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INTELLIGENT AGENT-BASED CONTROL

C

Intelligent Agent-Based Control

David H. Scheidt

ontrol agents are effective mechanisms for autonomous control of complex distrib-
uted systems. This article describes the Open Autonomy Kernel (OAK), a control agent 
architecture that is based on a unique combination of model-based reasoning and software 
agents. The discussion includes the design and testing of OAK agents on Navy auxiliary 
systems, the need to consider the control network as a part of the system being controlled, 
and the way in which control networks may be made more robust by allowing them to 
“fl inch” prior to anticipated damage events. We conclude by showing how control agents 
based on Markov blankets may be used to develop effective, extremely lightweight control 
of large chemical and biological surveillance sensor grids.

DEFINITIONS
Embedding controllers within autonomous software 

agents, called control agents, provides a basis for autono-
mous control of distributed sensor/actuator systems. By 
sharing information and, in special cases, reasoning, 
control agents can collaboratively employ the resources 
of the controlled system in a way that addresses global 
system tasks. In this article we investigate some useful 
techniques for controlling special cases of distributed 
sensor/actuator systems, specifi cally connection sys-
tems and spatially oriented systems. We illustrate these 
techniques by describing several recent, current, and 
planned research projects in a variety of domains. Along 
the way we discuss the use of control agents for the con-
trol of Navy ship auxiliary systems, computer networks, 
societal infrastructure, HVAC (heating, ventilation, 
and air conditioning) systems, and regional chemical 
and biological surveillance sensor grids.

We defi ne connection systems to be systems that 
consist of two or more identifi able, related components 

that infl uence each other along one-dimensional con-
nections. Infl uences may be discrete or continuous in 
nature. Many real-world systems may be described as 
connection systems, including household plumbing, 
computer networks, and electrical systems.

We defi ne spatially oriented systems as systems con-
sisting of elements that act in three-dimensional space. 
Environmental and system phenomena and their infl u-
ences on one another may be effectively organized as a 
three-dimensional matrix. Real-world systems that may 
be described spatially include fi re moving through a ship 
and chemical plumes.

Control agents are autonomous in that they do not 
require human supervision or monitoring in order 
to function. However, autonomy does not imply that 
control agents are oblivious to humans; rather, con-
trol agents are responsive to information provided by 
operators as needed and react to operator demands and 
objectives. 
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Control agents employ a cyclic process to accomplish 
the desired behavior for the system being controlled. 
The control cycle (Fig. 1) consists of three steps. 

1. Estimation uses observations to compute a belief func-
tion over the state space of the system under control. 
A belief function describes the possible component 
states within the system that are consistent with cur-
rent and historical observations. The state space of a 
system is the set of possible states for the system. 

2. Planning uses this belief function, in conjunction 
with system goals and constraints, to produce a plan 
of action. 

3. Execution translates an action plan into actuator 
commands. 

Intelligent control agents control systems whose state 
space cannot be completely enumerated through tradi-
tional discrete and/or continuous means, necessitating 
the use of artifi cial intelligence reasoning techniques. 
Such techniques may be required for estimation, plan-
ning, and (rarely) execution. Intelligent planning is 
usually necessitated by the size and complexity of the 
system, whereas intelligent estimation is driven by insuf-
fi cient observability, for example, in systems with sparse 
or unreliable sensors. 

SHIP CONTROL
An early application of control agents was the control 

of Navy ship auxiliary systems. The electrical, chilled 
water, low-pressure air, and fi re suppression systems 
are the main auxiliary systems for Arleigh Burke–class 
Aegis destroyers. These systems are complex, interde-
pendent, and distributed. Currently high-level control 
of these systems is the primary responsibility of dozens 
of sailors on each of the Navy’s capital ships. Effective 
automation of these systems would allow the Navy to 
signifi cantly reduce the number of sailors in harm’s way 
and drastically reduce costs.

Auxiliary systems on Arleigh Burke–class destroyers 
contain thousands of sparsely instrumented, interde-
pendent, controllable nodes. For example, the chilled 
water distribution system consists of a dozen complex 
machines such as pumps and chiller plants, approxi-
mately 400 valves, and 23 service loads. 

The behavior of components within an auxiliary 
system depends on the behavior of those components 
to which they are connected, often recursively. The 

auxiliary systems themselves are interdependent; e.g., 
the chilled water system runs on electrical power pro-
vided by the electrical system while the electrical system 
is kept cool by the chilled water system. These interde-
pendencies—which extend to other ship systems such as 
the HVAC, combat, and fi re support systems—combine 
to generate a complex supersystem, no portion of which 
may be effectively controlled in isolation. Yet the com-
plexity of the combined system prevents the effective 
use of traditional control system methodologies.

Technology
The intelligent control agents built by APL for the 

control of Arleigh Burke auxiliary systems are based 
on a few key technologies that combine to provide 
autonomy, distributed intelligence, and real-time per-
formance. Hierarchical control architectures allow systems 
to support both real-time performance constraints and 
computationally intensive deliberative reasoning. Soft-
ware agents are used to provide autonomy and support 
distribution, while model-based reasoning is an effective 
reasoning technique for providing intelligence in large 
“connected” systems. 

Hierarchical Control Architectures
Hierarchical control architectures decompose con-

trol along the lines of component abstraction, i.e., 
larger, more abstract representations of the system are 
controlled by increasingly higher levels of interacting 
controllers. Our hierarchical control architecture is sim-
ilar to subsumption architectures1 in its decomposition 
of control and allocation of responsibility among con-
trollers. It differs from subsumption architectures in that 
our higher-level controllers modify the fi tness criteria of 
lower-level controllers, thereby indirectly changing the 
control actions of the lower-level controllers, whereas 
subsumption architectures directly modify the control 
function of the lower-level control architecture.

Hierarchical control architectures provide effective 
control of complex systems that have multiple hierar-
chical goals, multiple sensors, and a need for robustness. 
These architectures decompose control into two or 
more layers (Fig. 2).

States Plans

Observations Commands

Planning

Estimation Execution

System

Figure 1. The control cycle.

Sensors Level 0

Level 1

Level 2

Level 3

Actuators

Figure 2. A hierarchical control architecture.



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 23, NUMBER 4 (2002) 385

INTELLIGENT AGENT-BASED CONTROL

The zeroth layer of control is the only layer permitted 
to communicate with the system’s sensors and actuators. 
It is an unsophisticated closed loop controller capable 
of real-time monitoring of the sensors and actuators. 
Above the zeroth level is the fi rst level control. This 
layer is aware of the data derived by the zeroth level and 
is capable of reasoning with those data at a higher level 
of abstraction. Further, the fi rst level is permitted to 
unilaterally modify the fi tness criteria used by the zeroth 
level. The second level uses level 1 data to reason at a 
higher level of abstraction, suppressing the data fl ow of 
the fi rst level. 

Additional levels may be constructed as necessary, 
with each level modifying the criteria used by the 
subordinate level. For example, consider an intelligent 
control system for a household electrical system. A 
level zero controller might be a rheostat being used to 
regulate the fl ow of power to an electrical lightbulb. A 
fi rst level controller might be responsible for regulating 
illumination in a specifi c room; a second level controller 
might be responsible for determining which rooms in 
the house require light; a third level controller might 
be concerned with power management among lighting 
(electrical), cooling, and major appliances; and a fourth 
level controller might be concerned with managing 
power needs between the house and the hospital across 
the street.

Software Agents
Software agents are software processes that can 

reason about and act upon their environments. The 
software agents used to control ship auxiliary systems 
are intrinsically permanent and stationary, exhibit 
both reactive and deliberative behavior, and are 
declaratively constructed. Agents are reactive in their 
ability to reconfi gure the systems within their control 
in the context of an existing plan and deliberative in 
their ability to create a plan in response to observed 
states and defi ned goals. Our agent’s extrinsic charac-
teristics include proximity to the controlled system, 
social independence, and both awareness of and coop-
erativeness with the goals and states of other agents. 
These agents are environmentally aware, and behavior 
of the environment is predictable through each agent’s 
model. 

Systems of agents consist of nearly homogeneous 
agents that are independently executed yet contain 
unique models of the systems for which they are 
responsible. Homogeneity of construction enables the 
widespread reuse of code, thus simplifying controller 
construction and lowering the cost of maintenance. 
Independent execution provides for the distribution of 
control (as compared to single threaded control imple-
mented on distributed processors). Distributed control 
improves effi ciency (control agents are never required to 
wait on another’s execution) and enhances survivability 

(damaged controllers never prohibit surviving control-
lers from managing their subsystems).

Agents are fundamentally permitted two types of 
relationships: peer-to-peer and parent-to-child. In 
building control agents for ship control, the parent-child 
relationship is used as a mechanism for implementing a 
topology of agents that support a shipwide hierarchical 
control architecture. 

Model-Based Reasoning
Model-based reasoning is an overloaded term. The 

model-based reasoning used in the Open Autonomy 
Kernel (OAK), discussed in detail below, refers to a “rea-
soning from fi rst principles” approach to diagnosis.2 A 
declarative description of the physical system is formu-
lated to explain how parts of a system are functionally 
interdependent.3 

The theoretical basis for model-based reasoning 
is discrete event system theory, specifi cally, partially 
observable Markov decision processes (POMDP).4 In 
a model-based representation of the physical system, a 
behaviorally based POMDP model represents a com-
ponent (e.g., Fig. 3), and each component has a set 
of possible states. Components within the model are 
assumed to be in one of a number of discrete states. The 
state of the entire system being modeled is the union of 
the states of the components. The necessary conditions 
for a component to be in a particular state are specifi ed 
with propositional logic, and transitions among states 
are expressed by extending this propositional logic with 
a limited set of temporal operators. 

Associating the attributes from different compo-
nents generates multicomponent systems. For example, 
the OPEN state of a simple valve is defi ned in part by 
a propositional statement equating the inbound fl ow 
into the valve with the outbound fl ow; the CLOSED 
state is defi ned in part by associating the inbound and 
outbound fl ow with zero. A simple system consisting of 
two valves in series may be generated by instantiating 
two valve models, Valve1 and Valve2, and establishing 
a propositional statement equating the inbound fl ow of 
Valve2 with the outbound fl ow of Valve1. A small open 
loop system containing two valves in series is shown in 
Fig. 4.

This representation scheme is benefi cial when con-
structing large, complex systems. By encapsulating 

Open
(inflow � outflow)

Stuck open
(inflow � outflow)

Closed
(inflow � outflow � 0)

Stuck closed
(inflow � outflow � 0)

Open Close

Figure 3. Valve model.
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component behavior within a single logical model and 
constraining components through context-independent 
attributes, the components themselves become indepen-
dent models. This enables model replication and reuse. 
Attribute associations may be considered context-inde-
pendent because they are based on the fi rst principles 
structure of the system. The intended use, or context, of 
the system is not germane to model construction.

A model-based reasoning inference engine (MBRE) 
is used to fi nd likely state transition trajectories without 
having to generate all of the possibilities. The MBRE 
propagates constraints, linking components’ states effi -
ciently, and applies probabilities, both backward and 
forward in time, to identify probable state trajectories. 
The process of state identifi cation is the dual of the 
problem of generating a trajectory to a desired state so 
the same MBRE can be used to generate a trajectory to 
a desired state. This property is useful as an interface to 
a planner.

Reasoning from the model involves correlating 
observations of the actual physical system with the 
model and identifying the likely states of the system. 
This mechanism can then be used to diagnose or iden-
tify unexpected observations. A naive approach to solv-
ing this problem would generate all possible states and 
determine which entail the observations. Clearly this is 
intractable. Even for small systems, there are an imprac-
tical number of possible states. 

In practice, model-based reasoning is a three-step 
process. 

(1) Propagation of control action effects through a 
system. Propagation generates a predicted state for the 
system, including controlled and uncontrolled compo-
nents. Observations of system behavior are compared 
to the predicted state; if observations match predictions 
then the system is assumed to be behaving nominally. 
The existence of confl icts between observed and pre-
dicted states indicates the existence of one or more 
failures within the system. 

(2) Identifi cation of candidate failure scenarios that 
most effectively resolve the confl icts. The strategy used 
to resolving these confl icts is confl ict-directed best fi rst 
search (CBFS), based on de Kleer and Williams’ general 

diagnostic engine5 and described in detail in Ref. 4. In 
CBFS, partial hypotheses that confl ict with observa-
tions are identifi ed (e.g., a lightbulb being on and the 
belief that the light switch is off), and those scenarios 
that include the confl ict are removed from the search 
space (e.g., having identifi ed the confl ict between the 
switch and the lightbulb, in attempting to determine the 
possible states of the switches and circuit breakers in a 
house, we will now ignore all solutions containing our 
switch in question being off). 

(3) Selection of the most probable scenario from the 
identifi ed candidates. The fi tness criteria used by the 
CBFS to select the most probable solution is a system-
wide candidate probability based on the probabilities of 
individual component states. In practice, failure prob-
abilities are arbitrarily assigned by system modelers. In 
production, these probabilities would be assigned based 
on historical or engineering failure analysis. By using 
a general diagnostic algorithm, implementation effort 
is limited to constructing the model upon which the 
algorithm operates. System design and maintenance are 
limited to changes in the model, which is interpreted at 
runtime, and do not require modifi cations to compiled 
software. In addition, because of the encapsulation of 
the component models, model maintenance is limited 
to those components modifi ed in the controlled system 
and any components to which they are physically 
attached.

THE OPEN AUTONOMY KERNEL

Goals and State Changes
The control agent system devised for ship auxiliary 

system control is the OAK, a distributed, multi-agent 
system. OAK consists of a fi ve level hierarchical control 
architecture (Fig. 5),6 the top three levels being control 
agents. Process level control consists of the manufac-
turer’s device drivers and closed loop process control 
to monitor sensors and the execution of instructions. 
Each logical device within the system maintains its own 

Figure 4. A small open loop system using associated component 
models.

Sensors Process control

Component level
agents

Subsystem level
agents

Ship agent

Actuators

Ship hardware

Figure 5. The hierarchical control architecture implemented in 
the Open Autonomy Kernel.
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process level controller. Process level controllers do not 
consider the effect on/from other devices in the system 
except through instructions subsumed from the compo-
nent level. Component level control agents control small 
groups of devices. Subsystem level agents control subsys-
tems such as the ship’s electrical or chilled water system. 
A single ship control agent manages shipwide control. 

One of the major use-cases of OAK is to react to 
goals entered by an external actor. These are system 
level goals (such as “battle stations,” or “cruise” direc-
tives that shift system priorities from effi ciency to 
survivability) that potentially impact the goals for the 
entire multi-agent system.

Goals that are entered from an operator are sent 
directly to the ship control agent using a goal mes-
sage. The ship agent develops a plan with goals that 
apply to the domains of its “child” agents. Goals have 
a priority associated with them, which is used for goal 
preemption. 

After the ship control agent develops a plan and 
directs a goal to one of its child agents, the child con-
trol agent for processing receives the goal. This control 
agent develops a plan to implement the goal. The plan 
includes goal messages for the control agent’s own “chil-
dren.” This propagation continues until actual hardware 
commands are sent to the appropriate actuators. 

Successful goal implementation implies a state 
change. Control agents wait for reactions from child 
agents—or in the case of process level controllers, reac-
tions from sensors—to indicate that the command has 
been successful. The agent is then free to pass out goals 
that were order-dependent on the goal just implemented. 
State change events are transmitted through the use of 
a fact message, which contains a representation of the 
knowledge contained in an agent. When states change, 
all subscribed agents are informed and propagation of 
state changes begins. Note that since many agents may 
subscribe to an event, state changes may be propagating 
in several subtrees at any given time.

To appropriately handle changes in the state of the 
system, OAK uses the L2 MBRE7 developed by NASA/
Ames Research Center. OAK’s control agents are able to 
determine the state of the model, compare that state to 
a knowledge base, and plan reactively. Thus, a control 
agent can autonomously control its domain until an 
agent that is higher in the hierarchy (or in the case of the 
ship control agent, the operator) preempts its control. 

OAK agents must be able to plan in order to achieve 
specifi ed goals. The plan format is an ordered sequence 
of fragments. Each fragment consists of one or more 
subgoals. The idea is that, within a fragment, each sub-
goal may be accomplished in parallel, while subgoals in 
a prior fragment must be completed before the current 
fragment can be attempted. OAK executes developed 
plans by transmitting each subgoal at the appropri-
ate time to the appropriate agent or piece of hardware 

and then waiting until those subgoals are accomplished 
or fail.

Different planners may be appropriate for differ-
ent agents, depending on the domain being planned. 
Therefore, the planner is instantiated at runtime differ-
ently for each agent from a group of developed planners. 
OAK uses two planners, a general scripted planner and 
the specialized graph-based planner. 

The scripted planner matches on the incoming goal 
and a propositional logic expression about the current 
world state, producing a predefi ned response. Different 
propositional expressions, and therefore plans, may be 
associated with each incoming goal. Also, since the 
scripts are checked in a specifi c predefi ned order, a 
simple priority of plans can be imposed. 

The graph-based planner was written specifi cally for 
the test domain described below. Planning consisted of 
determining how to move fl ow from a source to several 
sinks through a dynamic pipe network having many 
operational constraints. The problem representation 
was a digraph, with weights on each edge according to 
the constraints. The planner operated by performing 
Prim’s minimum spanning tree algorithm8 on the graph 
to determine how to get fl ow to as many of the desired 
sinks as possible. The planner determined the actions 
that each agent would need to take and generated a plan 
based on the actions determined. 

An example of OAK reasoning on a simplifi ed system 
is given in the boxed insert.

OAK has been implemented on the chilled water 
Reduced Scale Advanced Demonstrator (RSAD, 
Fig. 6) at the Naval Surface Warfare Center, Philadel-
phia. The RSAD is a reduced-scale model of two zones 
of the Arleigh Burke chilled water system. It contains 
4 pumps, 2 chiller plants, 2 expansion tanks, and 
approximately 100 controllable valves. In-line tanks 
containing controllable heaters simulate equipment 
that is directly cooled by the chilled water system. 
The units of equipment cooled by the chilled water 
system are known as loads. The RSAD includes 16 
simulated loads.

Figure 6. The chilled water testbed.
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Consider the simple plumbing system in the fi gure. 
The purpose of the system is to provide fl owing water to 
a water-cooled radar system (the chiller plants required to 
cool the water are removed to simplify the example). The 
entire system has only one metric—the existence of coolant 
fl ow through the radar. This metric is provided by a single 
fl owmeter attached to the outfl ow of the radar. The four 
pumps and the radar are controllable in that they can be 
commanded ON or OFF. The valves are controllable in that 
they can be commanded to OPEN or CLOSE. The check 
valves are not controllable and are only included to indicate 
the direction of fl ow. �, �, and � are labeled connections 
between the assemblies.

Three control levels are provided: seven process control 
agents shown in pink, four assembly control agents in light 
blue, and a single ship agent in orange. Decomposition of 
goals might occur as follows:

Intitial states: All components are OFF.

• A goal is given to the ship agent from an operator to pro-
vide radar coverage. Knowing the states of the assemblies 
(but not the components), the ship agent generates three 
goals for its subordinate assemblies. The goals are to “turn 
ON” the radar (sent to the radar assembly), connect � 
to � (sent to the valve assembly), and provide fl ow to � 
(sent to the port pump assembly). 

• The pump assembly, knowing the states of the pumps, 
generates a plan that consists of the goal to turn ON for 
Pump A. The valve assembly generates a plan consisting 
of the “opening” Valve 1.

• The process control agents send actual commands to the 
hardware implementing these goals.

Let us examine how the agents would reason in the event 
that Valve 1 becomes stuck CLOSED. Having completed a 
planning and execution cycle to implement the initial states, 
an estimation cycle occurs. During this cycle we observe that 
there is no fl ow measured by the fl owmeter. This generates 

a fact that “there is no fl ow at the radar (�).” This fact is 
sent to the valve assembly which, believing that Valve 1 is 
OPEN, infers a new fact that there is no fl ow at �. This fact 
is sent to the pump assembly, which infers that there is no 
fl ow coming out of Pump A or Pump B. This confl icts with 
our belief that Pump A is ON (the result of being turned on 
earlier).

 The model-based reasoning engine(s) identifi es three 
possible solutions to this confl ict: Valve 1 is stuck CLOSED, 
Pump A is broken, or the radar is broken (for the purpose 
of this illustration we do not consider sensor or control 
network failures). The predicted mean times to failures of 
our components are 106 s for Valve 1, 105 s for Pump A, and 
107 s for the radar. The most probable solution to our confl ict 
is that Pump A has failed. Our belief state for Pump A is 
updated accordingly. The port pump assembly now generates 
a new plan to achieve its goal. This new plan consists of com-
manding Pump B to turn ON.

After Pump B has been commanded to turn ON, a second 
estimation cycle is performed, again with no fl ow being 
recorded by the fl owmeter. Recall that we previously con-
cluded that Pump A had failed, so for our current belief state, 
three possible solutions are identifi ed: Pumps A AND B have 
failed, Pump A and Valve 1 have failed, and Pump A and the 
radar have failed. The truth maintenance system used in our 
model-based reasoning system is non-monotonic, however, 
in that beliefs are considered tentative, alternative explana-
tions to observations. In our example, a previously ignored 
possibility, that of Valve 1 failing, accounts for all observed 
confl icts and is more probable than the derivative solutions 
of our currently adopted belief. The truth maintenance 
system now replaces its previous conclusion that Pump A 
failed with the conclusion that “Valve 1 has failed.”

Using our new belief state, the ship control agent generates 
a plan for the assemblies with two new goals: turn OFF the 
port pump assembly, and turn ON the starboard pump assem-
bly and connect � and �. After these goals are decomposed and 
executed, fl ow is observed and the current plan is accepted.

A simple plumbing system. 

AN EXAMPLE OF GOAL DECOMPOSITION AND ESTIMATION USING OAK 

The RSAD control prototype uses 20 OAK agents to 
control its pumps, plants, and valves. Each agent con-
tains its own diagnostic engine, planning engine(s), and 
execution managers and has the ability to receive and 
propagate goals and facts. 

OAK Testing
Three test sets were performed for the RSAD imple-

mentation of OAK. Four types of test scenarios were 
performed during each test set. The fi rst three scenarios 
were designed to provide basic coverage of the primary 
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OAK capabilities. The fi nal portion of testing was ad 
hoc and gave the testers an opportunity to game the 
system. During the second and third test sets, hardware 
faults were instigated by either physically disconnecting 
a component from its power supply or by physically dis-
connecting a component from the control network.

The fi rst test scenario was used to demonstrate 
OAK’s ability to reconfi gure the RSAD based on 
high-level operator goals. During this scenario the 
RSAD was given consecutive commands from a com-
mand and control simulator to move from one “ship 
state’’ to another. The four specifi ed ship states each 
had a unique combination of desired states and fi tness 
criteria.

The second test scenario entailed inducing a series 
of sequential component failures that initially forced 
OAK to reconfi gure the system in order to satisfy the 
high-level goals and eventually degrade the RSAD so 
that its stated goals were no longer achievable. This 
scenario was also specifi cally designed to test the non-
monotonic capability of the reasoning engine, which 
is non-monotonic in that it makes tentative decisions 
regarding the belief function. If future states confl ict 
with the tentatively selected state, the reasoning engine 
changes its current and historical belief function. An 
improbable component failure that was observationally 
indistinguishable from a probable failure was generated, 
resulting in a misdiagnosis. Subsequent failures gener-
ated observations that reinforced the correct belief state 
and caused a change of hypothesis within the inference 
engine.

The third scenario consisted of inducing simultane-
ous failures to multiple components within the RSAD. 

Throughout the testing, OAK consistently demon-
strated the ability to plan, execute, and propagate facts 
and goals among agents. All three of the test sets were 
successfully completed. In total, 14 separate multistage 
tests were conducted during which OAK performed 34 
diagnose-plan-execute cycles. It was able to identify the 
most probable failure scenario when insuffi cient observ-
ables presented multiple, indistinguishable situations. 
Also, OAK demonstrated the ability to retroactively 
update its belief state when evidence was provided to sup-
port what had been a less probable candidate solution. 

At times, equivalent “best fi t’’ reconfi gurations were 
available. In these cases the observing mechanical 
engineers noted that OAK’s reconfi guration was occa-
sionally “unusual’’ or “not what I would have selected.’’ 
However, upon inspection, the selected reconfi guration 
was always consistent with the reconfi guration goals 
and fi tness criteria, and was considered reasonable by 
the observing engineers. 

In addition to planned testing, twice during the 
third test set the RSAD experienced unexpected 
hardware failures. One failure occurred when a chiller 
plant unexpectedly failed to the OFF state. Another 

failure occurred when a valve unexpectedly failed to 
STUCK_SHUT. During both instances, OAK correctly 
diagnosed the failures and successfully reconfi gured the 
RSAD.

OAK’s planning and execution capabilities suc-
ceeded in performing a successful reconfi guration of the 
RSAD in all test cases. When a complete solution was 
available, a solution was found. When multiple solutions 
were available, OAK was able to determine and select 
the solution deemed optimal in accordance with the 
fi tness criteria expressed in the script-planner rule base. 
When no complete solution was available, the best fi t 
partial solution was identifi ed and executed. 

NETWORK CONTROL
OAK considers the state of the ship’s auxiliary sys-

tems and the state of the auxiliary system controllers 
when estimating, planning, and executing control of 
the ship. It does not consider the state of the control 
network. To improve robustness of the control system 
as a whole, the state of the control network must be 
considered. For example, network failure may limit the 
ability of a controller to send commands to subordinate 
controllers or actuators and may limit a controller’s abil-
ity to obtain sensed information. The limitations placed 
on the estimation and controllability of the system by 
network failures should be considered when performing 
estimation and planning of a controlled system. Fur-
thermore, if the control network is redundant, network 
resources may require reconfi guration.

Modeling Control Networks
To consider control network status when perform-

ing system control, we must be able to represent the 
network state in a manner that is consistent with the 
representation of the system being controlled. For a ship 
auxiliary system we may accomplish this by representing 
the network as a connection system. This allows us to 
use model-based reasoning for network/system estima-
tion purposes. 

At a component level we extend our component 
representation to include models of the component, 
controller, and network (Fig. 7). However, our archi-
tecture requires modifi cation to incorporate control 
networks. Although components and subcomponents 
were tightly coupled throughout the hierarchy, the 
connections within a control network need not be (and 
frequently are not) tightly coupled with respect to the 
control system. For example, a network router may not 
be directly associated with an identifi able component or 
subsystem within the controlled system, yet the router’s 
operational status may have a profound impact on the 
system’s controllability. We must therefore treat the 
control network not as an aspect of the control system 
but as a separate subsystem within an even larger system 
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(Fig. 8) in which component states in the system being 
controlled are infl uenced by the control network. To 
account for the effect of the control network on physi-
cal components, new network-conscious states must 
be added to the POMDP model of the physical system 
(Fig 9).

The Impact of Network Outages on Low-Level 
Control Cycles

The ability to perform even the most basic control 
actions in a distributed control system depends on the 
“network reachability” of the component being con-
trolled. Network reachability, i.e., the ability of the 
control system at large to send goals and receive facts 
from a component of the system, is defi ned by the state 
of the control network. The necessity to understand 
the controllability of a component when making a 
plan is ubiquitous in a layered control system. The use 
of computationally intensive control techniques such 
as model-based reasoning to estimate network state 
becomes problematic when network outages prevent 
high-speed process level control loops from functioning. 

Latency between a network outage and the recognition 
of the outage by higher control levels produces peri-
ods of time during which the lower levels continue to 
attempt to control components that cannot receive the 
control signals. 

FLINCHING
Two approaches to mitigating the impact of this “ill 

informed” time period present themselves: either reduce 
the time between event and diagnosis, or preconfi gure 
the system to limit the risk of reconfi guration based on 
an out-of-date diagnosis. While improved performance 
may reduce the duration of incorrect control, it cannot 
eliminate it. Correct preconfi guration increases the 
probability of continuous, robust control if reliable pre-
dictors of network outages can be provided. The causes 
of network damage are often spatial phenomena such as 
fi res propagating through ships, missile damage, and loss 
of buoyancy. Models exist for spatial phenomena that 
directly impact the control network. The same spatial 
phenomena impact both the physical subsystem and the 
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Turn
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Valve driver
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Connect Disconnect

Network

Turn
 off

Disconnect

Figure 7. The three component models that determine a valve’s 
behavior. 
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Figure 8. Even though the behavior of individual components 
may be tightly coupled, the structure of topologies of the control 
system and the control network may be completely orthogonal. In 
addition, components may exist in one system that are not tightly 
coupled with components in the other system.
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Figure 9. The valve driver model is extended to incorporate the 
fact that the driver cannot be set when the node is “unreachable.” 
Network reachability is determined by the network model, which is 
a separate subsystem.
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controllers; however, the scope of our funded research 
today is limited to the control network. 

Combining the effects of model-based estimation 
of connection systems and estimation of spatial sys-
tems using cellular automata may be accomplished by 
modifying our architecture (Fig. 10). Levels that use 
model-based predictions replace the levels that used 
model-based diagnosis to infer states and plans for con-
nection systems. Model-based predictions use the same 
underlying model-based theory previously described, 
with the noted addition that predicted behavior is 
construed rather than historical. Simply put, seminal 
events are provided to the model-based prediction 
system over time. 

The effects of these events on the connection-based 
system are generated by propagating the effects of the 
state changes throughout the POMDP representation of 
the system. The result of the predicted system is a series 
of predicted system states referenced by time. Plans may 
be generated for the predicted state prior to the actual 
event. If the amount of time the system requires to 
reconfi gure itself is represented as ∆t, then the predicted 
system state may be provided to the reconfi guration 
engine/planner at the referenced (time – ∆t) in order to 
provide “just in time” reconfi guration. In other words, 
the system can “fl inch,” thereby protecting itself from 
an anticipated blow. Because model-based diagnosis 
and model-based prediction share the same underly-
ing representation, a model-based reasoning engine 
may be used to estimate actual system states, allowing 
the built-in non-monoticity of model-based reasoning 
to select candidate predicted scenarios based on actual 
observation. 

Atop the model-based prediction levels we place spa-
tial reasoning levels that are used to predict the effects 
of spatial phenomena. Spatial phenomena may be event 
driven (e.g., a missile hit) or may represent a continuum 
of effects (e.g., the movement of fi re throughout a ship). 
We can translate the effects of these spatial phenomena 
on a connection-based system because each component 
within a connection system may be located in time-
referenced geometric space. Accordingly, if we have a 
probabilistic understanding of the effect a phenomenon 
might have on a component (e.g., a fi re’s effect on a 
router), then we can cast that effect into connection 
system space. Conversely, if we understand the effect a 

connection-space component has on geometric space 
(e.g., a functioning sprinkler head on a fi re), then we 
may predict the effect the connection system may have 
on the spatial phenomena.

CONTROL OF EXTREMELY LARGE 
CHEMICAL AND BIOLOGICAL 
DETECTION GRIDS

The monitoring of public environments such as 
buildings, subway systems, or entire cities for the pres-
ence of chemical or biological agents that may indicate 
a terrorist attack is a timely problem domain. It would 
be desirable to fi eld a system that could reliably moni-
tor, map, warn of, and limit the effects of a chemical 
or biological attack. Sensors that are effective for the 
detection of these agents must often be situated within 
the local environments that they are observing. This 
implies sensors that are spatially distributed throughout 
the monitored area. 

The number of distributed sensors required is propor-
tional to the size of the monitored system, divided by the 
mean sensor coverage area. This number could easily 
reach into the thousands or even millions. Two types 
of systems are of particular interest: systems to detect 
and manage chemical-biological agents within a large 
building HVAC system and citywide chemical-biologi-
cal detection systems. These problems share a number of 
characteristics that imply requirements for any feasible 
solution approach. 

The envisioned sensor grids are autonomous, 
massively parallel, fault prone, and dynamic and imply 
the following requirements and constraints: 

• The need for distributed, networked sensors and 
actuators

• Coordinated planning over the network to accom-
plish optimal sensor/actuator use (through fl exible 
task-driven teams) and resource allocation (to hus-
band expendable sensor/actuator resources such as 
power supply and expendable sensors)

• Avoidance of centralized data fusion and planning 
to stay clear of the burden of high data rate com-
munications requirements, the increase in reaction 
time (due to communication delays and computa-
tional complexity), and the danger of a single point 
of failure

Observation Estimator1
System state Planner1

Plan Executor1
Command

Observation Estimator2
System state Planner2

Plan Executor2

Observation Estimator3
System state Planner3

Plan Executor3

Figure 10. Control and spatial axes as a Markov blanket.

• Unavailability of a useful system 
design based on fi xed, mode-
based control laws or traditional 
adaptive control

• The need to support the control 
of system components of varying 
levels of awareness

• The need for fault tolerance 
(driven by the sheer size of the 
system and the potential costs 
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and diffi culties of static, redundant components and 
real-time component replacement)

As the envisioned chem-bio detection networks 
become increasingly large, the ability of networks 
based on current technology to provide reliable, robust 
communication decreases proportionally. Redundant 
networking protocols and topologies (e.g., large TCP-IP 
networks such as the Internet) may be used to improve 
reliability; however, redundancy incurs a proportional 
increase in cost. In situ networks often have tight power 
consumption and bandwidth constraints and cannot 
maintain highly redundant networks. 

One approach to providing robust communications 
without maintaining redundant communication paths 
is the use of ad hoc networking, where network topolo-
gies are generated on the fl y. In addition to allowing for 
robustness for fi xed-node networks, ad hoc networking 
has been shown to be effective in supporting effi cient 
networks across mobile nodes.9 In ad hoc networking, 
network elements “discover” each other at runtime, 
determine each other’s relative position and networking 
capabilities and, armed with this information, collab-
oratively establish a network topology.

EMERGENT CONTROL
The use of ad hoc networks allows control networks 

to communicate between control elements in novel 
ways that are tailored to network-element orienta-
tions not conceived of at design time. These systems 
undergo change due to the removal, addition of, or 
movement of system components, controllers, and/or 
control network elements and require adaptive network 
topologies. As these systems become increasingly large 
and long-lived, and as the nature of the system being 
controlled changes, an adaptive control mechanism will 
be required as well. 

We believe that ad hoc control may be provided 
through the provision of a framework for “emergent 
control” via self-organizing systems of network-
distributed control agents. Such a framework avoids 
the pitfalls of centralized control functions while 
retaining the ability to provide sophisticated control 
via intelligent agents that collaborate through care-
fully designed protocols for communication and self-
organization. 

Emergent control refers to a control strategy based on 
fl exible collaborations among distributed control agents 
that implement local control. Locality is defi ned along 
multiple “control axes” that orthogonally decompose 
the control domain, at various levels of abstraction, and 
support the appropriate encapsulation and hierarchical 
layering of control functions. Changes in the confi gura-
tion and structure of the controlled system are visible at 
an appropriate level of abstraction at each encapsulation 
boundary, and protocols are defi ned for the autonomous, 

local adaptation of control agent interfaces at each 
boundary. 

 The fi rst thesis in our approach is that semantic 
descriptions of control functions may be formed and 
used as the basis for agent communication and self-orga-
nization. Semantically described control agent behavior 
is based on the concept of a control generator. A control 
generator is specifi ed semantically as a function Y = 
G(X), where Y is its information products, G is its behav-
ior, and X is its information infl uences. The generator 
abstraction encapsulates the fundamental components 
from which our control system is built.

The simplest control generators are (1) those that 
directly ingest sensor readings and provide them as their 
information product, with behavior descriptions of the 
form Y = G({}), and (2) those that accept actuator com-
mand lists and directly issue corresponding hardware 
commands to a device, with behavior descriptions of 
the form {} = G(X). More complex generators encapsu-
late diverse approaches for control: a Kalman fi lter may 
infer the state of a component from sensor-produced 
infl uences, a connection-based fi nite-state automation 
may produce a system state estimate from component 
state estimates, a rule-based expert system may use a 
system state estimate as the basis for goal generation, 
and system goals may infl uence a Petri-net planner in 
high-level action for the control system.

 The second thesis in our approach is that the control 
steps of an intelligent controller for a single device may 
be viewed as a Markov chain, with each step providing 
information to its successor. 

It is easy to imagine how one would create a set of 
three agents that collaboratively control our target 
device by building one agent for each step in the Markov 
chain. However, if our device is adjacent (in terms of a 
spatial model) to other devices, then each step in our 
device’s Markov chain is potentially infl uenced by the 
equivalent steps in Markov chains of those adjacent 
devices (Fig. 10). That is, their respective Markov 
chains are correlated. Hoffmann10 named such struc-
tures “Markov blankets” and has suggested them as a 
method for building very large inference nets that are 
more computationally effi cient than neural networks.

To control a system, we must consider the possible 
states of our control system observers and controllers, 
in addition to the possible states of the “world” that 
they measure and affect. To estimate the states of our 
observers and controllers, we must in turn consider 
the network over which we obtain information and 
issue commands. For example, when a failed actuator 
reduces system controllability, effective control should 
identify the actuator failure when generating a plan. In 
systems that contain redundant controllers, the overall 
world plan may require a reconfi guration of the control-
lers prior to an attempt to control the world. Network 
faults reduce observability and controllability, and 
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may also be addressed through reconfi guration.11 Con-
trol of the observers, the controllers, and the control 
network extends our Markov blanket into the domain 
axis (Fig. 11).

The ontology for any given control domain will 
support the defi nition of many roles along the vari-
ous control axes. For example, if we consider a spatial 
control axis for a connection-based spatial model, every 
component of the controlled system could potentially 
have an estimator (i.e., there is an estimator role for 
it). While the framework supports and can use any or 
all of these roles, most of them will remain unfi lled in 
any real control network implementation. To the extent 
that roles are not fi lled, local observability and control-
lability for a given portion of the controlled system may 
be reduced. This increases the burden on the distributed 
control system and potentially decreases the maximum 
performance that can be attained, but it can be com-
pensated through collaborative, intelligent control.

When the product of a generator, or portion thereof, 
satisfi es the semantic defi nition of an infl uence of a 
second generator, then that product is said to be useful 
to the second generator. Both products and infl uences 
may be polyamorous, that is, a product may satisfy 
multiple infl uences, and multiple products may satisfy a 
single infl uence. Two control agents are relevant to one 
another if at least one generator in one of the agents 
supplies products that are useful to a generator in the 
other agent. To support fault tolerance, all generators 
must implement default behaviors when any combina-
tion of infl uences is in a “state of no knowledge” (not 
being satisfi ed by products). This implements a form of 
default reasoning, as in Ref. 12.

We wish to create control information fl ows over a 
network of information relevancy relationships by creat-
ing communications paths among agents according to 
relevancy. To accomplish this, the relevancy relation-
ships among control agents are associated with commu-
nications links, or channels, connecting relevant agents. 
Channels are event driven and asynchronous, with 
events occurring on a channel when the value of a gen-
erator product supplying the channel changes. Scheduled 
control between temporally cognizant control agents may 

be implemented through a timer control generator that 
creates timing events on the product. However, in this 
case the underlying framework remains asynchronous, 
and timed completion is not guaranteed.

To minimize communications costs (bandwidth and 
latency), we prefer to implement channels as direct, phys-
ical communications links. This should result in a corre-
lation between the ability to support high-performance 
control agent communications and the relevancy among 
the respective control agents. The approach is feasible if 
and only if the relevancy relationships among control 
agents correspond to the physical network connectivity 
among the processing nodes where agents are located. 
Such a correspondence is implicitly supported by agent 
semantics with respect to the three control axes. Rel-
evancy relationships on the spatial model control axis 
will, in general, closely correspond to physical proximity 
in Euclidean or connection space (control agents with 
a null spatial model will have no spatial relevancy rela-
tionships). Proximity in space, in turn, closely correlates 
to the ability to support, and hence availability of, high-
performance network communications.

Relevancy relationships on the other two control 
axes tend to show a strong correspondence to abstrac-
tion relationships in the control domain ontology. As 
information fl ows in along these control axes, we wish to 
take advantage of abstraction in order to reduce require-
ments for communication bandwidth and also reduce 
the tightness of coupling (and hence reaction time) 
required among control agents.

To accomplish this, we give control agents the abil-
ity to delegate their products and infl uences to control 
agents that are physically adjacent on the network. 
Delegates accept responsibility for those products or 
infl uences as well as a relevancy relationship with the 
delegator. Product delegates accept responsibility for 
supplying the infl uences of physically adjacent agents 
to which the product is useful, and infl uence delegates 
accept responsibility for seeking products useful to those 
infl uences from physically adjacent agents. Delegation is 
controlled via a broadcast mechanism in which agents 
announce their ability to supply products or their need 
to satisfy infl uences. 
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Figure 11. Collaborative controllers as a three-dimensional Markov blanket operating in 
the spatial, control, and domain axes.

The delegation mechanism can 
be implemented through the con-
cept of control generator proxies. A 
proxy implements a remote inter-
face that encapsulates a communi-
cations link between the proxy and 
the originator of the proxy. This 
mechanism can implement inheri-
tance and abstraction, in which 
the delegate inherits a product or 
infl uence from the delegator. The 
inheritance relationships implied 
by delegation are dynamic and 
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support the ability for control agents to form fl exible, 
overlapping teams. Proxies, in addition to encapsulating 
a communications link, also hide the implementations 
and location of the generator supporting the mobility of 
computation. 

To support the above functionality with the minimal 
required overhead cost, we propose a networking strategy 
implemented as a simple three-layer network architec-
ture that supports the implementation of channels as 
participants in a multiplexed direct physical communi-
cations link between physical network processing nodes. 
The bottom two layers are the standard physical and data 
link layers of the ISO Open System Interconnect (OSI) 
protocol. By adopting these layers we allow ourselves the 
use of existing low-level commercial communications 
devices. We replace the top fi ve layers of the ISO OSI 
protocol with a single Control Network Protocol (CNP). 
The CNP is a context-sensitive protocol that is based on 
a small set of network operations, with context provided 
by the channel semantics, which is determined by the 
interface semantics of the control generators communi-
cating over the channel. The CNP supports the forma-
tion of a relevance-based communications network in 
which there is no explicit concept of “routing.” In place 
of routing, we create a network of direct information 
relevancy relationships (Fig. 7) that implements direct 
communications between control agent teams dynami-
cally formed via discovery and delegation.

Establishing new channels is based on a service-dis-
covery approach in which control generators are ser-
vices. Such an approach allows a general, scalable, self-
confi guring, self-healing, and domain-independent way 
of building and maintaining large, emerging, and ad hoc 
virtual networks. Discovery is supported in the agent 
communication operations via the channel-forming 
operations described above. Services can be viewed as 
offering contracts to potential clients. In our framework, 
a service contract is simply the semantic description of 
a control generator interface implemented as control 
generator meta-data.

Control system components, with varying degrees of 
functionality, various hardware/software implementa-
tions, and various communications interfaces, integrate 
themselves with the control network via the control 
generator abstraction, whose implementation is a ser-
vice interface that presents the published semantics of 
the generator and encapsulates the component imple-
mentation of those semantics.

Use of the service-based approach allows us to encap-
sulate generator implementations, but also any control 
agent collaborations that generators participate in via 
delegation. This supports fl exible creation and recon-
fi guration of control system functional abstractions.

Information sharing among control agents will not 
always be suffi cient to satisfy the control needs of all 
systems. Control agents that produce information that 

is co-useful (e.g., agent A produces information useful to 
agent B and vice versa) are called co-dependent. Agents 
whose generators are co-dependent may reach subopti-
mal conclusions when processing is performed prior to 
receipt of new information. This problem is commonly 
called a “race condition,” and may be addressed by sup-
porting shared, collaborative generation in addition to 
information sharing. Generators may collaborate in sev-
eral ways (e.g., conditional products, shared constraint 
satisfaction, distributed truth maintenance). We address 
collaborative generation by treating generator collabo-
ration as a special case of product-infl uence usefulness. 
This allows specially designed generators to establish 
communications channels for collaboration within the 
general agent framework. 

The direct relevancy relationships in which control 
agents participate implicitly defi ne a global degree-of-
relevance measure over the control Markov blanket 
with respect to each control agent. This implicit mea-
sure will be dynamically and adaptively refl ected in the 
delegation relationships (implemented by proxies) that 
obtain at any given time. These, in turn, defi ne dynamic 
control abstractions, implemented as adaptive control 
agent teams, which are formed and re-formed through 
discovery. The organization of these teams is not defi ned 
via fi xed, “sharp” interfaces, but is better conceptualized 
in terms of a fuzzy relevance measure that results from 
the degree of indirection and abstraction occurring 
along paths within the network of communications 
channels. This organization is not the result of a cen-
tralized design or a centralized execution-time control 
algorithm—it is emergent.
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