
498	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

B.  A.  SHAPTER  and  D.  G.  CROWE 

J

JEDSI: Java Enhanced Distributed System Instrumentation

Barbara A. Shapter and Douglas G. Crowe

ava Enhanced Distributed System Instrumentation (JEDSI) makes it possible to capture
performance or diagnostic data, or both, from a distributed software system and to analyze
the data and display the results while the software system is running. The JEDSI software is
designed to have minimal impact on the instrumented system, to be flexible in its applica-
tion, to be extensible for new analyses, and to provide a variety of customizable displays.
This real-time concurrent display of software performance becomes a critical tool in the
development, test, tuning, and support of distributed application systems. The JEDSI tool
provides a way to instrument an application so that its performance can be observed while
it is in use.

INTRODUCTION
One of the challenges in developing large distrib-

uted software systems is measuring their performance.
Historically, a common way to measure performance or
analyze behavior was to capture data from the system
by writing the data to a file for later analysis. This
approach is cumbersome and can require multiple, time-	
consuming test runs to fully explore a system’s perfor-
mance characteristics. In addition, owing to sometimes
extensive coding overhead and potentially detrimental
impacts on performance, redefining the data collected
during series tests can be very difficult.

The High Performance Distributed Computing
(HiPer-D) project at APL required a tool that could
provide a “live” view of the performance of its combat
system simulation. Earlier versions of HiPer-D used the
JEWEL instrumentation tool from the German National
Research Center for Computer Science.1 From the Lab-
oratory’s experience using JEWEL with HiPer-D came

the decision to develop a more flexible software instru-
mentation tool. The primary functional requirements
for this tool were

•	 Collection of performance data from processes in a
distributed system with minimal impact on perfor-
mance of the system under test

•	 Evaluation of collected data in near–real time, with
provision for easy extension and the addition of cus-
tomizable analysis components

•	 Dynamically selectable, configurable, real-time displays
•	 Ease of learning and use
•	 Usefulness in a heterogeneous distributed hardware

environment
•	 Adaptability to new problems

The prototype Java Enhanced Distributed System
Instrumentation (JEDSI) was developed in 1998.
These requirements motivated its architecture and the 	

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 499

JEDSI

selection of Java for use in the central data collection
and dynamic display components.

The process of capturing data at test points in a soft-
ware system is analogous to putting probes in a physical
system. JEDSI’s “probes” are software function calls that
pass information from the system under test to JEDSI.
Instrumenting a software system with JEDSI is the pro-
cess of identifying the data to be captured and inserting
the JEDSI function calls needed to capture those data
into the system under test. Software systems that have
undergone this process are called instrumented systems,
and the individual data collection function calls are
referred to as test points.

Before the development of JEDSI, one of the issues
associated with any software instrumentation system
was the number of test points that could be inserted
into the system under test. Each data value extracted
from a test point had to be removed, which required
processing cycles that were then not available to the
system. The need to limit the data extracted, and thus
the required processor overhead, has been a limiting
factor in the number of test points traditionally placed
in systems under test. In addition, the overhead asso-
ciated with extracting data tended to lead developers
to remove those test points after initial development,
thus eliminating a valuable source of information that
could be useful in pre-deployment integration efforts
and post-deployment problem analysis.

JEDSI addresses these issues by assuming that all
embedded test points are turned off. No data are trans-
ferred from these test points. Test points are turned on
only when a user of JEDSI needs the data. This approach
removes the concern with the volume of data being
transferred when large numbers of test points are left
embedded in the system. JEDSI test points can be used
freely to make available as much information as might be
needed. Test points also can be safely left in code for use
in integration testing and post-deployment diagnostics.

JEDSI ARCHITECTURE
JEDSI provides a small, flexible Application Pro-

gramming Interface (API) for use in adding test points
to software systems that are to be instrumented. JEDSI
also contains a set of portable components for data
collection, analysis, and display that can run on one
or more platforms. The term “distributed” in JEDSI’s
name applies both to the tool’s ability to process data
from a distributed system and to the ability to distrib-
ute the components of JEDSI itself. The JEDSI archi-
tecture allows

•	 Simultaneous, real-time collection of data from mul-
tiple processes under test on a single host platform

•	 Simultaneous, real-time collection of data from mul-
tiple host platforms that are running one or more sys-
tems under test

•	 Collection of data for analysis and/or distribution at
a central point

•	 The ability to provide both raw and analyzed data to
multiple JEDSI clients on multiple platforms

Figure 1 shows the main components of JEDSI:

•	 The JEDSI API, which is the user’s programming
interface. It defines the functions needed to pass infor-
mation from the program of the system under test to
the JEDSI API library. This library is linked with each
program and becomes part of that program.

•	 A JEDSI Receptor, which runs on each computer
platform that hosts the program of a system under
test. The Receptor receives data from all instru-
mented programs of the system on that machine and
transmits the data to the JEDSI Collector. JEDSI
Receptors and the API library are available for the
Solaris, HP UX, Linux, VxWorks, and Windows
2000/NT environments.

•	 The JEDSI Collector, which gathers the data from
instrumented test points from all the Receptors in
the system. These data are analyzed (if needed) and
passed on to the JEDSI client processes.

•	 The JEDSI Test Control display, which is the data
display client of the Collector. One or more client
processes can receive the data collected by the JEDSI
Receptor and/or the results of the analysis of the
instrumentation data.

Figure 1 shows three possible client processes: the JEDSI
Test Control display application, a Web application,
and a process that writes data to a log. The API, Recep-
tor, Collector, and Test Control are discussed in more
detail in the following sections.

JEDSI Application Programming Interface
The JEDSI API2 provides a simple and flexible pro-

gramming interface for capturing data from the software
system. Two function calls are used most often—one that
performs initialization and one that is used to pass data
into JEDSI. The initialization function initializes the
interprocess communications between the instrumented
process and the local Receptor. The data capture func-
tion sends data to JEDSI using a simple, flexible syntax
that accepts any number of arguments. Each data cap-
ture call passes the information supplied to the JEDSI
Receptor, along with the time of the event, the identi-
fier for the test point, the host network address, and the
process ID. The API is implemented in C and is suitable
for reference from C or C++ programs. Other languages
that have the ability to call C libraries (most languages
have this capability) may also be used with JEDSI.

 JEDSI Receptor
The JEDSI API library that is linked into all instru-

mented programs of systems under test sends the data it

500	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

B.  A.  SHAPTER  and  D.  G.  CROWE 

collects to the Receptor. The JEDSI Receptor receives
the data from all instrumented application processes on
its platform. Currently, one Receptor can support up to
20 instrumented processes. The Receptor forwards all
the data it receives from the various API libraries to the
JEDSI Collector using a platform-neutral protocol. This
means that the Receptor and the Collector need not
reside on the same type of machine.

A key design requirement for the JEDSI Receptor and
API library is to permit the collection of the applica-
tion’s run-time characteristics and data with only min-
imal impact on the performance of the instrumented
application. Consequently, the Receptor and API are
written in C and use shared memory to obtain the per-
formance data captured by the API calls.

All instrumented processes on a given platform com-
municate their data to a common Receptor. However,

more than one Receptor can be run
on a given host. This might be done
to isolate event data from two dif-
ferent systems hosted on the same
computer.

A distributed system can contain
a large number of JEDSI instrumen-
tation test points. However, the
data from all of the test points may
not necessarily be desired at run
time. For example, different subsets
of test points may reflect different,
mutually exclusive test scenarios. To
explore a particular scenario, only
the pertinent test points should be
enabled. The Receptor allows this
selectivity in controlling test points
at run time by dynamically enabling
or disabling the test point state in
response to control messages from
the Collector. A test point is enabled
if at least one client of the Collector
is a consumer of its data.

JEDSI Collector
The Collector is a Java appli-

cation that receives data from all
Receptors, performs any required
analysis, and communicates results
to client processes. The Collector
consists of Java components that
run in several different threads of
control within the Collector. The
Collector runs on any host, but it
is recommended that the Collec-
tor be run on a different host from
that used by the processes of the
system under test to eliminate the

Figure 1.  JEDSI component architecture.

Collector’s impact on the system’s performance.
The communications interface between the Recep-

tor and Collector is implemented using standard Trans-
mission Control Protocol/Internet Protocol (TCP/IP).
The use of TCP/IP as a communications protocol means
that the Collector and its Receptor host processors can
be connected by any modern communications mech-
anism. Ethernet, Fast Ethernet, and ATM can all be
used. The Collector can be located on the same local
area network or at a remote location connected using a
wide area network.

The messages exchanged between the Collector and
Receptor consist of the following:

•	 Initialization messages that initialize communica-
tions between the Receptor and Collector. (The
information transmitted includes the JEDSI version

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 501

JEDSI

number of the Receptor that is sending messages,
which allows the Collector to operate with different
versions of the Receptor simultaneously.)

•	 Data messages that contain the information from the
system under test collected by the Receptor

•	 Receptor host environment information messages,
such as a message indicating that an instrumented
process has started or ended

•	 Test point control messages from the Collector 	
that enable or disable test points in the instrumented
process

The Collector’s design is a three-tiered architecture
(Fig. 1). The first tier is the instrumentation layer,
which contains components that support communica-
tions with the Receptors. These components detect
new connections and create a separate thread of con-
trol to handle all message traffic between the Collector
and each new Receptor. The second tier, the analysis
and distribution layer, contains queues, control compo-
nents, and components that perform analysis of the cap-
tured system data. The third tier, the client layer, con-
sists of components that support communications with
JEDSI clients. JEDSI clients are the consumers of the
data collected by the Receptors and/or the results of any
analysis performed on these data within the Collector.
Clients connect to the Collector using separate TCP/IP
connections, one for each client. Each client connec-
tion with the Collector has a separate thread of exe-
cution dedicated to serving data to that client. When
the client connects, it provides parameters to the Col-
lector that identify the data from the Receptor that it
needs. Parameters are also included that identify any
data analysis required by the Collector.

management conflicts between user-developed code and
the JEDSI baseline code.

The Collector also provides central control of test
point on/off state information. When a client connects to
the Collector requesting specific data, the Collector com-
pares the data requested with its list of test points that
have already been turned on by previous requests from
other clients. If the test point is not enabled, a message
is sent to the appropriate Receptors to turn on that test
point. Data then begin to flow from the system to the
Receptor, through the Collector, and out to the client. The
Collector monitors the status of all of its clients, waiting for
a client to disconnect. When all clients that have requested
data from a particular test point have disconnected, the
Collector sends a message to the Receptors to disable that
test point. This prevents the flow of unneeded information 	
from that test point, thus conserving communications
bandwidth.

JEDSI Test Control
Test Control is a Collector client and serves as the

display component of JEDSI. Like the Collector, it is
a multithreaded Java application that can be run on
any platform that supports Java. Test Control provides a
graphical user interface to its collection of display tools
from its main window (Fig. 2). From this window, a
user can choose a chart for use in connecting to the
Collector data stream and observing the status of the
JEDSI components. By default, raw data collected by
the Receptors are displayed in Test Control charts with-
out additional filtering or processing. A user selects a
chart or clicks on a chart icon on the tool bar to start up
a new data display.

Data analysis is implemented
within the Collector using separate
components known as Evaluators.
A separate Evaluator is started with
each client connection. The Eval-
uator extracts the data specified
by the client from the stream of
data coming from the Receptors.
It performs whatever processing is
required on those data and forwards
the results to the client. Several 	
general-purpose Evaluators are sup-
plied with JEDSI, including a pass-
through Evaluator that simply for-
wards data directly to the client
without change. Users can also
easily develop their own Evaluator
components. JEDSI’s use of Java is
such that user-developed Evaluators
can easily be incorporated without
changing any released JEDSI source
code, thus preventing configuration

Figure 2.  The JEDSI Test Control main window provides tools to create, modify, save, or
retrieve charts, as well as tools to monitor the state of the JEDSI components and instru-
mented processes.

502	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

B.  A.  SHAPTER  and  D.  G.  CROWE 

Each chart is displayed in a separate window con-
taining tabs for both the chart and an input panel. The
input panel provides a place for the user to define chart
parameters such as the test points that will be used as
the data sources, the window name, the chart name, etc.
The window for a strip chart is shown in Fig. 3 with the
Input Panel tab selected. There are text fields with drop-
down lists of known test points, data fields, and system
hosts for input. Furthermore, all parameters entered are
available for review and revision at any time. The input
parameters of each chart can be changed on the fly
by clicking on the Input Panel tab and changing the
parameters. Clicking on the Chart tab or on the Create
Chart button applies the changes to the chart. Each
time a chart window is opened, a separate client con-
nection is made to the Collector that requests data from
the test point(s) specified in the input panel.

A group of seven JEDSI Test Control chart windows is
shown in Fig. 4. The data displays appear in separate win-
dows, so several different displays can be shown simul-
taneously and arranged and sized as desired. At present,
data can be displayed in a table or dynamic matrix, as
text, or as a strip chart, bar chart, xy chart, or gauge. Test
Control includes other features as well:

•	 On-line help

for a column or row title arrives, then a new column or
row is added. Thus, the number of rows and columns in
the matrix changes during the life of the chart. Any data
message received can add a new row, add a new column,
or change data in a cell of the matrix. The matrix chart

Figure 3.  Typical JEDSI chart window showing the chart Input
Panel tab. After the chart parameters are entered, clicking the Go
To Chart button or the Chart tab displays a chart with data from
these test (trace) points.

•	 A detachable toolbar of shortcuts
to charts and other capabilities

•	 The ability to save and restore
chart configurations

•	 Chart printing
•	 Saving data to a file
•	 Customization of chart appearance
•	 Status displays of the connectivity

state of each JEDSI component
and each instrumented process

Test Control contains an inno-
vative specialization of a standard
table of data. This is the dynamic
matrix chart. A dynamic matrix
chart is a matrix whose row and
column headers, as well as its cells,
are data driven. A traditional table
has a fixed number of columns,
defined at startup, with static head-
ers that are defined as constants. A
dynamic matrix chart, on the other
hand, displays data as a growing list
of rows and columns. Each update
potentially adds a new row or a new
column. In a dynamic matrix chart,
the size and shape of the matrix, as
well as its content, depend on the
data. The column and row titles are
supplied by the data. If a new value

Figure 4.  Seven JEDSI Test Control chart windows illustrating the variety of chart dis-
plays available.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 503

JEDSI

is responsive to the data it receives, and its changes with
time reflect the evolution in the behavior of the data 	
it tracks.

EXPERIENCES USING JEDSI

HiPer-D
HiPer-D is a combat system simulation in which

radar messages flow from one end of the system (the
radar simulation) to the other end (track data con-
sumers). The HiPer-D program has had many uses for
JEDSI. One of the critical issues in the HiPer-D archi-
tecture is the time taken for messages to flow through
the system. This time is the latency measurement. 	
Initially, JEDSI was used to measure end-to-end mes-
sage latencies.

In analyzing the performance of HiPer-D compo-
nents, it is useful to understand variations in the load

first. Then the Solaris system was started, and the JEDSI
strip chart monitoring the Linux system performance
immediately showed significant increases in latency.
JEDSI showed that the two supposedly isolated systems
were apparently interfering with each other. Further
investigation revealed that the network switch was not
blocking multicast traffic as intended. After consulta
tion with network managers and reconfiguration of the
switch, the experiment was repeated. JEDSI showed that
the two systems no longer interfered with each other and
that performance in the two environments was much
closer, as was initially expected. In this situation, JEDSI
helped uncover a network configuration problem that
had previously gone undetected.

Multiship Simulation
HiPer-D has been used in the Distributed Weapons

Coordination (DWC) simulation effort in which a 	

Figure 5.  JEDSI charts for HiPer-D showing simulation performance measures. The bar
chart (left) indicates the CPU utilization of various HiPer-D processes. The graph (right)
shows the average latency of messages as they flow through HiPer-D.

Red Hat Linux
2.2.14 running on
500 to 800 MHz
Pentium III
processors

Solaris 5.7
running on
Ultra 2 and
Ultra 1
workstations

Figure 6.  HiPer-D latency comparison between Solaris and Linux using JEDSI.

that the processes place on the pro-
cessors. To help assess this varia-
tion, a separate process was devel
oped that periodically measured the
central processing unit (CPU) utili-
zation of various processes. This pro-
cess was instrumented with JEDSI
test points, and a dynamic bar chart
was used to display the results.
Figure 5 illustrates sample latency
charts and processor load charts
used in HiPer-D.

Part of the HiPer-D program
involves the evaluation of com-
mercial technologies for possible
use in Navy systems. JEDSI was
used to compare the performance of
HiPer-D running in a Solaris envi-
ronment with the performance of
the same system running in a Linux
environment. Figure 6 shows two
of the early latency measurements
made as part of this evaluation (two
separate runs; note the time differ-
ence on the x axis of the strip chart).
The significant difference in perfor-
mance was unexpected. The net-
work configuration used with this
test consisted of a single switch that
connected the Solaris and Linux sys-
tems. This switch implemented sub-
nets that were used to prevent mul-
ticast traffic between the Solaris and
Linux systems. In this environment
the two systems (Linux and Solaris)
were run simultaneously, and their
latency behavior was observed using
JEDSI. The Linux system was started

504	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

B.  A.  SHAPTER  and  D.  G.  CROWE 

multiship simulation is used to test algorithms designed
to coordinate the engagements of the multiple ships
against a raid of Tactical Ballistic Missiles (TBMs). In
the development of this simulation, JEDSI was used
extensively to monitor both the engagement decisions
made and the data used to make those decisions.

In the DWC simulation, each ship exchanges engage-
ment status and interceptor inventory information in
real time as a simulated TBM raid progresses. Each
ship simulation sends engagement status information
for each TBM in the raid every time the engagement
status changes. Each ship in this simulation indepen-
dently and periodically evaluates the engagement status
data from all ships for each TBM and follows a set of
rules to determine if it is the “preferred shooter,” i.e.,
the ship that should complete the engagement. Ships
that are not the preferred shooter continue to process
the engagement until interceptor launch time, when
they suspend the launch if they are still not the selected
shooter.

This real-time simulation exchanges a great deal of
information among ships and makes a large number of
decisions about that information. JEDSI was used to
help visualize and analyze the data in this extremely
dynamic real-time environment. Figure 7 is a snapshot
of three of the JEDSI displays used. The top two charts
are dynamic matrix charts. In these charts there is a row
for each TBM (identified by track numbers 100 to 119)
and a column for each ship (labeled LS1 to LS4) in
the simulation. The left chart of Fig. 7 shows the rule

Figure 7.  JEDSI matrix charts showing engagement status at a
late stage in a multiship simulation of a TBM raid. Column head-
ers reflect four ships; row headers are TBM track numbers. New
rows and columns appear as new ships and threats appear in the
simulation. The matrix chart is responsive to the data it receives,
and its changes with time reflect the evolution in the behavior of
the data it tracks.

in the decision process last used for that TBM by that
ship to decide if it should be the preferred shooter. Dark
blue cells in the matrix indicate the ship selected as the
shooter for that TBM.

The upper right chart of Fig. 7 shows the engagement
status of each ship against each TBM as the coordinated
engagement proceeds. The dark blue cells indicate the
ship selected as the preferred shooter against the TBM,
and a green cell would indicate that the ship had actu-
ally launched an interceptor against the TBM. Finally,
the chart in the lower right of Fig. 7 is a matrix that
shows the missile inventory for each ship, which is also
a factor in the shooter selection process.

Each ship reevaluates its preferred shooter status
against each TBM twice per second. In addition, engage-
ment status information changes rapidly, especially in
the earlier phases of each simulation. The result is a
highly dynamic display. Initially, recording software was
used to capture an electronic movie of the screen image
as the simulation progressed, and this was played back at
slower speeds to analyze the exact series of events. This
method proved cumbersome, so a JEDSI strip chart was
developed to capture a detailed timeline of the events
that occurred during the simulated raid. An example is
shown in Fig. 8.

Each horizontal line in Fig. 8 represents a single
TBM, and the four rows of marks below each line
illustrate when events occurred for each ship simula-
tion relative to that TBM. The events tracked were
changes in engagement status and changes in the pre-
ferred shooter selection (by ship). This chart provided
a sequential history of the information that was dis-
played in real time in Fig. 7. It was instrumental in
developing an understanding of the sequence of events
that occurred, and it helped in modifying the rules that
the ships followed to determine the preferred shooter
so as to maximize the ability of the four ships to handle
the entire TBM raid.

Live Test Monitoring
JEDSI has been used to monitor live data from Navy

exercises. Live tactical data in the form of Link 16
J-series messages were received, and the resulting track
picture was displayed. In this environment, JEDSI test
points were inserted into the software reading the data
stream. JEDSI Test Control was used to display strip
charts of the parameters, such as altitude, for each track,
dynamically adding and labeling new lines as new tracks
were added. This provided a live, visual history of the
data that would not have otherwise been available.
JEDSI charts allowed operators monitoring the exercise
the ability to see immediately which tracks represented
the booster and when dual reporting conditions existed
on the Link 16 network. Figure 9 shows the setup for
such live test monitoring, with JEDSI charts shown on
the center screen.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 505

JEDSI

Figure 8.  JEDSI strip charts used as timelines to visualize individual events in the engagement decision process during a multiship raid
simulation.

POTENTIAL FUTURE USES
Lockheed Martin has developed JEDSI Receptors for inclusion in Aegis

Baseline 6 Phase 3. This could lead to the use of JEDSI to monitor combat
system performance in real time, as seen in Fig. 10. The figure illustrates
another important possibility. The connection between JEDSI Test Control
and the JEDSI Collector is a simple network connection, which could be
implemented over a radio network. This would allow real-time monitoring
of combat system software performance from remote locations.

Figure 9.  JEDSI monitoring live exercise data.

CONCLUSION
JEDSI provides the benefits of a

live, real-time view into a distrib-
uted software system. It is a tool
that is quickly learned and easy
to use. JEDSI’s simple instrumen-
tation API favors flexible and fast
implementation. Its Test Control
tool provides simple, fast, and flexi-
ble displays. The JEDSI architecture
encourages extension to new anal-
ysis needs, without requiring the
instrumented system or any compo-
nent of JEDSI to be rebuilt.

JEDSI is scalable and distributed
by design. As the instrumented sys-	
tem expands, existing Receptors
expand dynamically to handle new
processes, and more Receptor in-
stances can easily be added. JEDSI
supports distributed collection and
inspection of data from instrument-	
ed systems. Multiple Test Control
processes and other clients of the
Collector can simultaneously ad-
dress separate visualization scenar-
ios. Even the Collector components
can be distributed using standard
Java distribution mechanisms. In

506	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

B.  A.  SHAPTER  and  D.  G.  CROWE 

Figure 10.  Potential future use of JEDSI in monitoring ship software (S/W) systems.

particular, the Evaluator objects that perform poten-
tially computationally intensive processing can be dis-
tributed to other platforms to reduce the load on the
Collector host.

JEDSI is a flexible tool. It is easily extended to
specialized analysis by writing custom Evaluator tools
that are automatically loaded at run time without any
change to the core JEDSI system. It is dynamically
adaptable at run time in response to user insights into
the observed behavior of the instrumented system. It

provides simple, flexible displays that require only the
knowledge of the data that are available for capture 	
at the user-defined test points within the system 	
under test.

REFERENCES
  1Lange, F., Kröger, R., and Gergeleit, M., “JEWEL: Design and Imple-

mentation of a Distributed Measurement System,” IEEE Trans. Paral-
lel Distrib. Sys. 3(6), 657–671 (Nov 1992).

  2Shapter, B. A., JEDSI Users Guide, ADS-00-002, JHU/APL, Laurel,
MD (Apr 2000).

THE AUTHORS

BARBARA A. SHAPTER is a member of APL’s Senior Professional Staff. She
received her B.S. degree from George Mason University and M.A. degrees from
the University of Maryland, College Park (in mathematics) and The Johns Hop-
kins University (in computer science). As a software engineer, she has designed and
developed applications from hospital clinical information systems at Johns Hop-
kins Hospital to e-commerce procurement systems for NASA and oceanographic
model simulations at APL. Ms. Shapter joined the Advanced Systems Development
Group at APL in 1997, where she has led the development of JEDSI. Her e-mail
address is barbara.shapter@jhuapl.edu.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 507

JEDSI

DOUGLAS G. CROWE is a section supervisor and a member of APL’s Senior Pro-
fessional Staff. He has B.S. degrees in computer science and electrical engineering,
both from Pennsylvania State University, and an M.A.S. degree in administrative
science from The Johns Hopkins University. Mr. Crowe has led groups in the devel-
opment of automatic test equipment for airborne avionics, training simulators, and
air defense command, control, computers, and intelligence (C3I) systems. He joined
APL in 1996 and is currently the lead for the Laboratory’s HiPer-D efforts. His
e-mail address is douglas.crowe@jhuapl.edu.

	JEDSI: Java Enhanced Distributed System Instrumentation
	Barbara A. Shapter and Douglas G. Crowe
	INTRODUCTION
	JEDSI ARCHITECTURE
	JEDSI Application Programming Interface
	JEDSI Receptor
	JEDSI Collector
	JEDSI Test Control

	EXPERIENCES USING JEDSI
	HiPer-D
	Multiship Simulation
	Live Test Monitoring

	POTENTIAL FUTURE USES
	CONCLUSION
	REFERENCES
	THE AUTHORS
	FIGURES
	Figure 1. JEDSI component architecture.
	Figure 2. The JEDSI Test Control main window provides tools to create, modify, save, or retrieve charts.
	Figure 3. Typical JEDSI chart window showing the chart Input Panel tab.
	Figure 4. Seven JEDSI Test Control chart windows illustrating the variety of chart displays available.
	Figure 5. JEDSI charts for HiPer-D showing simulation performance measures.
	Figure 6. HiPer-D latency comparison between Solaris and Linux using JEDSI.
	Figure 7. JEDSI matrix charts showing engagement status at a late stage in a multiship simulation of a TBM raid.
	Figure 8. JEDSI strip charts used as timelines to visualize individual events in the engagement decision.
	Figure 9. JEDSI monitoring live exercise data.
	Figure 10. Potential future use of JEDSI in monitoring ship software systems.

