
428	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

D.  M.  SUNDAY  and  C.  J.  DUHON

W

A Decade of Prototype Displays

Daniel M. Sunday and Christopher J. Duhon

e describe an evolution of display prototypes that APL developed for Aegis and 
the Cooperative Engagement Capability. The work spanned more than a decade from the 
late 1980s to 2000. Many of the ideas and software produced were incorporated into the 
Navy’s most significant combat system displays (Aegis Display System, Advanced Combat 
Direction System, and Ship Self-Defense System) as well as numerous engineering dis-
plays. This article recounts the work and describes some of the display features along with 
significant aspects of the display architecture.

INTRODUCTION
From the late 1980s through 2000, APL developed 

prototype combat system displays. These prototypes 
have now transitioned to industry and are being used as 
the foundation for the most significant Navy production 
combat display systems, including Lockheed Martin’s 
Aegis Display System (ADS), Raytheon’s Advanced 
Combat Direction System (ACDS) command station, 
Raytheon’s Ship Self-Defense System (SSDS) display, 
and the Naval Air Systems Command’s E‑2C Advanced 
Control Indicator Set (ACIS) display. In all cases, 
APL provided a generic display engine along with a soft-
ware toolkit of display components that was collectively 
referred to as the Common Display Kernel (CDK). Ven-
dors of platform-specific display systems then tailored 
and enhanced CDK to meet their mission requirements. 
In addition to these production displays, CDK was 	
used in numerous engineering and simulation displays, 
such as the Battle Force Tactical Trainer and APL’s 
Cooperative Engagement Capability (CEC) engineer-
ing displays.

In this article we first review the evolution of the APL 
prototype displays from the mid-1980s, then describe 
the functionality provided in the final builds of CDK, 
and give a short overview of its architecture.

BACKGROUND
APL’s display prototype work was initiated as the 

Command Support At-Sea Experiment (CS@SE), which 
evolved through four phases. In 1987, the kickoff 	
Phase I was led by Jennings Willey as a follow-on to 
his seminal paper1 on advanced graphics techniques. 
Phase I primarily investigated the use of color and area 
fill for information discrimination in Navy combat dis-
plays. The Phase I prototypes underwent at-sea testing 
aboard the Aegis cruisers USS Ticonderoga (CG 47) and 
USS Yorktown (CG 48).

In 1988–1989, Phase II, led by Dave Buscher, 
extended the experiment to include numerous new 	
features (e.g., enhanced geographic displays) and 	



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 429

A DECADE OF PROTOTYPE DISPLAYS

combined real-time sensor and non-real-time over-
the-horizon tracks in the same display.2 The Phase 
II prototypes were evaluated aboard the Aegis cruiser 
USS Leyte Gulf (CG 55) and the carrier USS America 
(CV 66). The Phase II display also had two important 
spin-offs: the first auto-identification (auto-ID) dis-
plays being developed by Roger Sumey and a first CEC 
engineering display developed by John Peden and Dan 
Sunday.

In 1989–1991, Phase III, led by Conrad Grant, 
further investigated the fusion of real-time sensor 
and non-real-time over-the-horizon track information 
with a prototype network track server that imple-
mented a multi-hypothesis correlation algorithm.3 
The Phase III prototypes were evaluated aboard USS 
Leyte Gulf and the carrier USS Roosevelt (CVN 71), 
and were used on those ships during Desert Storm in 
the Persian Gulf.

In 1991–1993, the final Phase IV, led by Dan 
Sunday, further evolved CS@SE into a network-	
centric system with multiple operator stations and mul-
tiple servers for track fusion, Defense Mapping Agency 
and National Imagery and Mapping Agency (NIMA) 
geographic databases, and a network archive-playback 
server (NAPS) of mission-recorded scenarios. New ideas 
for the Human–Machine Interface (HMI) Graphical 
User Interface (GUI) were explored using X Windows 
and the Motif GUI toolkit, and CEC track data became 
another real-time input. The Phase IV prototypes were 

Threat Evaluation and Weapons Assignment displays, a 
lineage it shares with the Area Air Defense Coordinator 
(AADC), to be described in the next issue of the Digest. 
Lead personnel for this multiplicity of projects over the 
following years included Conrad Grant, Dan Sunday, 
Eric Conn, Don Davis, Chris Duhon, Paul McMullin, 
and Dave Nesbitt.

In the mid-1990s, there was another spin-off from 
the CEC display to develop a production display system 
for the E‑2C Hawkeye 2000 upgrade (which included 
CEC). At this time, Duhon was the lead for the CEC 
displays aboard all surface ships, Sunday led the E‑2C 
airborne displays, McMullin led the CDCS effort, and 
Davis was the CDK lead. Two of these prototype 
systems, CDCS and CEC, were aboard the Aegis cruis-
ers USS Cape St. George and USS Anzio simultane-
ously. Figure 1 shows the Combat Information Center 	
(CIC) of Cape St. George with these displays as well as 
other ADSs. 

Throughout the 1990s, the CEC and CDCS displays 
provided CEC engineering and operational support 
at many major Navy exercises: Crown Mountain (St. 
Thomas), Atlantic Fleet Weapons Training Facility 
(Puerto Rico), Mountain Top (Hawaii), and dozens 
of others near Norfolk, Virginia, culminating in the 
CEC Operational Evaluation in 2001. Many new dis-
play ideas were introduced to support CEC integration, 
including color-coding of cooperating units (CUs) 	
and their sensors, and using these colors to make 	

Figure 1.  The Combat Information Center aboard USS Cape St. George. Two APL proto-
type displays are shown alongside the Baseline 5 ADS. A CEC display can be seen on 
both a 21-in. monitor and on large-screen display #3 (second from the right). The CDCS 
occupies large-screen displays #1 and #2 as well as the Commanding Officer’s console 
(inset). Other displays are ADSs. 

evaluated aboard the Aegis cruisers 
USS Leyte Gulf and USS Antietam 
(CG 54).

Following Phase IV of the 
CS@SE, a short period of redirec-
tion occurred for APL’s display pro-
totype work: a CEC-specific engi-
neering display project split off as a 
separate entity. Briefly there was a 
Phase V led by Conrad Grant, but 
it quickly changed into a Baseline 
1 Backfit (B1B) project for Aegis 
cruisers. Within a few years, B1B 
was renamed the Combat Display 
Control System (CDCS) project 
that transitioned to the Baseline 5 
Aegis cruisers USS Anzio (CG 68) 
and USS Cape St. George (CG 71) 
participating in CEC at-sea testing. 
At this point, the common soft-
ware being used by the CDCS 
and the CEC displays was pack-
aged as CDK, which became an 
independent project. CDK adapted 
some architectural elements from 
the Battle Group Anti-Air War-
fare Coordination Program’s Force 



430	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

D.  M.  SUNDAY  and  C.  J.  DUHON

associations in the displays. In particular, engagements 
and their providers were color-coded by CU, as were 	
colored-dot history trails of CU sensor events behind 
each track. In addition, new tactical decision aids 
(TDAs), such as the Radar Masking tool and the 
CU Position Planner, were developed for the 	
CEC displays. These displays were aboard USS Eisen-
hower (CVN 69) during its 1994 Mediterranean deploy-
ment, which also included the CDCS aboard the two 
Aegis cruisers. 

At APL, CDK software development continued to 
provide across-the-board support up to 1999. The Navy 
then directed the Laboratory to transition CDK to 
industry for development of the production combat sys-
tems: to Lockheed Martin for Aegis Baseline 6 (Fig. 2), 
and to Raytheon for SSDS Mk 2. After that, the con-
tinuing display work at APL focused solely on the CEC 
and E‑2C displays, both of which are also being transi-
tioned to industry. 

Although active development of these prototypes 
ended at APL, the results of this work continue in both 
the Navy combat systems they helped define and numer-
ous engineering display systems within and outside the 
Laboratory. Versions of the CEC, CDCS, and CDK soft-
ware were distributed to the following Navy commands 
and organizations: Naval Research and Development, 
San Diego; Naval Surface Warfare Center (NSWC), 
Dahlgren Division; NSWC, Port Hueneme Division 
(PHD), East Coast Operations; NSWC, Crane; Naval 
Undersea Warfare Center (NUWC), New London; Digi-
tal Systems Research; Hughes (Fullerton and San Diego; 
Hughes is now part of Raytheon); INRI; ITT/Gilfillan; 
Lockheed Martin (Egan, Moorestown, Orlando, and Syr-
acuse); Motorola; Northrop Grumman; ORINCON; and 
Raytheon (St. Petersburg and San Diego).

A timeline summarizing the evolution of the APL 
display prototypes is shown in (Fig. 3).

DISPLAY FUNCTIONALITY
From the beginning, the CS@SE displays were fea-

ture-rich from the operator’s point of view. Following 
Phase II of the CS@SE, Buscher and Sunday2 described 
many features that had proven valuable in at-sea exer-
cises such as the use of color and area fill, online 
archiving and playback, fusion of multiple-source track 
data, online detailed NIMA geographic databases, 
online airway data, auxiliary plots, etc. These features 
were not in the combat system displays of that era, and 
some features, such as online airway databases which 
can change monthly, were controversial. Nevertheless, 
the experiments continued to explore more issues such 
as track fusion algorithms, color fill for track symbols, 
color-coding of sensors and platforms for CEC, colored-
dot history trails for CEC air tracks, the use of window 	
systems (X/Motif) to construct easy-to-use capability-
rich HMIs, etc. A sample CEC display screen is shown 
in Fig. 4.

Figure 2.  The Combat Information Center aboard USS Vicksburg 
(CG 69), an Aegis Baseline 6 Phase I cruiser. Shown is the ADS, 
which is directly based on APL’s CDK Version 3.0. All ADS con-
soles and large-screen displays use CDK software and also incor-
porate many CEC display functions.

Figure 3.  Timeline of APL’s prototype display development (B/L = baseline, MS = milestone, IOC = initial operational capability).



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 431

A DECADE OF PROTOTYPE DISPLAYS

In the final stages of their evolution, these displays 
focused on a central tactical situation (TACSIT) Plan 
Position Indicator (PPI) two-dimensional latitude–lon-
gitude geographic display with overlaid tactical graph-
ics (e.g., regions, pairing lines) and Navy Tactical Data 
System (NTDS) track symbols. The E‑2C display even 
had two PPIs. The displays also had character read-out 
(CRO) panels that would show information for the 
hooked objects in the PPI which were selected using 
PC-familiar point-and-click operations with a mouse or 
trackball. Other features included a pulldown menu bar 
that stretched across the top of the screen, a pop-up 
menu for the PPI, a variable action button panel at 
the bottom, and a miniature hooked-track altitude-plot 
panel. These essential ingredients were then embel-
lished for mission-specific displays with a taskbar at 
the screen bottom, pop-up alerts, and numerous opera-
tor control panels (usually elicited from the pulldown 
menus). All this made for a very powerful and flexible, 
yet very simple and clear, display system that operators 
rapidly learned to appreciate.

The success of these displays was in part due to the 
similarity of their X/Motif windows environment to the 
PCs that many people were already comfortable with. 
However, these systems were not deployed on PCs, but 
rather on UNIX workstations with the power and robust-
ness to support the near-real-time reliable processing 
required by a combat system. Early experiments were 
performed using DEC, Sun, and Silicon Graphics work-
stations. However, the Navy displays eventually were 

end result was a well-constructed, high-performance 
TACSIT graphics-engine architecture with a clean 
Application Programmer Interface (API).4 This display 
engine was delivered in the final CDK 4.4 software 
release in December 2000.

DISPLAY ARCHITECTURE
To demonstrate the rich feature set and near-real-time 

capabilities required by future combat system displays, 
the CS@SE prototypes—and later the CDK software 
suite—used, and in some cases invented, advanced archi-
tectural elements not normally seen in modern combat 
systems. A number of these features are described next.

UNIX Shared Memory
CDK-based displays, such as the ADS and ACIS, 

maintain and update large amounts of data, including 
information about all tracks in the combat system, oper-
ator preferences, and system status. These data must 
be available at any moment to multiple display com-
ponents. For example, track data must be simultane-
ously available for rendering in the PPI, display in the 
CRO, filtering to determine output characteristics such 
as color and brightness, and positional updates from the 
combat system. These types of data are shared between 
applications through UNIX shared memory. Shared-
memory segments can be created by any UNIX applica-
tion and, once created, can be read from and written to 
by any other applications. Thus they provide a means 

Figure 4.  Typical CEC engineering display running on a Sun workstation. In addition to 
CEC engineering and development, these displays are used for test and evaluation sup-
port, prototype functionality development, and tactical situational awareness aboard all 
CEC-equipped ships.

deployed under HP‑UX running on 
the Navy’s new Q‑70 display hard-
ware. Recently, the CEC displays 
have been successfully ported to PCs 
running Linux. All code for these 
displays was written in C and C++ 
and is highly portable. Using UNIX-
based software rather than commer-
cial turnkey PC operating systems 
gave the display developers the essen-
tial control over computer resources 
that was needed for the performance 
demands of these systems.

Navy combat displays have tight 
performance requirements. They 
must accept high-throughput input 
data for the extremely large number 
of objects being tracked, update and 
refresh the displays immediately, and 
respond instantaneously to operator 
actions (e.g., hooking to get a data 
readout, range changing, respond-
ing to an alert). Therefore, much 
of APL’s display development work 
involved streamlining the perfor-
mance of all system elements. The 



432	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

D.  M.  SUNDAY  and  C.  J.  DUHON

for many applications to share a single memory block. 
CS@SE and CDK made extensive use of shared memory; 
for example, a typical CEC display uses well over 	
30 Mbytes of shared memory.

While merely creating and attaching to shared-mem-
ory segments might be a common software practice, 
CDK introduced an advanced object-oriented version 
known as the “named buffer.” Named buffers eliminated 
many features of shared-memory segments that were 
unwieldy and error-prone while at the same time intro-
ducing the concept of machine-independent shared 
memory. With a named buffer, an application attaches 
to shared memory not just by size and key, but also 
by segment name and computer name. Thus while a 
named buffer might reside on one computer, it could be 
transparently accessed by any application on any other 
computer on the network.

Three significant named buffer shared-memory seg-
ments used in all CDK-based displays are the track file, 
a display filtering segment, and the graphics entity data 
(GED)5 cache. The track file holds information about 
all combat system tracks, including position, identifica-
tion, course, range, and bearing. The filter buffer con-
tains user-entered settings that control the appearance 
of all graphical items on the PPI. The GED buffer 
contains instructions in a GED language for drawing 
objects that are to appear in the PPI. Data generator 
applications convert tactical data (e.g., tracks, engage-
ments, radar ranges) into geometric data (e.g., track 	
symbols, lines, polygons, and sectors) using the GED 
language.

Triple Buffering
One feature of APL’s prototype displays is raster-

based drawing as opposed to vector drawing. In raster 
drawing, the PPI is updated in a single step versus the 
independent erasing and redrawing of individual graph-
ical items as their positions change. In this process, the 
current positions and characteristics of each item to 
be displayed in the PPI are periodically retrieved from 
the various databases and then drawn. To prevent flick-
ering, this drawing step must be performed as quickly 

areas, could not be redrawn fast enough for a smooth 
presentation to the operator. Those areas were restricted 
to being drawn on only certain screen planes, which 
would not be erased and redrawn unless necessary. This 
greatly enhanced performance. However, because land 
areas and tactical graphics were segregated into separate 
screen planes, the number of available colors was signifi-
cantly reduced. CDK solved this problem by taking the 
double buffering technique one step further and intro-
ducing triple buffering to the combat system display. 
With triple buffering, the PPI was no longer limited to a 
single background buffer for fixed maps. Instead, an arbi-
trary number of auxiliary buffers was introduced, each of 
which held either fixed or transient graphics. However, 
whether fixed or transient, during each PPI update the 
auxiliary buffers were first copied to an interim hidden 
buffer, and that hidden buffer was copied to the visible 
foreground buffer. This not only increased the number 
of available colors, it also allowed for new PPI features, 
such as software-animated radar sweeps. Figure 5 illus-
trates this concept.

Prototype Intelligence Databases
The use of online intelligence databases was explored 

beginning with Phase IV and continued through CDCS 
development. Experimental GUIs were created to look 
into HMI features that would enhance the warfighter’s 
situational awareness yet not saturate the warfighter 
with information overload. Special-purpose browsers 
were created for database access and search as well as for 
image retrieval. The prototype database chosen for ini-
tial implementation was the Jane’s series of texts such as 
Jane’s Fighting Ships and Jane’s Underwater Warfare Sys-
tems. Database extraction software was written to pre-
pare the texts for rapid online retrieval, and a CD-ROM 
jukebox was installed for image access. An example of 
the database GUI used during the CDCS experiments is 
shown in Fig. 6.

Automatic Prehooking
Hooking is the process of selecting a track or other 

graphic object on the PPI and designating it as the 	

Figure 5.  Triple buffering allowed CDK displays to expand the number of available colors, 
which enabled enhanced visualization of tactical data.

as possible. A common technique 
that reduces flicker is double buffer-
ing, in which new graphics are first 
drawn into a hidden background 
window and then quickly copied to, 
or swapped with, the visible fore-
ground window. Many entertain-
ment systems use this method to 
achieve smooth animation.

Initially, the CS@SE used a 
double buffering scheme to reduce 
flicker and enhance drawing per-
formance. However, some PPI ele-
ments, most notably the filled land 



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 433

A DECADE OF PROTOTYPE DISPLAYS

current object of interest. The operator typically accom-
plishes this by rolling the trackball pointer around the 
PPI until the pointer is near the desired object and then 
clicking a trackball button. The software scans the data-
base of visible items and determines, within a certain 
threshold, which object is nearest to the pointer. The 
nearest object is then placed under close control, that is, 
it is “hooked.” Most display systems allow two separate 
objects to be in close control at the same time. If the 
operator needs information about some other object, 
one of the two hooks must be dropped (released from 
close control) so that the third object can be hooked. 
Any functions that were being carried out on the previ-
ously hooked object will be interrupted or lost.

Phase IV of the CS@SE included one of the first 
implementations of the concept of advanced hooking or 
prehooking.6 Prehooking gives the operator additional 
information about objects in the PPI without disturbing 
the two currently hooked items. To prehook a graphic 
object (e.g., a track), the operator merely moves the 
pointer near the track. Graphical feedback is provided 
to indicate which track is nearest the pointer, and brief 
ephemeral track information, similar to CRO data, is 
drawn directly on the PPI. As the pointer is moved 
around the PPI, the prehook information is continuously 
updated in real time. The prehook also indicates which 

Figure 6.  The Jane’s database browser. The various Jane’s books were selected for 
prototype online intelligence database applications. The browser, especially designed 
for CS@SE, provided a unique hierarchical browsing mechanism, bookmarks, simplified 
hyperlinks, keyword searching, and indexing. Text was stored on display hard drives, but 
images remained on CD-ROMs because disk space was a scarce commodity in the early 
1990s.

object would be hooked if the oper-
ator clicked the trackball button. 
This helps the operator select spe-
cific objects in a congested PPI. 
The prehook algorithms perform 
extremely high-speed scans of dis-
played graphics to determine, in real 
time for every pointer motion event, 
which object is nearest the pointer.

Intermachine Data
Computer programmers familiar 

with the C programming language 
often deal with data of different 
scopes. The scope of a C variable 
indicates where its value can be 
accessed and which parts of an appli-
cation, or set of applications, can 
access it. The following four scopes 
are commonly found in many C 
applications7:

•	 Block scope: Variables of this 
scope can be accessed only from 
within the segment of code in 
which they are declared. It is the 
most restrictive scope.

•	 File scope: This scope limits a 
variable’s access to the file in 
which it is declared. The keyword 

“static” typically denotes this type of variable.
•	 Global scope: Global variables, denoted by the key-

word “extern,” have a scope that extends their 
access throughout an application. This includes 
library modules and other compilation units.

•	 Machine scope: This scope extends beyond the C 
language itself into the operating system and is often 
accomplished via the shared-memory mechanism. It 
allows two or more applications to share data struc-
tures and common values.

A fifth scope of data access extends beyond the appli-
cation and beyond the machine, and binds applica-
tions that may be running on separate computer systems 
by providing a common, machine-independent memory 
access mechanism. CDK implemented a form of inter-
machine data access that used the named buffer para-
digm to give C++ application developers the ability to 
write software that stored, retrieved, and modified data, 
independent of the machines on which their applica-
tions ran. For example, the CDCS used the fifth scope 
to allow operators to address and manipulate remote dis-
play screens within the Combat Information Center. 
CDCS operators sitting at one console could activate 
display features on other consoles running on other 
computers. Using the fifth scope paradigm, only one set 



434	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

D.  M.  SUNDAY  and  C.  J.  DUHON

of software code was required to control display features 
on both the local and remote computers.

Fault Tolerance
It is the nature of combat systems that they should be 

available all the time and suffer no faults. It is also the 
nature of software systems that, because of their com-
plexity, it is usually not possible to test all components 
under all possible input combinations. The former con-
dition strives for no faults, while the latter admits that 
faults will occur. One goal of APL’s prototype systems 
was to create a robust environment that could allow for 
faults, identify them, and recover.

An architecture for dealing with software faults that 
occurred in the form of an abnormal termination of 
one or more applications was devised. It consisted of a 
daemon program called the siva daemon (sivad) process, 
which itself initiated all other display programs. As a 
parent of those programs, sivad, via the UNIX “fork” 
mechanisms, could monitor and detect abnormal termi-
nations. When such an abnormality was detected, the 
parent sivad process would immediately reinitiate the 
faulty application. This mechanism has allowed many 
of APL’s prototype systems to remain operational for 
weeks at a time while participating in at-sea trials.

Figure 7.  An early CDK top-level data flow diagram. 

Client/Server Applications

While a client/server programming paradigm is com-
monplace today (anyone who uses a Web browser is 
running the client end of a client/server pair), this was 
not the case a decade ago. CS@SE, CDCS, and CDK 
incorporated this paradigm in several instances, includ-
ing a centralized geographic database server (geoserver), 
a TDA server for the CEC Position Planner and Radar 
Masking tools, and NAPS. Each of these tools allowed 
for the storage and retrieval of large amounts of data on 
a remote server computer that was allocated specifically 
for those tasks. Client applications ran on the individ-
ual consoles and sent data request messages.

The client/server paradigm was incorporated into the 
display architecture for several reasons. In the case of 
geoserver and NAPS, disk space limitations on individ-
ual consoles were tight. Storing the geographic databases 
and the archive playback data on a remote machine 
freed up console disk space for more pressing needs. 
In the TDA case, the server typically performed oper-
ations that were computationally intensive. Running 
the server on a remote computer prevented those cal-
culations from interfering with other console functions. 
These and other architectural elements are illustrated 
in Fig. 7.



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 435

A DECADE OF PROTOTYPE DISPLAYS

THE AUTHORS

DANIEL M. SUNDAY is a Principal Professional Staff mathematician in APL’s 
Air Defense Systems Department. He obtained a B.Sc. in mathematics and physics 
from the University of Toronto in 1967 and a Ph.D. in mathematics from the 
University of Minnesota in 1971. From 1975 to 1978 he was an NRSA Postdoc-
toral Fellow in bioengineering at the University of California, Berkeley. Dr. Sunday 
joined APL in 1980 and has worked on projects that include the TRIMIS medical 
system, the HIOS network for the Army, CS@SE, and CEC. Since 1995 he has 
been the lead software engineer for the E-2C “Hawkeye 2000” ACIS production 
displays now being deployed in Navy squadrons. Dr. Sunday has notable publica-
tions in computer science; his areas of interest include computer algorithms, com-
puter graphics, computational geometry, and software development engineering. 
He teaches courses in computer graphics and computational geometry at the JHU 
Whiting School of Engineering. His e-mail address is daniel.sunday@jhuapl.edu.

CHRISTOPHER J. DUHON is a member of APL’s Senior Professional Staff and 
Supervisor of the Advanced Display Technology and Development Section in 
ADSD’s Computer Systems Development Group.  He received a B.S. degree in com-
puter science and in mathematics from the University of Southwestern Louisiana in 
1984 and an M.S. degree in computer science from Texas A&M University in 1990. 
Mr. Duhon joined APL in 1991 and has been involved in the design and devel-
opment of advanced command and control software systems for the surface Navy, 
including the CS@SE, CDK, and CEC. He is currently lead engineer for the CEC 
display system, working on prototype user interfaces and graphical visualization. His 
e-mail address is chris.duhon@jhuapl.edu.

CONCLUSION
In the late 1990s, the Navy officially transitioned the 

CDK project from APL to industry. After that, the CDK 
team dispersed and no more new code was developed. 
However, the Laboratory collected bug fixes from the 
numerous CDK users, and a final stable release (CDK 
4.4)4 was delivered in December 2000. A CD-ROM with 
this software is available from APL through the authors.

REFERENCES
  1Willey, F. J., and Nesbitt, D. W., “Advanced Graphics for Command 

Displays,” Nav. Eng. J. 98, 130–137 (May 1986).
  2Buscher, D. J., and Sunday, D. M., “The Command Support At-Sea 

Experiment,” Nav. Eng. J. 102(3), 25–36 (May 1990).
  3Grant, C. J., “Aegis AAW Correlator/Tracker (AACT) Experiment,” 

Nav. Eng. J. 102(3), 37–42 (May 1990).

  4Davis, D. E., Nesbitt, D. W., and Mallder, V. A., Common Display 
Kernel (CDK) V4.4 Application Programmer Interface (API), ADS-
98-078, JHU/APL, Laurel, MD (Aug 2000).

  5Nesbitt, D. W., Graphics Entity Data Format Specification, F3D‑3-1695, 
JHU/APL, Laurel, MD (17 Mar 1995).

  6Osga, G., Combat Information Center Human–Computer Interface 
Design Studies, Naval Command, Control, and Ocean Surveillance 
Center, San Diego, CA (Jun 1995).

  7Stroustrup, B., The C++ Programming Language, AT&T Bell Tele-
phone Laboratories (1991). 

ACKNOWLEDGMENTS:  The work described in this article was sponsored by 
the Navy’s Aegis (PMS‑400), CEC (PMS‑465), and SSDS (PMS‑461) projects. 
At APL, numerous managers, software developers, and hardware specialists sup-
ported this effort. In addition to the software leads mentioned in the Background 
section, key management support came from Jerry Bath, Warren Citrin, Gary 
Gafke, Jerry Krill, Bob Lundy, Jim Palmer, Dennis Serpico, Wink Wilkinson, and 
Bill Zinger. Also, numerous software developers supported these projects, so many 
that they cannot be listed here. The efforts of all these people ultimately made 
these projects a success.


	A Decade of Prototype Displays
	Daniel M. Sunday and Christopher J. Duhon
	INTRODUCTION
	BACKGROUND
	DISPLAY FUNCTIONALITY
	DISPLAY ARCHITECTURE
	UNIX Shared Memory
	Triple Buffering
	Prototype Intelligence Databases
	Automatic Prehooking
	Intermachine Data
	Fault Tolerance
	Client/Server Applications

	CONCLUSION
	REFERENCES
	THE AUTHORS
	FIGURES
	Figure 1. The Combat Information Center aboard USS Cape St. George.
	Figure 2. The Combat Information Center aboard USS Vicksburg (CG 69), an Aegis Baseline 6 Phase I cruiser.
	Figure 3. Timeline of APL’s prototype display development.
	Figure 4. Typical CEC engineering display running on a Sun workstation.
	Figure 5. Triple buffering allowed CDK displays to expand the number of available colors, which enabled enhanced visualization of tactical data.
	Figure 6. The Jane’s database browser.
	Figure 7. An early CDK top-level data flow diagram.



