
368 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 24, NUMBER 4 (2003)

J. F. GARTEN, C. E. SCHEMM, AND A. R. CROUCHER

R

Modeling the Transport and Dispersion of Airborne 
Contaminants: A Review of Techniques and Approaches

James F. Garten, Charles E. Schemm, and Arthur R. Croucher

ecent events have signifi cantly increased interest in modeling the time evolution 
of airborne contaminants. This capability can be used to plan and evaluate the effective-
ness of sensor systems that would warn of something harmful in the air, aid real-time deci-
sion making regarding regions to quarantine or evacuate during an actual event, and ana-
lyze what really happened after an event. This article reviews the abilities and limitations 
of such predictive models through a discussion of a coupled model approach used at APL. 
The Regional Atmospheric Modeling System (RAMS) is employed to predict meteoro-
logical data (winds, temperature, etc.), since even in the best operational scenarios, the 
available meteorological information is often inadequate. The RAMS predictions are used 
to drive an atmospheric transport and dispersion model that predicts the time evolution of 
a cloud of contaminants. 

INTRODUCTION
Intelligent and effective preparations for and responses 

to biochemical agent attacks, dirty bomb explosions, 
nuclear accidents, etc., require the ability to model the 
transport (motion) and dispersion (spreading) of air-
borne contaminants. The time evolution of a contami-
nant “cloud” depends on the four-dimensional (space 
plus time) wind magnitude, direction, and associated 
turbulence levels, as well as the four-dimensional tem-
perature and humidity. As shown conceptually in Fig. 1, 
these variables could cause high concentrations of a haz-
ardous agent to persist near the surface for an extended 
period of time, while concentration levels could decrease 
rapidly in others because the cloud spreads much more 
rapidly vertically and/or horizontally. Predicting a cloud’s 

evolution, and specifi cally the cumulative hazard to par-
ticular regions on the surface, is largely an exercise in 
understanding the meteorological (MET) conditions.

There has been longstanding interest in having one 
or more sophisticated, integrated numerical models to 
calculate comprehensive predictions of contaminant 
concentration levels. Such predictions can provide 
estimates for the net exposure risk (i.e., the cumulative 
dose) at certain locations in the aftermath of an attack 
or accident. These, in turn, are crucial insights for real-
time decision making. APL has been concerned with 
evaluating the performance of such models and, in 
particular, studying the effects of MET conditions that 
vary over space and time on predicted contaminant 
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concentrations. This article summarizes the abilities of 
some of these models, discusses the effects of MET con-
ditions on cloud evolution, and describes the potential 
applications for proven numerical predictive tools. 

END-TO-END MODELING APPROACH
Consider the possible methods for computing the 

time evolution of a cloud concentration fi eld. The most 
precise approach would require the velocity fi eld and 
other relevant MET variables (temperature, humidity, 
etc.), as well as the cloud concentration, to be known 
at some initialization time for an appropriate spatial 
resolution. A model would then time-step the three-
dimensional solution forward in time, calculating new 
velocity, MET, and cloud concentration fi elds from 
the current ones. Because of the disparity in scales 
involved (scales of hundreds of kilometers or more 
may be required for the velocity evolution, while the 
cloud concentration may vary on scales of fractions 
of a kilometer) and potentially complex terrain and 

for the times and over the spatial regions of signifi -
cance to a potentially much smaller-scale contaminant 
cloud evolution. The second model then starts from 
an initial cloud concentration fi eld and predicts the 
time evolution of that fi eld as it responds to the known 
external MET conditions. Results are interpolated as 
needed from the spatial and temporal resolution of the 
fi rst large-scale model to those of the second small-
scale dispersion model. APL’s implementation of such 
a coupled model approach to transport and dispersion 
modeling is shown schematically in Fig. 2.

 Approximations to the cloud concentration fi eld can 
make calculations much more rapid, and hence of greater 
practical use. With the velocity and MET environment 
known, it is possible to represent the three-dimensional 
cloud concentration fi eld, without any specifi c spatial 
grid, via a workable number of parameters. The time 
evolutions of these representative quantities are then 
modeled within the known environment in lieu of using 
the actual (gridded) concentration fi eld. 

Figure 1. Conceptual illustrations of contaminant cloud evolution under two qualitatively different environmental scenarios.

Figure 2. Conceptual diagram of an APL-developed end-to-end model that uses 
(1) meteorological (MET) data and predictions and (2) a transport and dispersion model to 
predict contaminant cloud concentration levels. Note the option to use the HPAC (Hazard 
Prediction and Assessment Capability), HYPACT (Hybrid Particle and Concentration 
Transport), or urban-scale CFD (Computational Fluid Dynamics) model for the transport 
and dispersion model. The diagram also illustrates one of the intended uses for such 
predictions: input into sensor models. (“Eta” is NOAA’s National Center for Environmental 
Prediction model; RAMS = Regional Atmospheric Modeling System.)

other details, such a high-resolu-
tion model is simply not feasible 
for many cases of interest. On the 
other hand, it might be well suited 
for regional- and national-scale 
pollution studies.

One means toward practicality 
is to use a coupled model approach 
in which two distinct models are 
run sequentially, with the output of 
the fi rst used as input to the second. 
The fi rst model is typically a com-
putational fl uid dynamics (CFD) 
code that forecasts wind veloci-
ties and other MET variables of 
interest over a spatial domain large 
enough to encompass the contami-
nant cloud during the time period 
of interest (see additional discus-
sion in the “Meteorological Inputs” 
section). With this step completed, 
it can be assumed that the velocity 
and MET variables are “known” 
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The major types of cloud transport and dispersion 
models, and their primary advantages and disadvan-
tages, are summarized in the next section. The particu-
lar CFD code that APL uses to provide MET input is 
discussed in the “Meteorological Inputs” section. 

TRANSPORT AND DISPERSION 
MODELS

Gaussian Plume Models
Gaussian plume models1,2 are predicated on the sup-

position that a cloud’s actual concentration fi eld can be 
approximated through the use of Gaussian shape func-
tions of the form
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where � is the independent variable and � is a width 
parameter. 

In the simplest case, we assume that one of the princi-
pal axes of the cloud is in the vertical direction and uses 
eight parameters to approximate the cloud concentra-
tion fi eld: the total mass of the cloud M, center of mass 
of the cloud (xm, ym, zm), relative orientation of the cloud 
with respect to specifi ed horizontal x-y axes represented 
by the angle �, and three Gaussian-width parameters �1, 
�2, and �3. The analytical equation for the concentration 
fi eld for such a cloud is
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where x� ≡ (x � xm)cos � � (y � ym)sin � and y� ≡ (y � ym)
cos � � (x � xm)sin �. (Visualize an infi nite series of inset 
footballs, with the surface of each football representing 
one concentration value, a value that decreases expo-
nentially with the square of the distance from the center 
location.) The problem of modeling the time evolution 
of the cloud concentration is now reduced to modeling 
the time evolution of the eight quantities; even the total 
mass could be allowed to change in time because of the 
potential for chemical reactions, response to solar heat-
ing, etc. The known MET environment is used to pre-
dict the center-of-mass motions and the rates of spread-
ing of the cloud (through the cloud widths).

Some Gaussian plume models take more sophisti-
cated approaches. In particular, the Hazard Prediction 
and Assessment Capability (HPAC)3 model used at 
APL4 assumes that a cloud is a superposition of many 
Gaussian “puffs,” each being described by its own set 
of eight parameters that are allowed to evolve in time.5 
In principle, this allows for more complicated initial 
cloud shapes and for puffs to split or recombine as time 
advances.

In addition to the implicit requirement that clouds 
be horizontally oriented, the most serious shortcoming 
of the Gaussian plume model approach is the inability 
to predict how quickly real clouds move and redistribute 
themselves vertically under particular MET conditions. 
In some instances, the presence of an inversion and/or 
low turbulence conditions may cause a cloud to hug the 
surface for an extended period of time, while in other 
instances ground heating and turbulence may cause a 
cloud to move and spread upward much more dramati-
cally. This shortcoming mostly affects the predicted 
cloud concentrations near the ground because as the 
cloud center of mass moves upwards and/or the cloud 
spreads vertically higher, the predicted concentrations 
near the ground drop accordingly (potentially by orders 
of magnitude or more).

Lagrangian Transport Models
Another approach to express a cloud’s concentration 

fi eld with a reduced number of parameters is to repre-
sent the cloud by a large number of individual particles 
moving within the known MET environment.2,6–8 At 
each time step, the location of each individual parti-
cle changes as given by 

r
xi (t � 	t) = 

r
xi (t) � 

r
ui (

r
xi , t)	t 

for particles i = 1, 2, 3, ..., Np, where Np is the total 
number of particles. The velocity fi eld in this equation 
( r

ui
) includes both the “known” mean wind velocity and 

random components estimated from turbulence theory, 
using the mean MET variables as drivers. The number 
of particles needed to represent the cloud faithfully 
will vary with the complexity of the fl ow and the 
cloud, which may both increase signifi cantly for longer 
simulations.

Some Lagrangian particle models augment the verti-
cal component of this equation with additional effects. 
In particular, the Hybrid Particle and Concentration 
Transport (HYPACT)9 model, also used at APL,10 
includes buoyancy and stratifi cation effects. The inclu-
sion of stratifi cation makes this model arguably more 
physical than Gaussian plume models like HPAC. No 
assumptions are made regarding how quickly the cloud 
particles move upward beyond using the known velocity 
fi eld and the natural spreading due to the turbulence. 
Furthermore, particles can move upward or downward 
as they are wont, whereas Gaussian plumes typically 
only move upward or remain stationary in the vertical. 

Eulerian Transport Models
The primary disadvantage of Lagrangian models is 

the large number of particles that must be tracked to 
obtain representative concentrations at times and dis-
tances far removed from the release point. A more 
viable approach is to numerically solve a scalar transport 
and dispersion equation for the concentration of each 
chemical and biological agent of interest: 
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where 
r
u  and KC are the mean wind velocity and non-

linear eddy-viscosity coeffi cient, respectively, from the 
known velocity and MET fi elds, and SC is a source/sink 
term meant to represent processes such as deposition, 
chemical reaction, etc. This type of equation is referred 
to as a “Eulerian” solver.

HYPACT includes a Eulerian solver option in addi-
tion to the Lagrangian solver discussed previously. 
The only requirement is that the initial contaminant 
cloud be large enough, and the grid spacing small enough, 
so that it can be effectively represented as a concentration 
fi eld. When the grid spacing cannot be made small enough 
to describe a cloud’s initial concentration fi eld accurately, 
a Lagrangian calculation must be used to predict the evo-
lution of individual particles, at least until the cloud has 
spread over a suffi cient number of grid cells for a smooth 
concentration fi eld to be determined. (Converting the 
particle position data to a cloud concentration fi eld poses 
its own set of problems.) If results are desired for later 
times, then a Eulerian calculation can be initialized from 
this intermediate concentration fi eld. HYPACT includes 
the option of running both Lagrangian and Eulerian solv-
ers in sequence, hence its designation as a “hybrid” code.

Models for More Complex Situations
The models summarized above are used mostly to pre-

dict cloud evolution in the “free atmosphere,” i.e., outside 
the infl uence of complex geometries such as buildings, 
streets, and trees. It is, however, important to predict the 
transport and dispersion of contaminants around and 
within buildings, within rooms, and under a plethora 
of other specialized geometrical/situational constraints. 
References 11–15 discuss approaches to predicting con-
taminant concentrations in such complicated geometries 
(see also the article by Scorpio et al., this issue).

METEOROLOGICAL INPUTS

General Discussion
No matter how good the design and implementation of 

a numerical transport and dispersion model, the quality 
of its predictions for cloud concentration levels is limited 
severely by the accuracy of the input MET information. 
The wind direction and speed determine where the cloud 
moves and how fast, and both may vary signifi cantly 
with the height above the surface, causing different hori-
zontal slices of the cloud to move in different directions 
and/or at different rates. Atmospheric turbulence levels 
control the rate at which the cloud spreads, and variable 
wind shear may cause this dispersion to be nonuniform 
(for example, the rate of spread of an initially circular 
cloud might be greater in one direction than another). 

Turbulence levels may also depend on the height above 
the surface, and all of these quantities may evolve over 
the lifetime of the cloud.

The vertical profi les of temperature and humidity 
must also be known, at least qualitatively, as these vari-
ables determine the vertical stratifi cation and, in par-
ticular, the locations of inversion layers that affect the 
vertical migration and spreading of contaminant clouds. 
In a “mixed layer”1,2,7 of the atmosphere, turbulence in 
the vertical velocity is sustained because convective and 
shear-driven instabilities outweigh buoyant effects and 
dissipation. Typically, a mixed layer begins at the surface 
but may be anywhere from centimeters to kilometers 
high; elevated mixed layers can also exist in regions that 
begin and end above the surface. 

Turbulence is nearly always present in the atmo-
sphere and spreads a contaminant cloud in the hori-
zontal directions. However, within a mixed layer, tur-
bulence in the vertical velocity typically spreads, or 
mixes, a contaminant cloud toward a uniform vertical 
distribution (within the vertical extent of the mixed 
layer), and this can occur much more quickly than the 
cloud spreads in the horizontal direction. The con-
stituents/contaminants within a mixed layer do not 
penetrate into the region above the mixed layer to any 
signifi cant degree (as illustrated in Fig. 1). Of course, if 
a cloud begins above the height of the mixed layer (e.g., 
from an aerial spray), then it will not penetrate into the 
region below the height of the mixed layer. 

The height of the mixed layer can evolve over time 
and is derived from a threshold on the ratio between 
the horizontal wind components1,2,7 and the vertical 
gradients of the virtual potential temperature, i.e., � =
(1000/p)Rd/Cp, where p is pressure in millibars, Rd = 
287 J K–1 kg–1 is the dry gas constant, and  Cp ≈ 7Rd/2 is 
the specifi c heat at constant pressure. 

These MET variables all affect the key quantity of 
interest in contaminant dispersion studies: the con-
centration levels of the cloud near the surface. Often, 
predicted concentration values are used to estimate the 
net exposure, or dose, infl icted on particular locations. 
Incorrect specifi cations of the MET data will cause sig-
nifi cant errors in the predicted concentration levels, and 
these, in turn, will lead to inaccurate dose estimations, 
perhaps by several orders of magnitude or more. Clearly, 
this would be unacceptable for some applications, 
although false negatives (severe underestimation of sur-
face dose) are typically tolerated less than false positives 
(severe overestimation of surface dose).

MET Considerations and Specifi cations
Many practical issues are involved in the use of 

real-time cloud concentration level predictions. For 
one, the needed MET data must be readily available 
and in a form ready to be ingested by the transport 
and dispersion model. HPAC includes some options3 to 
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simplify this requirement. One option is that the HPAC 
user may simply specify a single wind speed and direc-
tion for all places and times, and the software will use 
climatological databases to “look up” other MET data, 
given the location and time of the cloud source. While 
this approach should yield a commonsense warning for 
regions at risk from the cloud, there could be signifi -
cant errors in the surface concentration estimates, and 
hence the dose estimates, due to possibly signifi cant 
departures from the climatological averages.

Alternatively, the HPAC user may also specify a 
horizontally uniform mixed-layer height as well as 
turbulence level estimates, which should, if accurate, 
improve the quality of the surface concentration and 
dose estimates. Figure 3 shows two sample HPAC results 
for a cloud released 30 ft above the surface, with and 
without an inversion, starting at 1000 ft. Without the 
inversion, the mixed layer is effectively infi nitely high; 
therefore, the cloud spreads more in the vertical direc-
tion and surface concentration levels are reduced more 
quickly. This results in the smaller 2-h cumulative dose 
estimate shown in the fi gure.

HPAC’s most comprehensive option is to ingest 
MET fi elds in toto; however, this option is not yet 
as effective as it could be (as of HPAC Version 4.3), 
largely because the models internal to HPAC (e.g., the 
terrain model) are not necessarily consistent with the 
gridded MET fi elds, which introduces errors into the 
transport and dispersion model part of HPAC. The 
Defense Threat Reduction Agency, which manages 
HPAC development, plans to address these issues in 
future versions.

Whether using HPAC or some other transport and 
dispersion model, a robust method is needed to specify 
the three-dimensional MET fi elds, ideally as functions 

of time. APL uses the Regional Atmospheric Modeling 
System (RAMS)16 for predictive estimates as a surro-
gate for actual MET fi elds (Fig. 2). RAMS uses modifi ed 
Navier-Stokes fl uid fl ow equations, turbulence models, 
and many atmospheric/surface interaction models to 
evolve the MET fi elds in time on a user-specifi ed spa-
tial grid. Any coupled MET-prediction/transport-disper-
sion model will have diffi culties similar to the HPAC 
problems mentioned above (inconsistent terrain models, 
etc.). One advantage of the alternative HYPACT model 
is that it was deliberately designed to directly and trans-
parently ingest RAMS MET predictions. Unfortu-
nately, this is simultaneously one of the disadvantages 
of HYPACT; at present, it can only be run from RAMS 
output data.

Figure 4 shows two sample HPAC results for identi-
cal clouds released in a MET environment predicted by 
RAMS. In Fig. 4a, the MET environment was assumed 
to be constant in time, while in Fig. 4b it was assumed 
to evolve in time as predicted by RAMS and fed into 
HPAC. The differences apparent in these cumulative 
surface doses again illustrate the need for accurate MET 
information.

Initialization values for the RAMS MET fi elds can 
come from gridded large-scale mean MET profi les, local 
MET profi les, or blends of both. However, obtaining 
initialization values for the RAMS surface states (e.g., 
soil moisture and temperature, sea surface temperature) 
can be nontrivial.17 To ease this diffi culty somewhat, 
many users run RAMS in “continuous forecast” mode, 
that is, RAMS simulations are initialized at so-called 
synoptic times (0000, 0600, 1200, and 1800 UTC) and 
run for 24-h forecast periods. At each synoptic time (or 
possibly more often if local measurements are recorded), 
the RAMS predictions can be “nudged” toward known 
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or assumed large-scale values. This method ensures that 
a current forecast is always available and reasonably 
accurate.

MODEL VALIDATION 
To be confi dent in using transport and dispersion 

model predictions, it is necessary to test (validate) the 
model under controlled situations. However, a thorough 
validation experiment can be fairly diffi cult to conduct. 
(RAMS has been tested against data for a wide range 
of conditions, and so we consider it to be validated for 
its intended purposes.) As can be inferred from the 
previous section, the details of the actual MET envi-
ronment in which the experiment takes place must be 
understood to a reasonable level. Unfortunately, most 
experiments that might have been used for validation 
studies recorded little beyond the local average wind 
speed and direction. Even if suffi cient MET data are 
recorded, the actual cloud concentration levels must be 
recorded at enough spatial and temporal locations to 
make comparisons to the predictions meaningful. With 
a few important exceptions (e.g., Ref. 18), most experi-
ments have only recorded cloud concentration levels at 
one spatial location, or at most in one horizontal plane 
(at a fi xed height).

 Another approach to model validation is to compare 
the model predictions to known theoretical predictions 
for simplifi ed MET conditions. Regrettably, comparisons 
can be somewhat circular because the models are based 
on particular physical relationships, equations, and algo-
rithms that may also form the bases for the theoretical 
predictions. Still, such comparisons are important as 
they verify the ability of the model to produce expected 
results for special, simplifi ed situations.

With these issues in mind, intermodel comparisons 
can clearly be tricky. Two different models may yield dif-
ferent predictions, not so much because one is “better” 
than the other but because they are based on different 

physical assumptions and/or they use the input MET 
data differently. That being said, it is worth illustrating 
important differences observed between sample HPAC 
and HYPACT predictions.10 Figure 5 shows a horizontal 
slice of cloud concentration values 2 m above the sur-
face as predicted by HYPACT and HPAC for identical 
initial conditions. The distributions are clearly different; 
most notably, HPAC predicts a much more symmetric 
shape, and also predicts that the cloud will spread out 
much more quickly in the horizontal directions. These 
differences could be due to differences in the underly-
ing models or to the problems mentioned earlier with 
MET initializations. An actual two-dimensional lidar 
measurement of two clouds indicates that real clouds are 
also elongated in the direction of the mean wind (Fig. 
6). This suggests that HYPACT may provide a more 
realistic prediction for this particular example, though 
the effects of the MET initialization on HPAC predic-
tions are uncertain.

MODEL APPLICATIONS
Reliable, predictive tools for the transport and dis-

persion of contaminants in the atmosphere have many 
applications. Faster models such as HPAC can be used 
in real time to aid decisions regarding evacuation, quar-
antine, and allocation of responding resources. After an 
event, models such as HYPACT can be used to revise 
real-time estimates to more accurately predict surface 
dose exposure levels in different regions.

An effective transport and dispersion model can 
also be used to generate synthetic data. Such data 
could be employed as a general planning aid for fi eld 
tests and, more importantly, to model the response 
of particular point and standoff sensors. All practical 
sensors have some functional shortcomings or at least 
trade-offs with respect to their capabilities. Synthetic 
data with modeled instrument responses provide a rela-
tively inexpensive means to evaluate sensor and system 
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Figure 5. Near-surface cloud concentration values 2 m above the surface as predicted by HYPACT and HPAC, using identical 
RAMS-provided MET predictions for input, 20 min after a point release.
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Figure 6. An actual lidar scan measured 20 min after the point 
release of a simulant. The dark blue region, where the response 
was due only to background atmospheric particulates, shows 
the lidar’s aggregate fi eld of view from a 10 second, 60 degree 
scan. Other colors correspond to larger responses than could 
be due to background particulates and indicate the presence of 
two clouds within the fi eld of view. Further discrimination tests 
would be required to determine if these clouds contained harmful 
particulates. 

performance when compared to the expense and tech-
nical diffi culties of actual experiments. Another use for 
synthetic data sets is to simulate the response of a suite of 
sensors. Imagine an attempt to protect a certain area or 
region—be it a semi-permanent military base of opera-
tions, a permanent military base, or a city—from bio-
chemical agent releases. It would be useful to know how 
many sensors would be required to give adequate warning 
that a contaminant cloud was approaching the protected 
area. The overall effectiveness of various sensor layout 
schemes (how many of each type of sensor, where to 
place them, etc.) could be evaluated using synthetic data 
so long as one has adequate confi dence in the representa-
tiveness of the data. Developmental work to accomplish 
these goals is ongoing.19

CONCLUSIONS
Today, there is signifi cant interest in developing 

defensive infrastructures to guard, protect, and warn 
against airborne contagions and contaminants. Capa-
bilities to model the transport and dispersion of such 
particulates play a crucial role in these development 
efforts because they can be used not only to aid real-
time decisions but also to provide synthetic data for 
planning, testing, and evaluation. This article has used 
the discussion of a coupled model approach toward 
these ends to review the abilities and limitations of 
different modeling techniques and approaches. Under-
standing these limitations and being able to explain 
them to the people who would make the real-time 
decisions are clearly key goals in planning real-time 
response strategies. 

On a subtler note, evaluating whether synthetic 
model predictions are suffi ciently representative of 
the way particulates would move and disperse in the 
real world will be crucial to developing confi dence in 
sensor system layout designs. Because of the expense 
of real-world experiments, such designs will be devel-
oped according to how they respond to synthetic data. 
It could be tragic, indeed, if a sensor system performed 
very well in response to synthetic data but not very well 
if at all to an actual event. 

REFERENCES
 1Tennekes, H., and Lumley, J. L., A First Course in Turbulence, The 

MIT Press (1972).
 2Pielke, R. A., Mesoscale Meteorological Modeling, Academic Press, New 

York (1984).
 3The HPAC User’s Guide, Version 4.0, Defense Threat Reduction 

Agency, Alexandria, VA (2001).
 4Garten, J. F., and Croucher, A. R., HPAC 4.0 Instructions: User 

Guides, Reminders, How-to’s, and Pre- and Post-Processing Software, 
STF-02-037, JHU/APL, Laurel, MD (15 May 2002).

 5Sykes, R. I., et al., PC-SCIPUFF Version 1.3 Technical Documentation,” 
Titan Corp., Princeton, NJ (2000).

2.5

2.0

1.5

1.0

0.5

0
�4 �3 �2 �1 0

N
or

th
/s

ou
th

 d
is

ta
nc

e 
(k

m
)

East/west distance (km)

�5

HYPACT
2.5

2.0

1.5

1.0

0.5

0
�4 �3 �2 �1 0

N
or

th
/s

ou
th

 d
is

ta
nc

e 
(k

m
)

East/west distance (km)

HPAC

�6

�7

�8

�9

�10

km/m3



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 24, NUMBER 4 (2003) 375

TRANSPORT AND DISPERSION OF AIRBORNE CONTAMINANTS

THE AUTHORS

JAMES F. GARTEN received a B.S. in mathematics from the University of Mas-
sachusetts (Amherst) in 1991 and an M.S. and Ph.D. in physics from the University 
of Colorado in 1994 and 1997, respectively. After working at Colorado Research 
Associates and the University of Michigan’s Space Physics Research Laboratory, 
he joined APL as a member of the Senior Professional Staff in late 2001. Since that 
time, Dr. Garten has worked on modeling the optical properties of the ocean surface, 
predicting the mesoscale evolution of the atmosphere as the driver for radar clutter 
predictions, modeling the transport and dispersion of airborne contaminants, and 
modeling sensor performance. Most recently, he has been analyzing and evaluating 
the actual performance of standoff sensors designed to warn of airborne biological 
agents. His e-mail address is james.garten@jhuapl.edu.

CHARLES E. SCHEMM received a B.S. in physics from Loyola College (1969) 
and a Ph.D. in geophysical fl uid dynamics from Princeton University (1974). He 
joined APL in 1977 following a brief tenure as a research associate at the Insti-
tute for Physical Science and Technology at the University of Maryland. At APL 
he has been involved primarily in the development and application of numerical 
models of ocean and atmospheric fl ows and in the planning and conduct of fi eld 
exercises to collect data suitable for use in model validation. Dr. Schemm is cur-
rently group scientist in the Oceanic, Atmospheric, and Environmental Sciences 
Group of the National Security Technology Department. His e-mail address is terry.
schemm@jhuapl.edu.

ARTHUR R. CROUCHER received a bachelor’s degree in geophysics from 
Lehigh University in 1981. Before joining APL in 1986 he worked in the Geo-
physical Research Department of Teledyne Geotech. Mr. Croucher is a member 
of the Senior Professional Staff in the Oceanic, Atmospheric, and Environmental 
Sciences Group of the National Security Technology Department. He has con-
tinued his education with graduate studies in physical oceanography at Oregon 
State University and recently applied for the M.S. program in software engi-
neering at the University of Maryland University College. His e-mail address is 
art.croucher@jhuapl.edu.

 6Haugen, D. A., Workshop on Micrometeorology, American Meteorologi-
cal Society, Boston, MA (1973).

 7Gill, A. E., Atmosphere-Ocean Dynamics, Academic Press, New York 
(1982).

 8Kundu, P. K., Fluid Mechanics, Academic Press, New York (1990).
 9Tremback, C. J., The RAMS Hybrid Particle and Concentration Trans-

port Model (HYPACT), ATMET, Boulder, CO (1996).
10Garten, J. F., Schemm, C. E., and Vasholz, D. P., Discussion of Sample 

Numerical Results From HPAC and HYPACT, STF-02-079, JHU/APL, 
Laurel, MD (10 Jun 2002).

11Issa, R. I., “Solution of the Implicitly Discretized Fluid Flow Equations 
by Operator-Splitting,” J. Comput. Phys. 62, 40–65 (1986).

12Shih, T. I. P., and Dasgupta, A., “Noniterative Implicit Method for 
Tracking Particles in Mixed Lagrangian-Eulerian Formulations,” 
AIAA J. 31, 782–784 (1993).

13Herwig, H., Klemp, K., Schmucker, A., and Currle, J., “Ventilation of 
Passenger Car Cabins: Comparison of Experimental Data and Numeri-
cal Calculations,” Forsch. Ing. Wes. 62, 161–167 (1996).

14Park, K., and Watkins, A. P., “Comparison of Wall Spray Impaction 
Models with Experimental Data on Drop Velocities and Sizes,” Int. J. 
Heat Fluid Flow 17, 424–438 (1996).

15Chow, W. K., and Yao, B., “Numerical Modeling for Interaction of a 
Water Spray with Smoke Layer,” Num. Heat Trans. A 39, 267–283 
(2001).

16Tremback, C. J., and Walko, R. L., The Regional Atmospheric Modeling 
System (RAMS): Development for Parallel Processing Computer Architec-
tures, ATMET, Boulder, CO (1999).

17Tremback, C. J., and Walko, R. L., RAMS Technical Description, 
ATMET, Boulder, CO (1997).

18Chang, J. C., Franzese, P., and Hanna, S. R., Evaluation of CALPUFF, 
HPAC, and VLSTRACK with the Dipole Pride 26 Field Data, Inst. for 
Computational Sciences and Informatics, George Mason University, 
Fairfax, VA (2002).

19Garten, J. F., Utilizing HPAC 4.0 Results in Point & Standoff Sensor 
Simulation Modules: Spatial Resolution Issues and Conundrums, STF-03-
027, JHU/APL, Laurel, MD (24 Jan 2003).


