�  
where � r is the dielectric permittivity of the terrain, and 
n̂  is the outward unit normal vector to the terrain 
surface. When numerical propagation simulations are 
performed, infi nite propagation domains cannot be 
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Figure 2. Propagation domain used for the vector parabolic equation (VPE) numerical 
simulations. The VPE model marches the radar fi eld from the source plane (Plane A con-
taining the radar antenna) to subsequent range planes B, C, etc. 

realized and the size of the propa-
gation domain must be truncated. 
This is accomplished numerically 
by enforcing an absorbing bound-
ary condition on the upper and 
two vertical sides of the propaga-
tion domain exhibited in Fig. 2. 
This absorbing boundary condi-
tion truncates the propagating fi eld 
smoothly to zero outside the propa-
gation domain and prevents arti-
fi cial refl ections from the domain 
numerical boundaries. Currently, 
the absorbing boundary condition 
is most popularly implemented by 
lining the upper and vertical sides 
of the propagation domain with 
perfectly matched layers (PMLs).10 
In this article, we adopt the simple 
PML formalism proposed by Rappa-
port.11 A typical propagation plane 
exhibiting a lateral slice of the ter-
rain and the PMLs described above 
is shown in Fig. 3.

In the absence of the terrain, 
the individual components of the 
electric fi eld can be propagated 
independently from a typical prop-
agation plane to the subsequent 
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plane in range. This is accomplished by marching the 
Cartesian components of the VPE (Eq. 1) in range via 
either the SSFM or the FDM. Because of its suitability 
for treating boundary conditions on 2D irregular ter-
rain confi gurations, the FDM is our method of choice 
in this article. 

Marching Eq. 1 in range using the FDM starts by the 
formal solution of Eq. 1 given by
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where � = Ex, Ey, Ez, and ∆x is the range increment. 
Clearly the formal solution (Eq. 4) relates the fi eld � at 
the advanced propagation plane located at range x + ∆x 
to the fi eld computed at the current propagation plane x. 
The FDM cannot be applied to Eq. 4 in its current form 
since the z and y derivatives in the equation are coupled 
and appear under the radical. The derivative operators 
in Eq. 4 are decoupled via the approximation
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Substituting Eq. 5 into Eq. 4 we obtain
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In Eq. 6, a constant phase factor exp(−ik∆x) has been 
suppressed. Furthermore, to eliminate the radicals in 

the equation, we approximate the individual exponen-
tials by a rational function via a suitable Padé approxi-
mation.12 This Padé approximant replaces the fi rst expo-
nential by rational functions of the derivative operator 
∂2/∂z2, with the numerator of this function being linear 
in ∂2/∂z2 and the denominator being quadratic in ∂2/∂z2. 
The same method is applied to the second exponential. 
Applying the suitable Padé approximant to Eq. 6 reduces 
it to a form that can be discretized via fi nite differences, 
yielding a product of four tridiagonal systems of equa-
tions that can be inverted in sequence to obtain the fi eld 
at the advanced plane located at range x + ∆x.13

The presence of the 2D terrain complicates the 
propagation problem by coupling the different fi eld com-
ponents according to the boundary condition (Eq. 2). 
The simple marching technique described above is not 
applicable in the presence of the terrain. The effect of 
the terrain on the propagating fi eld can be accounted for 
by employing the following hybrid model, which is based 
on the fi eld equivalence principle.14 This hybrid model 
propagates the fi eld from the current propagation plane 
to the subsequent plane in two steps.15 First, the terrain 
is removed and the fi eld is propagated from the previous 
plane to the current plane via the marching technique 
described above. Second, the terrain slice located in the 
current propagation plane is restored and the coupled 
fi eld problem governed by the SVPE (Eq. 2) and the 
boundary condition (Eq. 3) is re-solved in Domain I, 
which contains the terrain slice (Fig. 3). The fi eld values 
within Domain I obtained by the fi rst step are replaced 
by those obtained by the second step; then the proce-
dure is repeated to propagate the fi eld to the subsequent 
planes. The solution in the second step is carried out as 
follows. The governing SVPE (Eq. 2) and the boundary 
condition (Eq. 3) are discretized using fi nite differences, 
resulting in a sparse system of equations of the form 

 Ax = b. (7)

Equation 7 is solved for the unknown vector fi eld x 
in Domain I via an iterative procedure such as the pre-
conditioned biconjugate gradient method.16 Since the 
matrix A is sparse, only the nonzero entries of A need 
to be stored. This can be accomplished by using the 
row-index storage format.16 The SVPE (Eq. 2) is used 
instead of the exact VPE (Eq. 1) in the second solution 
because the second solution step is carried out in the 
current propagation plane, where the fi eld information 
needed to represent the range derivative (∂/∂x) by fi nite 
differences is not available. To accurately estimate ∂/∂x, 
one needs the fi eld values in the previous, current, and 
next propagation planes. The fi eld values both at the 
current and next planes are not known, and the direct 
implementation of the range derivative is not recom-
mended.4 Instead, one needs to replace ∂/∂x in terms of 

Figure 3. A typical VPE propagation plane displaying the terrain 
slice contained in that plane and the perfectly matched layers 
(PMLs) used to eliminate nonphysical refl ection artifacts from 
the plane boundaries. In this propagation plane, Domain I is the 
region surrounding the terrain slice. 
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∂/∂y and ∂/∂z in order to express the boundary condi-
tion in terms of transverse derivatives in the current 
propagation plane. This replacement is only possible by 
using the SVPE. The height of Domain I is chosen such 
that the terrain points have minimal effect on the fi eld 
points located above Domain I of the current propaga-
tion plane (Fig. 3).

PSEUDO-3D TEMPER MODEL
The 2D TEMPER model solves the scalar version 

of the VPE (Eq. 1), without the cross-range derivative 
operator ∂2/∂y2, using the SSFM.17 Propagation over 2D 
terrain can be simulated by running TEMPER over mul-
tiple 1D azimuths (red lines in Fig. 4) with the terrain 
assumed to be 1D (corrugated) along each azimuth. The 
2D (x, z) propagation data from these azimuths are then 
combined to approximate propagation in a 3D environ-
ment. It is evident that this approach does not capture 
out-of-plane scattering and diffraction effects; however, 
TEMPER does model forward scatter and diffraction 
caused by the in-plane terrain variations. 

Two terrain models are currently implemented in 
TEMPER. The fi rst is the linear-shift map model pro-
posed by Donohue and Kuttler.8 This model, which is 
accurate for terrain slopes less than about 15°, replaces 
the irregular terrain by a set of piecewise linear seg-
ments. Terrain profi les with steeper slopes are modeled 
using the knife-edge (KE) approximation. This approxi-
mation represents the terrain by a series of perfectly con-
ducting KEs, where the propagating fi eld is replaced by 
the null fi eld at and below the terrain point coinciding 
with the current range point, and the resulting fi eld is 
then propagated to the next range point.

Using a combination of these two terrain models 
(linear-shift map for terrain slopes < 15° and KE for 
larger terrain slopes), TEMPER can account for in-
plane terrain effects. TEMPER has also been shown to 
very accurately model tropospheric refraction effects. 
Because of its accuracy and numerical effi ciency, 
TEMPER is currently used by the Navy community 
to model site-specifi c 3D scenarios. Not being able to 
account for out-of-plane scattering and depolarization 
effects is a limitation that must be tolerated, as rigorous 
3D modeling of these scenarios would be computation-
ally prohibitive. Because the 2D assumption will persist 
for years to come, even with foreseeable advances in pro-
cessor speed, it is important to quantify and understand 
the errors it entails.  

SOURCE MODELING
Meaningful comparisons between the P3DTEMPER 

and the full VPE model are achievable only when the 
two codes propagate the same source fi eld. For the 
numerical simulations reported in this article, the VPE 
model uses a 2D rectangular antenna aperture with a 

Gaussian-shaped aperture (source) fi eld. This 2D source 
is illustrated in Fig. 5a. Starting with the 2D source dis-
tribution, one needs to calculate the proper 1D aperture 
source distributions that give rise to the fi elds propagat-
ing along each azimuth in the P3DTEMPER scheme. 
This task can be accomplished as follows. A 2D Fourier 
transform is used to calculate the 3D far-fi eld pattern 
associated with the 2D aperture distribution. Since the 
source distribution is Gaussian, the far-fi eld pattern is 
also Gaussian. This far-fi eld pattern as a function of the 
polar angle � (measured from the z axis) and the azi-
muth angle � (measured from the x axis) is shown in 

Figure 4. The propagation geometry for P3DTEMPER. The red 
lines indicate the different propagation azimuths along which the 
P3DTEMPER model runs to approximate propagation in a 3D 
environment.

Figure 5. (a) 2D radar antenna with Gaussian aperture source 
distribution. The Gaussian source distribution was chosen for 
ease of mathematical analysis. The VPE model presented herein 
works equally well for any smooth source distribution. (b) The 3D 
far-fi eld pattern of the 2D Gaussian source distribution. The far-
fi eld pattern of an antenna is given by the Fourier transform of the 
aperture source distribution. 
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Fig. 5b. To perform a P3DTEMPER calculation along 
a specifi c azimuth � = �0, the far-fi eld pattern slice at 
�0 is inverse Fourier transformed to determine the 1D 
aperture distribution responsible for that slice. The com-
plete far-fi eld pattern is then synthesized by repeating 
this process for all azimuths to be considered in a given 
propagation scenario.

In the numerical examples discussed below, a HPOL 
source fi eld is one that has a single y-directed electric 
fi eld component, while a VPOL source fi eld has a single 
z-directed magnetic fi eld component. 

NUMERICAL SIMULATIONS 
AND DISCUSSION 

In the examples that follow, the VPE model’s solution 
is taken as “ground truth” reference for P3DTEMPER. 
In this way, full 3D terrain effects are compared to their 
2D approximants. To perform these comparisons with 
confi dence, we fi rst assess the VPE model’s two-step, 
wide-/narrow-angle handling of propagation over irreg-
ular terrain by benchmarking the VPE model against 

the exact Mie-series solution of scattering from a per-
fectly conducting sphere. The scattering geometry—a 
VPOL plane electromagnetic wave incident on a per-
fectly conducting sphere of radius a = 5 �—is shown in 
Fig. 6. The total z-directed fi eld was calculated, using 
both the exact Mie-series expansion and the VPE 
model, at a distance of 30 � behind the sphere. These 
results are plotted in Figs. 7a (z = 0.1 �) and 7b (y = 
0.1 �). Despite using a narrow-angle propagator for ter-
rain effects, the VPE model agrees well out to distances 
corresponding to nearly 35° from the horizontal (x 
axis).  

The fi rst simulation example involves propagation 
over the simple notional urban terrain illustrated in 
Fig. 8. This “terrain” consists of eight buildings on a fl at 
plane, arranged in two rows centered on y = +50 m and 
y = −50 m. Each building is 50 m tall, 40 m wide, and 
200 m deep. The source fi eld is a HPOL Gaussian beam 
centered at (0, 0, 30 m) and has a 1/e beamwidth of 6 m. 
The material composing the buildings and the fl at ter-
rain beneath is assumed to be highly conducting, with a 
complex relative permittivity � r = 80 + i79.1. In this and 

Figure 6. Geometry for VPOL plane-wave scattering from a per-
fectly conducting sphere. The incident plane wave (kj) is propa-
gating along the x axis. The radius of the sphere is 5 �, where � is 
the radar operating wavelength. (E = electric fi eld, H = magnetic 
fi eld.)
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Figure 7. Magnitude of the total Ez (a) as a function of y at x = 
30 � and z = 0.1 � behind the sphere of Fig. 6 and (b) as a function 
of z at x = 30 � and y = 0.1 � behind the sphere of Fig. 6. The exact 
fi eld was calculated via the Mie series.
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A more thorough, quantitative comparison is dis-
played in Fig. 11. This plot contains the point-for-point 
OWPF difference between VPE and P3DTEMPER at 
x = 18 km (i.e., difference between the x planes shown 
in Figs. 9a and 9b). Through careful manipulation of 
the P3DTEMPER calculation grid, no interpolations 
were required to compute Fig. 11; all errors are purely 
a result of 2D versus 3D propagation. Whether these 
errors occur at low or high power levels can be discerned 
from Fig. 12, which shows a bivariate histogram of the 
OWPF differences displayed in Fig. 11 as a function of 
the OWPF predicted by the VPE model. The histogram 
reveals discrepancies on the order of 6 dB occurring at 
high VPE power levels, rough agreement (within ±5 
dB) at intermediate powers, and signifi cant differences 
(3D results 5 to 15 dB higher than 2D results) at lower 
VPE power levels (OWPFs of −15 to −5 dB). The differ-
ences occurring at high power levels can be attributed to 

Figure 8. A simple urban propagation environment composed of 
a fl at terrain with four pairs of buildings. Each building is 50 m tall, 
40 m wide, and 200 m deep. 

all other numerical examples cited in this section, the 
operating frequency is taken to be 1 GHz. 

For visual clarity and to display the 3D propagat-
ing fi eld in a manner suitable for comparisons, the 
plotted quantity is the one-way propagation factor 
(OWPF):

 OWPF log ( | |),
,
,

.= =
⎧
⎨
⎪

⎩⎪
20 10 x E p

y HPOL
z VPOLp  (8)

Plots show model output, in terms of OWPF, at three 
orthogonal slices through the solution volume: x planes 
(x = constant), y planes (y = constant), and z planes 
(z = constant). Figures 9a and 9b display three orthogonal 
slices calculated by the VPE and P3DTEMPER model, 
respectively, in the notional urban environment. These 
slices are located at x = 18 km, y = 80 m, and z = 10 m. 
In Fig. 9a, the deep blue regions on the z plane indicate 
the location of the buildings. The white regions on the z 
plane in Fig. 9b indicate the same locations. The strong 
out-of-plane scattering and diffraction by the vertical 
side edges of the building are clearly displayed in the 
VPE results of Fig. 9a. The out-of-plane diffracted fi eld 
fi lls in the shadow regions behind the buildings, and out-
of-plane scattering interferes with the direct fi eld propa-
gating between the two rows of buildings. These effects 
are absent in Fig. 9b because of the 2D nature of the 
P3DTEMPER.

These differences are even more evident in line-plot 
comparisons. Figure 10 contains cross-range line cuts 
across the x-plane slices shown in Figs. 9a and 9b. These 
line cuts are taken at x = 18 km and z = 10 m. Out-of-
plane diffraction effects are manifested most dramati-
cally in the shadow regions behind the last two build-
ings (−100 m < y < −40 m and 40 m < y < 100 m in Fig. 
10a). Figure 10b displays altitude cuts through the slices 
shown in Figs. 9a and 9b (at x = 18 km and y = 80 m). 
Again, the difference between the VPE result and the 
P3DTEMPER result is most pronounced in the shadow 
region behind the last building (z  <  50 m in Fig. 10b).

Figure 9. The one-way propagation factor (OWPF) obtained by 
(a) the VPE model and (b) the P3DTEMPER model plotted in the 
three orthogonal planes: the x plane is located at x = 18 km, the y 
plane at y = 80 m, and the z plane at z = 10 m for the urban terrain 
example depicted in Fig. 8.
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Figure 11. The decibel difference between the OWPF calcu-
lated by VPE and that calculated by P3DTEMPER at the x =
18-km plane. Results are for the urban terrain confi guration shown 
in Fig. 8. 

Figure 10. The OWPF (a) as a function of cross-range y at range 
x  = 18 km and altitude z  = 10 and (b) as a function of altitude z 
at range x  = 18 km and cross-range y  = 80 for the urban terrain 
example depicted in Fig. 8. 

Figure 12. A bivariate histogram of the OWPF decibel difference 
displayed in Fig. 11 (vertical axis) as a function of the VPE OWPF 
in decibels (horizontal axis). Results are for the urban terrain con-
fi guration shown in Fig. 8.

constructive interference of the out-of-plane fi elds scat-
tered by the vertical sides of the buildings, while the 
differences at the low power levels are attributable to 
lateral diffraction into the shadow regions by the verti-
cal edges of the buildings.      

Naturally, there are pronounced differences between 
the VPE and P3DTEMPER for the notional urban sce-
nario because of the sheer vertical features in the ter-
rain surface. The next example investigates whether 
these differences persist for more natural terrain, where 
large-scale steep vertical features are not present. Figure 
13 shows the small matrix of digital terrain used for this 
example: a hill at the southern tip of Ni
ihau Island, 
Hawaii, that extends roughly 1 km in range (x) and 
800 m in cross range (y), and peaks at 170 m above 
sea level. Digital terrain was obtained at a horizontal 
resolution of 10 m and then linearly resampled at 1-m 
intervals for use in VPE. The VPE model’s propagation 
domain was 22 km in range, 800 m in cross range, and 
250 m in altitude. The digital terrain swath was placed 
between x = 18 km and x = 19 km in the propagation 
domain and surrounded by a fl at ocean surface. This 
surface is illuminated by a VPOL source fi eld with an 
operating frequency of 1 GHz. 

Figures 14a and 14b exhibit three orthogonal OWPF 
slices, analogous to those of Figs. 9a and 9b, computed 
by VPE and P3DTEMPER, respectively. In Figs. 14a and 
14b, the slices are located at x = 22 km, y = −150 m, and 
z = 40 m. In contrast to the urban terrain results of Figs. 
9a and 9b, the OWPF differences are not as pronounced 
in this example. This is simply a result of the lack of 
steep terrain features in the terrain under consideration. 
Out-of-plane scattering is minimal, and diffraction 
effects are mainly caused by smooth surface diffraction, 
which is weaker than the sharp-edge diffraction present 
in the urban terrain example. 
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Figure 13. A slice of the southern part of Ni
ihau Island, Hawaii. 
The arrow indicates the direction of the source radar beam.

Figure14. The OWPF obtained by (a) the VPE model and (b) the 
P3DTEMPER model plotted in the three orthogonal planes: the x 
plane is located at x = 22 km, the y plane at y = −150 m, and the z 
plane at z = 40 m for the digital terrain map of Fig. 13. 

Figure 15. The decibel difference between OWPF calculated by 
VPE and that calculated by P3DTEMPER at the x = 22-km plane. 
Results are for the Ni
ihau Island scenario shown in Fig. 13. The 
polarization is VPOL.

Close agreement between the VPE and P3DTEMPER 
results is quantitatively demonstrated by the OWPF dif-
ference plot at x = 22 km shown in Fig. 15 and the OWPF 
difference histogram in Fig. 16. The histogram indicates 
that VPE and P3DTEMPER agree to within ±5 dB at 
power levels exceeding −15 dB. Larger differences (10 to 

15 dB) do occur at lower power levels (OWPFs of −15 to 
−30 dB). These differences, which are evident as vertical 
lines in the difference plot of Fig. 15, occur mainly in the 
deep shadow region behind the hill (blue regions of the 
x plane shown in Fig. 14).

The accuracy of P3DTEMPER in the digital terrain 
example was remarkably good; however, out-of-plane 
diffracted/scattered fi elds in wider terrain swaths might 
accumulate to more appreciable levels at certain loca-
tions as a result of constructive interference. Hence, 
larger and more intricate digital terrain maps must be 
considered before the above conclusion can be gener-
alized. Having stated this important caveat, it is inter-
esting to note that the small lateral fi eld variations 
exhibited in the digital terrain example agree with the 
order-of-magnitude estimates reported by Fock.5
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Figure 16. A bivariate histogram of the OWPF decibel difference 
displayed in Fig. 15 (vertical axis) as a function of the VPE OWPF 
in decibels (horizontal axis). Results are for the Ni
ihau Island sce-
nario shown in Fig. 13. The polarization is VPOL.
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To facilitate larger terrain swaths, and thus more 
general conclusions, a more effi cient preconditioned bi-
conjugate gradient (PBCG) iterative scheme must be 
found to solve the sparse system (Eq. 7) in Domain I 
of the VPE model. It is well known that the number of 
iterations needed to achieve convergence in the PBCG 
procedure scales with the number of fi eld unknowns.18 
Larger terrain swaths result in larger propagation domains 
and, consequently, a larger number of fi eld unknowns. 
In addition, the PBCG convergence rate depends on 
the choice of the preconditioning matrix used in the 
iterative solution.19 In the current VPE model, a Jacobi 
preconditioning matrix is used for simplicity. This pre-
conditioner consists of the diagonal part of the original 
sparse matrix A; naturally, the Jacobi preconditioner 
results in fast convergence when A is diagonally domi-
nated. The off-diagonal elements of A result from the 
fi nite-difference discretization of the boundary condi-
tion (Eq. 3), and these elements can become dominant 
for intricate terrain swaths with steep slopes. In this 
situation, the Jacobi preconditioner becomes extremely 
ineffi cient, and a more effective preconditioner must be 
developed. The search for the proper preconditioner, as 
well as the examination of other iterative schemes, will 
be a main focus of future work.  

SUMMARY
This article examined the out-of-plane diffraction 

and scattering effects of lateral terrain variations on 
low grazing angle radar propagation over terrain. The 
2D propagation model TEMPER does not account for 
these effects. 

Two types of terrain confi gurations were considered: 
a simple urban terrain and a digital terrain map. In the 
urban terrain example, the out-of-plane scattering and 
diffraction by vertical sides and edges were responsible 
for a 10- to 20-dB fi eld enhancement over 2D model 
predictions. These out-of-plane propagation effects were 
much less pronounced in the digital terrain example. In 
this case, the agreement between the VPE model and the 
P3DTEMPER model was within 5 dB at high power levels 
(OWPF > −15 dB), while the agreement was less favor-
able for lower levels. These results are not surprising since 
the out-of-plane scattering and diffraction mechanisms 
in the urban terrain example are vertical surfaces, which 
give rise to strong specular scattering and strong, sharp-
edge diffraction. On the other hand, in the digital ter-
rain example, the out-of-plane diffraction effects are 
attributed to surface diffraction, which is a weaker dif-
fraction mechanism. This conclusion must not be gen-
eralized without analyzing a wider variety of larger, more 

intricate digital terrain maps. To facilitate this future 
work, we plan to enhance the effi ciency of our VPE pro-
cedure by developing more adequate preconditioners for 
the PBCG iterative algorithm. This will allow larger ter-
rain swaths to be treated, enabling us to further examine 
and generalize the observations made in this article. 
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