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STRATEGIES FOR MICROORGANISM IDENTIFICATION
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Bioinformatics-Based Strategies for Rapid Microorganism 
Identifi cation by Mass Spectrometry

Plamen A. Demirev, Andrew B. Feldman, and Jeffrey S. Lin

e review approaches for microorganism identifi cation that exploit the wealth of 
information in constantly expanding proteome databases. Masses of an organism’s protein 
biomarkers are experimentally determined and matched against sequence-derived masses 
of proteins, found together with their source organisms in proteome databases. The source 
organisms are ranked according to the matches, resulting in microorganism identifi ca-
tion. Statistical analysis of proteome uniqueness across organisms in a database enables 
evaluation of the probability of false identifi cations based on protein mass assignments 
alone. Biomarkers likely to be observed can be identifi ed based solely on microbial genome 
sequence information. Protein identifi cation methodologies allow assignment of detected 
proteins to specifi c microorganisms and, by extension, allow identifi cation of the microor-
ganism from which those proteins originate. 

INTRODUCTION
Effective responses to bioterrorism attacks or novel 

emerging infectious diseases such as SARS require 
enhanced capabilities for rapid and accurate microor-
ganism identifi cation. For example, the intentional use 
of Bacillus anthracis spores in the fall of 2001 highlighted 
the importance of accurate bioagent surveillance and 
sensor technologies for the quick and reliable detection 
of both natural and bioengineered microorganisms.

Mass spectrometry (MS) is one emerging technology 
capable of meeting the challenges posed by biological 
threats. The current paradigm for rapid microorganism 
characterization by MS is based on the detection and 
identifi cation of biomarkers using experimental mass 
spectra. This paradigm can be traced back to Anhalt 
and Fenselau,1 who demonstrated that biomolecules 

from different pathogenic bacteria, introduced intact 
into a mass spectrometer, could be vaporized and ionized 
directly by electron impact. These chemical biomarker 
signatures for different organisms were structurally iden-
tifi ed by MS. Furthermore, their signature composition 
and abundances allowed taxonomic distinctions among 
the microorganisms to be made. 

After the introduction of soft ionization MS tech-
niques2–4 (recognized with the Nobel Prize in Chemistry 
in 2002), a number of new applications of MS in biol-
ogy and medicine emerged. These techniques—Matrix-
Assisted Laser Desorption/Ionization (MALDI) and elec-
trospray ionization (ESI)—allowed for the fi rst time the 
transfer of large (>30 kDa), intact, nonvolatile biomol-
ecules, such as proteins, into the gas phase. In a MALDI 
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experiment, a low-mass photo-absorbing organic com-
pound (matrix) is added to a sample prior to irradiation 
with ultraviolet (typically 337 nm) nanosecond laser 
pulses to desorb high-mass biomolecular ions. In ESI, 
large, multiply charged ions are generated by transport-
ing the analyte solution through a capillary needle typi-
cally biased from 2 to 4 kV relative to ground. Several 
stages of differential pumping and suitable ion optics 
allow the interfacing of an ESI ion source operating at 
atmospheric pressure with a mass spectrometer operat-
ing in high-vacuum conditions.

Combining MALDI or ESI with MS instrumenta-
tion, the molecular masses of individual proteins larger 
than 100 kDa could be determined with unprecedented 
accuracy. Several laboratories reported applications of 
MALDI and ESI to studies of intact cells of microor-
ganisms.5–15 These ionization techniques, in particular 
MALDI (Fig. 1), have enabled intact protein biomark-
ers to be detected and exploited in microorganism 
characterization.16,17

In this article, we review MS approaches for microor-
ganism identifi cation, developed at APL and elsewhere, 
that exploit the wealth of information found in the ever-
expanding genome and proteome (all proteins encoded 
in the genome) databases for prokaryotic organisms (bac-
teria and archaea) and viruses. Broadly, these approaches 
are based on experimentally determining the masses 
of the protein biomarkers detected from an unknown 
organism, which yields the protein’s “signature” (Fig. 2). 
Next, de novo generation of the protein biomarkers is 

performed by computing their masses from the protein 
sequences for each organism in the proteome database. 
Microorganism identifi cation is achieved by matching 
the experimental masses of the unknown against data-
base masses and ranking the organisms according to the 
statistical signifi cance of the number of matches in the 
mass spectrum. 

The successful implementation of a bioinformat-
ics-based approach for microorganism identifi cation 
has several requirements. First, the proteome database 
should be complete, that is, it should contain the pro-
teins for the unknown microorganism. Since each gene 
in the genome codes for a putative protein, the com-
pleteness requirement means that the genome of the 
organism should be sequenced. Second, statistical anal-
ysis of proteome uniqueness must be performed in terms 
of the mass accuracy of the MS instrument to estimate 
the probability of misidentifi cations and to assign a con-
fi dence measure to the fi nal result. Third, improvements 
to proteome database fi delity should be incorporated, 
for example, to account for the most common “post-
translational modifi cations” (PTMs) to the proteins 
coded in the genome that are not directly refl ected in 
the databases. 

We also review methods for improving the identifi ca-
tion reliability of the bioinformatics approach by impos-
ing constraints on the number of potential biomarkers 
to be matched, for example, by including only the highly 
expressed proteins in the protein biomarker database for 
each organism. In silico creation of protein biomarker 
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Figure 1. Principle of operation of a MALDI TOF mass spectrometer for microorganism identifi cation. Intact biomarker ions are desorbed 
into the vacuum as a result of laser photon–matrix molecule interactions. All ions acquire kinetic energy proportional to their charge z. 
Ions with the same charge but different masses have different times of fl ight (TOF) through the drift region of the instrument. Calibration 
procedures correlate an ion’s TOF, measured in an experiment, with its mass m (TOF ∝ m z/ ).
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databases for microorganism identifi cation by MS is  
discussed as well. In this case, each database entry is 
selected directly using microbial genome sequence infor-
mation to deduce proteins that are highly expressed, 
thus fl agging them as the most likely to be detected by 
MS. In addition, we illustrate the advantages of in silico 
generation of protein biomarker databases for particular 
pathogenic microorganisms, including Bacillus spores 
and the SARS virus.

MS-BASED APPROACHES FOR 
MICROORGANISM IDENTIFICATION

In conventional MS-based microorganism identifi -
cation approaches, experimental MALDI mass spectra 
from a microorganism are compared with a collection 

variability (see the preceding paragraph). The expected 
biomarkers for a microorganism are determined from the 
masses of a subset of all of its potentially expressible pro-
teins. This is the major difference between the “tradi-
tional” fi ngerprint and bioinformatics-based approaches. 
In both strategies, the experimental MS data are com-
pared to expected masses (from reference spectra in the 
traditional approach; derived from the genome in the 
new approach), and the microorganism that provides 
the most statistically signifi cant matches is selected. 

While different sets of proteins can be expressed in 
a microorganism and experimentally observed by MS 
(depending on growth stage, growth medium, etc.), 
the masses of all these proteins can be independently 
derived from their sequences. The amino acid sequences 

Figure 2. Two different strategies currently used for MS-based microorganism identifi ca-
tion. In the fi rst, a “fi ngerprint” approach, identifi cation is achieved by matching an experi-
mental mass spectrum to MS fi ngerprints from an empirically compiled mass spectral 
database of known organisms. In the second, a bioinformatics-based strategy, the experi-
mental mass spectrum is matched to protein masses derived from a proteome database. 
MS fi ngerprint matching does not require the genome sequence of the organism to be 
known; however, the fi ngerprints of an organism depend on experimental conditions and 
various biological factors. Follow-on developments of the bioinformatics-based strategy 
include tandem MS (MS/MS). In an MS/MS experiment, a precursor biomarker ion in 
the experimental mass spectrum is isolated and excited via interactions with neutral gas 
molecules, electrons, or photons. The precursor ion dissociates, and the detected frag-
ments can be correlated to the amino acid sequence of the precursor. A partial amino 
acid sequence (a “tag”) may be suffi cient to identify the precursor protein by sequence 
homology searches in a proteome database, and from there, enable identifi cation of the 
organism from which the protein originates.

of mass spectra of known organ-
isms—MS “fi ngerprints”—compiled 
into a reference biomarker signature 
library (Fig. 2). The MS-detected 
biomarkers can vary with sample 
preparation, instrumental condi-
tions, microorganism biochemistry, 
and environmental conditions, such 
as diverse biological backgrounds.16 
For instance, depending on the 
organism’s developmental stage, dif-
ferent sets of biomarker peaks are 
observed from the same organism.18 
Therefore, to perform effectively, this 
fi ngerprint approach requires collec-
tion of a vast number of spectra for 
each targeted microorganism under 
a variety of different conditions. 
Collecting fi ngerprints for all con-
ditions, both for target pathogenic 
and nonpathogenic background 
organisms, is generally not feasible 
because of the enormous sample 
throughput bottleneck. In addition, 
this fi ngerprint library approach has 
the practical limitation that no sig-
nature data are available unless MS 
has been performed on the organism 
(this is not always feasible for novel 
or highly pathogenic organisms).

To provide signature robustness 
and to avoid the sample through-
put bottlenecks associated with 
fi ngerprinting, a bioinformatics-
based strategy (Fig. 3) for protein 
biomarker database generation was 
proposed.18–20 Here, the genome, 
which codes for all proteins that can 
be expressed in an organism, pro-
vides a set of expected biomarkers 
that are robust against experimental 
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of all proteins can be found (together with their source 
organisms) in Internet-accessible proteome databases 
(e.g., Refs. 21 and 22). The experimental biomarker 
signature (the masses of a set of ions) is determined 
by MS. Identifi cation is achieved by comparing 
the masses from the experimental spectrum of the 
unknown organism with the masses of proteins in 
proteome databases and then ranking the candidate 
microorganisms according to the number of matches. 
The scoring method, initially proposed by Demirev 
et al.,18 identifi ed the highest ranked organism in the 
matching procedure as the source of the experimental 
mass spectrum. The method was successfully 
demonstrated with experimental mass spectra from 
Gram-positive as well as Gram-negative microorganisms 
with completely sequenced genomes. 

Since constant intensities of the set of experimen-
tally observed protein biomarkers are not required 
when using the bioinformatics-based approach, various 
types of MS instruments can be used for obtaining the 

biomarker spectra. Early on, it was also noted that several 
factors, such as mass range, mass measurement accuracy, 
and database size, infl uence successful microorganism 
identifi cation.18,19

REQUIREMENTS FOR 
BIOINFORMATICS-BASED 
APPROACHES 

Proteome Database Completeness 
To identify a particular organism with this bioinfor-

matics-based approach, it is obvious that the set of pro-
tein biomarkers for that organism must be available in 
the proteome database. Initially, the protein sequences 
found in protein sequence databases were obtained 
through isolation and sequencing of the proteins 
in each organism. In the last few years, as a result of 
advances in gene sequencing technologies, the proteome 
databases have rapidly expanded via translation of the 

Figure 3. DNA, a linear biopolymer, contains four different nucleotides (bases) in a specifi ed sequence. This sequence provides the 
blueprint for the “expression” of individual genes into proteins. Proteins, which are also linear biopolymers, are composed of 20 different 
amino acids. The genetic code maps nucleotide triplets (“codons”) to each individual amino acid. Since there are 64 (43) different codons 
coding for 20 amino acids, a redundancy in codon usage exists (i.e., several “alternative synonymous codons” coding for the same amino 
acid). The sequences of all proteins for an organism can be predicted (“translated”) by bioinformatics tools from that organism’s genome 
sequence. Depending on their function, proteins are expressed (synthesized) in different “copy numbers” (from a single copy to 105 
copies for highly expressed proteins per cell). Furthermore, proteins may undergo in vivo “post-translational modifi cation” (PTM), result-
ing in changes to the original amino acid sequence (translated from the genome). We determine by MS the masses of the “fi nal” protein 
biomarker product (after the PTM).
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open reading frames of the respective organism’s genome. 
By the end of 2003, the genomes of 134 microorganisms 
(bacteria and archaea) were publicly available.23 The 
rate of microorganism sequencing as a function of time 
(Fig. 4) has increased since the fi rst bacterial species was 
sequenced in 1995. The genomes of all bacteria on the 
CDC listing of potential bioterrorism agents have been 
or are currently being sequenced and are also publicly 
available. In some instances, these include multiple 
pathogenic and/or nonpathogenic strains of the same 
organism. Most notably, the sequences of B. anthra-
cis and its closest “relative,” B. cereus, have been pub-
lished.24,25 The speed with which the sequences of newly 
emerging threats to public health are made available is 
well illustrated by the example of the SARS virus, whose 
sequence was determined through an international col-
laboration weeks after the initial outbreak.26

Proteome Statistics
Statistical analysis of the uniqueness of proteome-

derived protein biomarkers as a function of experimen-
tal mass accuracy and proteome density (number of 
proteins per mass interval) has been performed.19 The 
analysis provides a means to evaluate the rate of false 
identifi cations (organisms other than the target organ-
ism) attributable to randomly matching experimentally 
derived masses to database-derived masses of proteins 
from an organism. It also suggests that simple ranking by 
the number of matches is not functional for microorgan-
ism identifi cation when the experimental mass accuracy 
is below 10 ppm. The probability of false identifi cation 
goes up as a function of the proteome density for a given 
organism, since random matches will be more frequent 
for organisms that have more dense proteomes. 

An analytical expression, the p-value, has been 
derived to calculate a numerical estimate of the proba-
bility for false identifi cation due to matches between the 
experimentally observed mass values in an organism’s 
biomarker signature and protein database masses of a 
different organism. The p-values vary from 0 to 1, with 
the lower values refl ecting lower probability of match-
ing by chance. Both theoretical analysis and in silico 
simulations confi rm that p-values can be signifi cantly 
improved by reducing the number of expected micro-
organism biomarkers from the entire set of potentially 
expressible proteins, based on rationally derived con-
straints (e.g., using biological domain knowledge about 
the expression levels of different proteins). Improving 
the mass accuracy of the experimentally observed bio-
marker signatures using, for example, Fourier transform 
ion cyclotron resonance (FTICR) MS27,28 and/or isotope 
depletion in conjunction with TOF MS29 also improves 
microorganism identifi cation.

Proteome Database Fidelity
A problem in matching the experimental masses 

(Mex) with database-derived biomarker protein masses 
(Mth) is the occurrence of PTMs not refl ected in the 
database. For instance, the most common PTM in pro-
karyota, cleavage of the N-terminal amino acid methio-
nine (Met), if not explicitly refl ected in the database, 
would lead to a discrepancy between observed (Mex) and 
predicted (Mth) masses. Here, the discrepancy is 131 Da, 
the mass of a Met residue (Mth = Mex � 131 Da). 

A procedure to account for this specifi c PTM in 
putative protein biomarkers has been developed.20 It is 
based on experimentally determined cleavage rules for 
the enzyme executing the PTM,30 N-terminal amino-
peptidase. This enzyme’s activity is regulated by the 
type of the penultimate amino acid in the protein (i.e., 
the next-to-last amino acid in the translated sequence). 
Thus, the probability for this PTM to occur in a par-
ticular protein can be deduced by examining its amino 
acid sequence. 

This rule has been implemented in an APL-devel-
oped Internet-accessible microorganism identifi cation 
algorithm based on MS and proteome database queries 
(Fig. 5, see Ref. 31). The algorithm was used to char-
acterize intact Helicobacter pylori Gram-negative bac-
teria, the most ubiquitous human pathogen. Including 
this PTM improves the identifi cation reliability (the p-
values) by at least an order of magnitude, from 10�2 to 
10�3 in the case of H. pylori.20

METHODS FOR IMPROVING 
IDENTIFICATION RELIABILITY

Proteome Density: Rational Database Truncation
Statistical modeling predicts that reducing the pro-

teome density (number of biomarkers) in the database 
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Figure 4. Increase in the number of completely sequenced 
genomes of prokaryotic organisms in publicly available genome 
databases as a function of time.
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by, for example, taking into consideration the differ-
ences in expression levels (“copy numbers”) for various 
proteins, is a viable method for decreasing the probabil-
ity of false identifi cation. Recently, Pineda et al.32 dem-
onstrated experimentally that rational constraints on 
the number of potential microorganism biomarkers in a 
database can successfully scale up the permissible data-
base size for a 95% detection confi dence to more than 
1000 microorganisms (for mass accuracies typical for a 
linear MALDI MS instrument). 

Using biological domain knowledge about the expres-
sion levels of different proteins, a biomarker database has 
been generated by including only the highly expressed 
ribosomal proteins.33 Typically this reduces the number 
of biomarkers in the range of 4 to 20 kDa by around 2 
orders of magnitude. In a blind study, microorganisms 
represented in the database with 20 or more ribosomal 
biomarkers were correctly identifi ed from their experi-
mental MALDI mass spectra 100% of the time at the 
95% confi dence level, with no incorrect identifi cations. 

Robustness with respect to variations in sample 
preparation protocol and mass analysis protocol was 
also demonstrated. Statistical analysis suggests that 
database truncation (i.e., rationally constraining the 
entire proteome of a sequenced organism to less than 
50 highly expressed protein biomarkers) would allow 
successful identifi cation of a microorganism from its 
experimental mass spectrum even without further 
improvement in the mass accuracy typical for linear 
MALDI TOF instruments. We also point out the exis-
tence of alternative methods, such as those involving 

uses a reference set of genes from a species to assess 
the usage frequencies of each codon, and a score for a 
particular gene is calculated from the usage frequency 
of the specifi c codons in that gene. The European 
Molecular Biology Open Software Suite42 is used to cal-
culate CAI values for the proteins of a microorganism 
from its genome sequence. The protein biomarkers for 
a microorganism are derived from the genes with the 
top 10 CAI values.  Experimental data show that these 
CAI-derived protein biomarkers do indeed match peaks 
from experimental MALDI spectra from each micro-
organism. Therefore, the codon adaptation indices are 
a useful measure to predict highly expressed proteins 
for constructing a microorganism protein biomarker 
database, without the requirement for a priori protein 
annotation.

Top-Down Proteomics 
In a tandem MS (MS/MS) experiment, a precur-

sor ion is selected, isolated, and excited by interaction 
with neutral gas molecules, electrons, or photons. The 
increased internal energy of the precursor ion causes 
its dissociation into sequence-specifi c fragments, which 
can be correlated to the precursor ion sequence. 

The possibility of identifying an intact protein by 
deducing its partial amino acid sequence (tag) in an 
MS/MS experiment and subsequent homology search 
in a proteome database was fi rst demonstrated by 
Mortz et al.43 This top-down approach in proteomics 
(“top-down” and “bottom-up” indicate whether or not 
intact proteins are initially identifi ed) was developed 

Mass accuracy

Proteome size

p-values

Figure 5. APL-developed Internet-accessible Web site with software for microorgan-
ism identifi cation by a proteome database query.31 The user enters experimentally 
observed biomarker masses as well as experimental mass accuracy, proteome data-
base to be queried (e.g., complete or truncated), scoring method (ranking by, e.g., 
number of matches or p-values), etc.

the use of electrospray MS experiments 
to identify highly expressed protein 
biomarkers and to compile truncated 
databases for use in rapid microorgan-
ism identifi cation.34,35

Statistical gene sequence analysis36 
has been used to create a truncated 
database of protein biomarkers for 
microorganism identifi cation.37 Each 
database entry is selected directly using 
only bioinformatics tools and micro-
bial genome sequence information. 
To constrain the number of potential 
biomarkers, we exploit the fact that 
the alternative synonymous codons for 
a particular amino acid in a gene are 
not used randomly.36,38 In addition, we 
use the positive correlation between 
the degree of bias in the codon usage 
frequencies in a gene and the expres-
sion level of the protein coded by 
that gene.39–41 

We estimate codon biases by a 
simple statistical measure—the codon 
adaptation index (CAI).38 This index 
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further in a number of studies, all involving either an 
FTICR44–48 or a quadrupole49 ion trap. As already noted 
(Fig. 2), unambiguous identifi cation of one or more 
intact protein biomarkers by this method will allow 
successful microorganism identifi cation as well (pro-
vided the proteome database contains the microorgan-
ism). For instance, protein biomarkers from B. cereus T 
spores were analyzed by high-resolution tandem FTICR 
MS.50 Fragmentation-derived sequence tags and BLAST 
sequence similarity searches51 in a proteome database 
allowed unequivocal identifi cation of the major protein 
biomarker as a small acid-soluble spore protein (SASP). 
From there, the organism itself could be unambiguously 
identifi ed.50 

Tandem MS of intact protein biomarkers still requires 
rather complex instrumentation (most often electro-
spray ionization/FTICR). However, recent develop-
ments in, e.g., TOF/TOF instruments, combined with 
bioinformatics, can drastically improve the specifi city 
of individual microorganism identifi cation, particularly 
in complex outdoor environments with high biological 
background.

Bottom-Up Proteomics
Similar to the top-down proteomics methodology for 

microorganism identifi cation, the bottom-up approaches 
are based on initial identifi cation of individual pro-
teins. In bottom-up proteomics, proteolysis (enzymatic 
digestion) of the proteins is fi rst performed, resulting in 
several peptide fragments (“proteolytic” peptides) from 
each protein (see Fig. 6). The specifi city of the proteo-
lytic enzymes, complementary to or concurrently with 
peptide sequence tag information obtained by tandem 
mass spectrometry, improves the capability for un-
equivocal protein identifi cation in classical bottom-up 
proteomics.52–54

The recent, rapid identifi cation of Bacillus spores was 
achieved by selective solubilization of the SASP bio-
markers and their subsequent proteolytic digestion in 
situ by using trypsin (immobilized on agarose beads) as a 
proteolytic enzyme. The proteolytic peptides were then 
analyzed by two different types of tandem mass spec-
trometers—MALDI TOF MS with a curved-fi eld refl ec-
tron55 or a hybrid ion trap/TOF mass spectrometer.56 In 
the former, protein identifi cation was obtained by par-
tial sequencing of the proteolytic peptides in postsource 
decay experiments combined with proteome-based data-
base searches. Similarly, precursor ions of interest were 
isolated and excited by collisions in the quadrupole ion 
trap. High-mass-accuracy fragment ions were detected 
in the TOF analyzer, allowing sequence-specifi c infor-
mation to be obtained. The protein, and from there the 
microorganism source, were again identifi ed by proteome 
database searching. The applicability of this bottom-up 
proteomics approach for the rapid identifi cation of Bacil-
lus spore mixtures was also illustrated.55

In Silico–Generated Biomarker Databases 
An approach based on experimental data from 

digested protein biomarkers, but employing a specially 
constructed database of organism-specifi c proteolytic 
peptide masses, has already been demonstrated.57,58 
Experimentally, the unknown microorganism is 
digested with a selective protease for a short time. The 
products of such incomplete digestion are then ana-
lyzed by MALDI TOF MS and compared to an in silico–
generated database of proteolytic peptide masses. This 
approach can be applied for the rapid identifi cation of 
viruses and other organisms (e.g., bacterial spores) that 
show a low number of biomarkers. Some examples are 
as follows.

The Sindbis virus AR 339 was successfully identifi ed 
by using the masses of observed proteolytic peptides to 
query an in silico–generated database composed of proteo-
lytic peptide masses for six viruses whose genomes have 
been sequenced.57 Similarly, Bacillus spores were identi-
fi ed by this approach, again by creating in silico a database 
with the proteolytic peptide masses from all Bacillus and 
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Figure 6. Two pathways for bioinformatics-based rapid microor-
ganism identifi cation by MS: either the intact protein biomarkers 
or the proteolytic peptides obtained after protein digestion are 
detected. Along the second pathway, tryptic enzymes are used to 
cleave the intact protein biomarkers at specifi c amino acid sites 
along the sequence, generating a peptide mass map of the intact 
protein. Subsequently, the proteolytic peptides can be further 
fragmented in an MS/MS experiment for protein identifi cation by 
proteome database searches. Both pathways can be incorporated 
in parallel, with the second one serving to reduce the number of 
false positive microorganism identifi cations and/or confi rming a 
positive identifi cation (CID = collision-induced dissociation).
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Clostridium SASPs, with sequences 
available in public databases.58 Fur-
ther illustration of the capability for 
in silico protein biomarker database 
generation is provided by the com-
parison between experimentally 
observed proteolytic peptide frag-
ments of the nucleocapsid protein in 
the SARS virus59 and in silico–pre-
dicted products (Fig. 7).

We have also applied in silico 
biomarker analysis to B. anthracis 
spores. The rapid and reliable iden-
tifi cation of these spores is a major 
task for successful countermeasures 
against their use as an instrument of 
bioterror. Recently, several studies 
illustrated the usefulness of the MS 
approach (e.g., MALDI TOF MS) 
for rapid identifi cation of Bacillus 

Table 1. Bacillus spore–associated protein biomarkers.22

TrEMBL 
identifi cation Description B. anthracis B. cereus

AAP24546 Small acid-soluble spore protein 
  (SASP), gamma-type 9738 9507
AAP27427 Spore coat protein K
AAP28906 Spore coat protein F–related protein
AAP24097 SASP 6669
AAP24857 SASP 6835 6835
AAP25114 Spore germination protein GerPF
AAP25116 Spore germination protein GerPD
AAP25118 Spore germination protein GerPB
AAP25119 Spore germination protein GerPA
AAP25276 SASP, alpha/beta family
AAP25879 SASP, alpha/beta family 7081 7081
AAP26210 Spore germination protein GerPA
AAP26936 SASP, alpha/beta family 7163
AAP26939 SASP 7349
AAP28583 SASP B 6679 6711
AAP28729 Spore germination protein, GerPF-like protein
Note: Experimentally observed masses are matched to the sequence-derived masses by considering a post-
translational modifi cation: N-terminal Met cleavage. The three major biomarker peaks observed are shown in 
bold.

MS-detected molecular masses

44 measured masses59

30 matches (�0.02 Da)
80 theoretical masses >500 Da
      (max. 1 missed cleavage)

mass/charge

500 1000 1500 2000 2500

Figure 7. Comparison between experimentally determined masses of the proteolytic pep-
tides of the nucleocapsid protein of the human SARS virus and an in silico–generated 
peptide mass signature map for the same protein. The nucleocapsid (N-structural) protein 
is expressed in the highest copy number in the virus and is the virion’s major structural 
component, forming the helical nucleocapsid by associating with the viral RNA. The experi-
mental mass values are from Krokhin et al.,59 while the in silico digestion of the sequence 
(SwissProt entry P59595) was performed with the “PeptideMass” software tool, accessible 
from the SwissProt Web site.22 Trypsin was used as a cleaving enzyme, and one missed 
cleavage was allowed. 

spores and discrimination between different species such 
as B. anthracis and its close relative B. cereus.60,61 Dif-
ferences in the masses of detected SASP biomarkers for 
spores of B. anthracis and B. cereus were experimentally 
measured. However, the nature of these differences did 
not become clear until the genomes of the two organ-
isms became publicly available.24,25 

Table 1 lists spore-associated protein biomarkers in 
the mass range from 6 to 10 kDa from B. cereus and 
B. anthracis. It is clear that two of the three major SASP 

biomarkers (also observed experimentally in MALDI 
TOF spectra from spores60,61) have the same masses for 
both species. Only one of them—the major SASP B—
differs in mass, by about 32 Da, between the two spe-
cies. Comparison between the sequences corresponding 
to these biomarkers points to differences in only two 
amino acid positions (see the boxed insert). These differ-
ences can be traced back to single nucleotide polymor-
phisms in the corresponding genes for the two proteins. 
The availability of the complete genomes allows us to 
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COMPARISON OF AMINO ACID AND DNA 
SEQUENCES

The following shows the alignment of the respective amino 
acid and DNA sequences for the major biomarker SASPs 
detected in the MALDI spectra of B. anthracis or B. cereus 
spores. A single nucleotide polymorphism (SNP) is a codon 
that differs by only one base (one letter) in each of the genes 
being compared. Here, the two SNPs code for two different 
amino acids, refl ected in the observed experimental mass dif-
ference of 32 Da between the two proteins. (Clustal W is a 
general-purpose multiple-sequence alignment program for 
DNA or proteins.)

reconstruct in silico and confi dently predict the expected 
protein biomarkers for these two Bacillus species, includ-
ing mass differences, which are important for successful 
discrimination between the two organisms.

OUTLOOK
Miniaturized fi eld-portable MS systems currently 

under development for biodefense at APL rely on the 
capability to predict biomarker signatures for biological 
pathogens and toxins under varying conditions. The 
set of MS-detectable biomarkers typically varies with 
the growth conditions and growth state of the organ-
isms, sample collection and preparation protocols, and 
the presence of other organisms (whether in the normal 
background or deliberately inserted). Bioinformatics 
tools can be used to provide robustness with respect to 
such variability and are key to the successful deploy-
ment of MS-based instruments for counterproliferation, 
homeland security,62,63 and biomedical applications64 
(see also articles by Ecelberger et al. and Antoine et al., 
this issue).

Future portable tandem MS systems that permit 
analysis of amino acid sequences within peptides from 
rapid enzymatic and/or chemical digests can enable 
rapid detection of agents followed by high-specifi city 
validation (low false alarms). This could be important 

in outdoor environments with high biological back-
ground. Here, proteome database searches play a 
critical role in identifying the agent-specifi c pro-
teins from experimentally derived partial amino 
acid sequence information. Such systems will also 
have the potential to detect certain classes of 
engineered organisms or novel, naturally emerg-
ing strains through identifi cation of the modifi ed 
protein biomarkers. The emergent organisms can 
potentially be classifi ed (bacterial species or even 
viral class) according to biomarker similarities and/
or specifi c protein sequence homologies to known 
organisms. The development of highly integrated 
and fi eld-portable MS systems with bioinformatics 
capabilities will c1early impact an even wider range 
of applications beyond biodefense, including clini-
cal microbiology, point-of-care medical diagnostics, 
and food and water safety.
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