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dvances in computer hardware, networks, and support software have brought dis-
tributed computing to the forefront of today’s Navy combat systems. An effort known as 
the High Performance Distributed Computing (HiPer-D) Program was established in 1991 
to pursue advantageous applications of this technology to the Navy’s premier Aegis cruiser 
and destroyer combatants. This article provides an overview of the program accomplish-
ments and presents a brief discussion of some of the intercomputer communications issues 
that were paramount to the program’s success. Most significant was the credibility built 
for distributed computing within the Aegis community. This was accomplished through 
many demonstrations of combat system functions that exhibited capacity, timeliness, and 
reliability attributes necessary to meet stringent Aegis system requirements. 

INTRODUCTION
In the 1950s, the Navy embarked on its course 

of developing standardized computers for operational 
use. The AN/UYK-7, AN/UYK-20, AN/UYK-43, and 
AN/UYK-44 are still the primary combat system com-
puters deployed today (Fig. 1). They function at the 
heart of the Navy’s premier surface ships, merging infor-
mation from sensor systems, providing displays and 
warnings to the crew, and controlling the use of weap-
ons. These computers are wholly Navy developed. The 
processing units, interfaces, operating system, and sup-
port software (e.g., compilers) were all built by the 
Navy and its contractors. The AN/UYK-43 is the 
last in the line of Navy standard computers (oddly 
enough going into production after its smaller sibling, 
the AN/UYK-44). Described in 1981 as “the new large 
scale computer . . . expected to be in service for the next 
25 years,”1 it will actually see a service life beyond that. 

The Navy Standard Computer Program was success-
ful at reducing logistics, maintenance, and a host of 
other costs related to the proliferation of computer vari-
ants; however, in the 1980s, the Navy faced a substan-
tial increase in the cost of developing its own machines. 
Pushed by leaps in the commercial computing industry, 
everything associated with Navy Standard Computer 
development—from instruction set design to program-
ming language capabilities—was becoming more com-
plex and more expensive. 

By 1990, it was clear that a fundamental shift was 
occurring. The shrinking cost and dramatically growing 
performance of computers were diminishing the signifi-
cance of the computer itself. The transformation of cen-
tralized mainframe computing to more local and respon-
sive minicomputers was bringing about the proliferation 
of even lower-cost desktop computers. Microprocessors 
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had indeed achieved the performance of their main-
frame predecessors just 10 years earlier, but this was only 
half of the shift! Spurred by new processing capabilities, 
system designers were freed to tackle increasingly com-
plex problems with correspondingly more intricate solu-
tions. As a new generation of complex software took 
shape, the balance of computer hardware and software 
investments in Navy systems cascaded rapidly to the 
software side.

Harnessing the collective power of inexpensive main-
stream commercial computers for large, complex systems 
was clearly becoming prominent in Navy combat system 
design. The highly successful demonstration in 1990 of 
the Cooperative Engagement Capability (CEC) proto-
type, built with over 20 Motorola commercial micro-
processors, was a milestone in distributed computing 
for Navy combat system applications. Developments 
in both Aegis and non-Aegis combat systems focused 
thereafter on applying the capabilities of distributed 
computing to virtually all of the Navy’s prototype efforts. 
Distributed computing offered the potential for provid-
ing substantially more powerful and extensible comput-
ing, the ability to replicate critical functions for reli-
ability, and the simplification of software development 
and testing through the isolation of functions in their 
own computing environments. Indeed, when the Navy’s 
Aegis Baseline 7 and Ship Self-Defense System (SSDS) 
Mk 2 Mod 1 are delivered (expected in 2002), a com-
mercial distributed computing infrastructure will have 
been established for all new builds and upgrades of the 
Navy’s primary surface combatants (carriers, cruisers, 
and destroyers).

Distributed computing for combat systems, however, 
is not without its difficulties. Requirements for systems 
such as Aegis are stringent (response times, capacities, 
and reliability) and voluminous (dozens of independent 
sensor systems, weapon systems, operator interfaces, and 
networks to be managed), and the prior large body of 
design knowledge has been focused on Navy Standard 

Computer implementation. (As an example, the Aegis 
Combat System had a small number of AN/UYK-7 [later 
AN/UYK-43] computers. Each represented an Aegis 
“element” such as the Weapon Control System, Radar 
Control System, or Command and Decision System. 
Within an element, interactions among subfunctions 
were carried out primarily via shared memory segments. 
These do not map well to a distributed computing envi-
ronment because the distributed nodes do not share any 
physical memory.) 

Among the most fundamental issues facing this 
new generation of distributed computing design was 
the pervasive need for “track” data to be available 
“everywhere”—at all the computing nodes. Tracks com-
prise the combat system’s best assessment of the loca-
tions, movements, and characteristics of the objects 	
visible to its sensors. They are the focal point of both 
automated and manual decision processes as well as 
the subject of interactions with other members of the 
battle group’s networks. Ship sensors provide new infor-
mation on each track periodically, sometimes at high 
rate. While the reported information is relatively small 
(e.g., a new position and velocity), the frequency of the 
reports and the large number of objects can combine to 
yield a demanding load. The number of track data con-
sumers can easily amount to dozens and place the over-
all system communication burden in the region of 50 
to 100,000 messages per second. (Figure 2 shows a scan 
with many tracks feeding messages forward.)

Although commercial machines and networks have 
advanced admirably in their ability to communicate 
data across networks, the combat system applications 
have some unusual characteristics that make their needs 
substantially different from the commercial mainstream. 
The track information that comprises the bulk of the 
combat system communications consists of many small 
(a few hundred bytes) messages. These messages can be 
independently significant to the downstream consum-
ers, with varying requirements to arrive “quickly” at par-
ticular destinations. Commercial systems are not tuned 
to handle large numbers of small messages; they focus on 
handling the needs of the mass market, which are typi-
cally less frequent and larger sets of data.

HIGH PERFORMANCE DISTRIBUTED 
COMPUTING

The HiPer-D Program originated as a joint Defense 
Advanced Research Projects Agency (DARPA)/Aegis 
(PMS-400) endeavor, with three participating techni-
cal organizations: APL, Naval Surface Warfare Center 
Dahlgren Division (NSWCDD), and Lockheed Martin 
Corporation. It was inspired by a future shipboard com-
puting vision2 and the potential for synergy between 
it and a wave of emerging DARPA research products 
in distributed computing. The program commenced in 

Figure 1.  Navy family computers.
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June 1991 and has been an ongoing research and devel-
opment effort designed to reduce risk due to the intro-
duction of distributed computing technologies, meth-
ods, and tools into the Aegis Weapon System.

Many of the significant developments of HiPer-D 
have been showcased in demonstrations. Since 1994, 
when the first major HiPer-D demonstration was held, 
there have been seven demonstrations that provided 
exposure of concepts and techniques to Aegis and other 
interested communities. The first HiPer-D integrated 
demonstration (Fig. 3) focused primarily on the poten-
tial for applying massively parallel processor (MPP) 
technology to combat system applications. It brought 
together a collection of over 50 programs running on 
34 processors (including 16 processors on the Intel 
Paragon MPP) as a cooperative effort of APL and 
NSWCDD. The functionality included a complete sen-
sor-to-weapon path through the Aegis Weapon System, 
with doctrine-controlled automatic and semi-automatic 
system responses and an operator interface that pro-
vided essential tactical displays and decision interfaces. 
The major anomaly relative to the actual Aegis system 
was the use of core elements from CEC (rather than 
Aegis) to provide the primary sensor integration and 
tracking. 

By many measures, this first demonstration was a 
significant success. Major portions of weapon system 
functionality had been repartitioned to execute on a 
large collection of processors, with many functions con-
structed to take advantage of replication for reliability 
and scaling. The Paragon MPP, however, suffered severe 
performance problems connecting with computers out-
side its MPP communication mesh. Key external net-
work functions were on the order of 20 times slower 
than on Sun workstations of the same era. The resulting 	

impact on track capacity (less than 100) drove later 
exploration away from the MPP approach. 

The next-generation demonstration had two signifi-
cant differences: (1) it focused on the use of networked 
workstations to achieve the desired computing capacity, 
and (2) it strove for a stronger grounding in the existing 
Aegis requirements set. The primary impact of these dif-
ferences was to switch from a CEC-based ship tracking 
approach to an Aegis-derived tracking approach. Addi-
tional fidelity was added to the doctrine processing, and 

Figure 2.  Information originates from sensor views of each object. Each report is small, but the quantity can be very large (because 
of high sensor report rates and potentially large numbers of objects). The reports flow throughout to be integrated and modified, and to 
enable rapid reaction to change.

Figure 3.  First HiPer-D demonstration physical/block diagram.
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the rapid self-defense response capability referred to as 
“auto-special” was added to provide a context in which 
to evaluate stringent end-to-end timing requirements. 
The 1995 HiPer-D demonstration3–5 represented a sig-
nificant milestone in assessing the feasibility of moving 
commercial distributed computing capabilities into the 
Aegis mission-critical systems’ domain. Track capacity 
was improved an order of magnitude over the original 
demonstration; a variety of replication techniques pro-
viding fault tolerance and scalability were exhibited; 
and critical Aegis end-to-end timelines were met. 

Subsequent demonstrations in 1996 to 1998 built 
upon the success of the 1995 demonstration, adding 
increased functionality; extending system capacity; 
exploring new network technologies, processors, and 
operating systems; and providing an environment in 
which to examine design approaches that better matched 
the new distributed paradigm. Indeed, a fairly complete 
software architecture named “Amalthea”4 was created 
to explore the feasibility of application-transparent scal-
able, fault-tolerant distributed systems. It was inspired 
by the Delta-4 architecture done in the late 1980s by 
ESPRIT (European Strategic Programme for Research 
and Development in Information Technology)5 and was 
used to construct a set of experimental, reliable appli-
cations. In addition to architectural exploration, the 
application domain itself was addressed. Even though 
the top-level system specification continued to convey 
a valid view of system performance requirements, the 
decomposition of those top-level requirements into the 
Aegis element program performance specifications had 
been crafted 20 years earlier with a computing capacity 
and architecture vastly different from the current dis-
tributed environment. 

The command and decision element, from which 
much of the HiPer-D functionality originated, seemed 
like a particularly fertile area for significant change. An 
example of this was the tendency of requirements to 
be specified in terms of a periodic review. In the case 
of doctrine-based review for automatic actions, the real 
need was to ensure that a track qualifying for action was 
identified within a certain amount of time, not neces-
sarily that it be done periodically. In the HiPer-D archi-
tecture, it is simple to establish a client (receiver of 
track data) that will examine track reports for the doc-
trine-specified action upon data arrival. From a respon-
siveness standpoint, this far exceeds the performance 
of the periodic review specified in the element require-
ments and yet is a very straightforward approach for 
the high-capacity and independent computing environ-
ment of the distributed system.

The 1999 and 2000 demonstrations6,7 continued the 
pattern, bringing in new functionality and a significant 
new paradigm for scalable fault-tolerant servers that 	
use new network switch technology (see next section). 
This phase of development also addressed a need for 

instrumenting the distributed system which had been 
identified early in the program but met with a less-than-
satisfactory solution. 

Distributed systems apply the concept of “work in 
parallel,” where each working unit has its own indepen-
dent resources (processor and memory). Although this 
eases the contention between functions running in par-
allel, it elevates the complexity of test and analysis to 
a new level. Collection and integration of the informa-
tion required to verify performance or diagnose prob-
lems require sophisticated data gathering daemons to be 
resident on each processor, and analysis capabilities that 
can combine the individual processor-extracted data 
streams must be created. Early in the HiPer-D effort, a 
German research product called “JEWEL”8 was found 
to provide such capabilities with displays that could be 
viewed in real time. The real-time monitoring/analysis 
capability of HiPer-D was not only one of its most prom-
inent demonstration features, but some would claim also 
one of the most significant reasons that the annual inte-
gration of the complex systems was consistently com-
pleted on time. JEWEL, however, never achieved status 
as a supported commercial product and was somewhat 
cumbersome from the perspective of large system devel-
opment. For example, it had an inflexible interface for 
reporting data, allowing only a limited number of inte-
gers to be reported on each call. Data other than inte-
gers could be reported, but only by convention with the 
ultimate data interpreter (graphing program). 

Beginning in 1999, a real-time instrumentation tool 
kit called Java Enhanced Distributed System Instru-
mentation (JEDSI) was developed and employed as a 
replacement for JEWEL. It followed the JEWEL model 
of providing very low overhead extraction of data from 
the processes of interest but eliminated the interface 
issues that made it awkward for large-scale systems. It 
also capitalized on the use of commercially available 
Java-based graphics packages and communications sup-
port to provide an extensive library of real-time analysis 
and performance visualization tools.

Current and planned initiatives in HiPer-D are 
moving toward multi-unit operations. Functionality for 
integrating data from Navy tactical data links has been 
added to the system, and the integration of real CEC 
components is planned for late 2001. Such a capability 
will provide the necessary foundation to extend the 
exploration of distributed capabilities beyond the indi-
vidual unit. 

EVOLUTION OF COMMUNICATIONS 
IN HiPer-D

The first phase of HiPer-D, culminating in the 
system shown in Fig. 3, had a target computing environ-
ment that consisted of an MPP as the primary comput-
ing resource, surrounded by networked computers that 	
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modeled the sensor inputs and workstations that pro-
vided graphical operator interfaces. The MPP was an 
Intel Paragon (Fig. 4). It had a novel internal inter-
connect and an operating system (Mach) that had mes-
sage passing as an integral function. Mach was the first 
widely used (and, for a brief period, commercially sup-
ported) operating system that was built as a “distrib-
uted operating system”—intended from the outset to 
efficiently support the communication and coordina-
tion requirements of distributed computing.

Despite these impressive capabilities, an important 
principle had been established within the DARPA com-
munity that rendered even these capabilities incom-
plete for the objective of replication for fault tolerance 
and scalability. Consider the computing arrangement in 	
Fig. 5. A simple service—the allocation of track num-
bers to clients who need to uniquely label tracks—is rep-
licated for reliability. The replica listens to the requests 
and performs the same simple assignment algorithm, but 
does not reply to the requester as the primary server 
does. This simple arrangement can be problematic if the 
communications do not behave in specific ways. If one 
of the clients’ requests is not seen by the backup (i.e., 
the message is not delivered), the backup copy will be 
offset 1 from the primary. If the order of multiple cli-
ents’ requests is interchanged between the primary and 
backup servers, the backup server will have an errone-
ous record of numbers assigned to clients. Furthermore, 

at such time as the primary copy is declared to have 
failed, the backup will not know which client requests 
have been serviced and which have not. 

Communication attributes required to achieve the 
desired behavior in this server example include reliable 
delivery, ordered delivery, and atomic membership 
change. Reliable delivery assures that a message gets to 
all destinations (or none at all) and addresses the prob-
lem of the servers getting “out of synch.” Ordered deliv-
ery means that, within a defined group (specifying both 
members and messages), all messages defined as part of 
the group are received in the same order. This elimi-
nates the problem that can occur when the primary and 
replica see messages in a different order. Atomic mem-
bership change means that, within a defined group, any 
member entering or leaving the group (including fail-
ure) is seen to do so at the same point of the message 
stream among all group members. In our simple server 
example above, this allows a new replica to be estab-
lished with a proper understanding of how much “his-
tory” of previous primary activity must be supplied, and 
how much can be picked up from the current client 
request stream.

A convenient model for providing these communi-
cation attributes is “process group communications.” In 
this model, the attributes above are guaranteed, i.e., all 
messages are delivered to all members or none, all mes-
sages are delivered to all group members in the same 
order, and any members that leave or join the group 
are seen to do so at the same point within the group’s 
message stream. Early HiPer-D work used a toolkit 
called the Isis Distributed Toolkit9 that served as the 
foundation for process group communications. Initially 
developed at Cornell University, it was introduced as 	
a commercial product by a small company named Isis 	
Distributed Systems. Figure 4.  Paragon.

Shadow
copy

Next # = 11

I n
ee

d 
a 

nu
m

be
r

Client

Track
number
server

Next # = 11

10

Shadow
copy

Next # = 10

I n
ee

d 
a 

nu
m

be
r

Client

Track
number
server

Next # = 11

10

X

Normal Flawed

Figure 5.  Simple replicated track number service operations. 



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 493

DISTRIBUTED COMPUTER ARCHITECTURES

The cornerstone element of the HiPer-D commu-
nications chain was an application called the Radar 
Track Server (RTS). Its task was to service a large set 
of (potentially replicated) clients, providing them with 
track data at their desired rate and staleness. Fed from 
the stream of track data emerging from the primary 
radar sensor and its subsequent track filter, the RTS 
allows each consumer of the track information to spec-
ify desired update rates for the tracks and further spec-
ify latency or staleness associated with the delivery of 
track information. This was a significant, new architec-
tural strategy. In prior designs, track reports were either 
delivered en masse at the rate produced by the sensor 
or delivered on a periodic basis. (Usually, the same 
period was applied to all tracks and all users within the 
system, which meant a compromise of some sort.) These 
new server capabilities brought the ability to selectively 
apply varying performance characteristics (update rate 
and latency) based on each client’s critical evaluation of 
each individual track. 

The RTS matches a client’s requested rate for a track 
by filtering out unnecessary reports that occur during 
the target report intervals (Fig. 6). For instance, if the 
sensor provides an update every second but a client 
requests updates every 2 s, the RTS will send only 	

alternate updates. Of course, this is client- and track-
specific. In the previous example, should a track of more 
extreme interest appear, the client could direct the RTS 
to report that specific track at the full 1-s report rate. 
(There was also successful experimentation in use of 
the RTS to feed back consumer needs to the sensor to 
enable optimization of sensor resources.) If a consum-
er’s desired report rate is not an integral multiple of 
the sensor rate, the RTS maintains an “achieved report 
rate” and decides whether to send an update based on 
whether its delivery will make the achieved report rate 
closer or further away from the requested report rate.

One lesson learned very early in the HiPer-D effort 
was that, in network communications, the capacity to 
deliver messages benefits immensely from buffering and 
delivery of collections of messages rather than individ-
ual transmission of each message. Of course, this intro-
duces latency to the delivery of the messages that are 
forced to wait for others to fill up the buffer. The RTS 
uses a combination of buffering and timing mechanisms 
that allows the buffer to fill for a period not to exceed 
the client’s latency specification. Upon reaching a full 
buffer condition or the specified maximum latency, the 
buffer—even if it is only a single message—is then 
delivered to the client.
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Figure 6.  Radar track server.

The criticality of the RTS to 
the system and the anticipated load 
from the large number of clients led 
to its immediate identification as a 
prime candidate for applying repli-
cation to ensure reliability and scal-
ability to high load levels. All 
these factors made the RTS a rich 
subject for exploration of process 
group communications. Figure 7 
depicts the basic set of process group 
communications–based interactions 
among a set of cooperating servers 
providing track data to a set of cli-
ents. The process group communica-
tions delivery properties (combined 
with the particular server design) 
allowed the server function to be 
replicated for both improved capac-
ity and reliability. It also allowed 
clients to be replicated for either or 
both purposes. 

The first Paragon-centered dem-
onstration included the use of the 
process group communications par-
adigm and the RTS. Even though 
the internal Paragon communica-
tions mesh proved to be very capa-
ble, the system as a whole suffered 
from a severe bottleneck in mov-
ing track data into and out of the 	
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Paragon. The 16-node Paragon mesh was shown capa-
ble of 8 pairs of simultaneous communications streams 
of 1000 messages a second (with no buffering!). Com-
pared to the roughly 300 messages per second being 
achieved on desktops of that period, the combination of 
Mach messaging features and Paragon mesh was impres-
sive. However, as described earlier, the Paragon’s Ether-
net-based external connectivity was flawed. Apparently, 
in the niche of Paragon customers, Ethernet interface 
performance was not of substantial concern. Serving the 
“supercomputer market,” the Paragon was more attuned 
to high-performance parallel input devices (primarily 
disk) and high-end graphics engines that had HiPPi’s 
(High-Performance Parallel Interfaces). 

The migration from Paragon MPP hardware, with 
its mesh-based communications, to the network-based 
architecture of subsequent demonstrations proved to be 
smooth for process group communications. The elimina-
tion of poor-performance Paragon Ethernet input/output 
allowed the network-based architecture to achieve a 
realistic capacity of 600 tracks while meeting subsecond 
timelines for high-profile, time-critical functions. The 
RTS scalable design was able to accommodate 9 distinct 
clients (with different track interests and report charac-
teristics), some of them replicated, for a 14-client total.

Although the network architecture and process group 
communications were major successes, the Isis Distrib-
uted Toolkit mentioned earlier was encountering real-
world business practices. When Isis Distributed Systems 
was acquired by Stratus Computer, the event was ini-
tially hailed as a positive maturation of the technology 
into a solid product that could be even better marketed 
and supported. However, in 1997, Stratus pulled Isis 
from the market and terminated support. 

This was unsettling. Even though there was no need 
to panic (the existing Isis capabilities and licenses would 
continue to serve the immediate needs), the demise 

of Isis signaled the indifference of the commercial 
world to the type of distributed computing that Isis sup-
ported (and was found to be so useful). APL eventually 
employed another research product, “Spread,” devel-
oped by Dr. Yair Amir of The Johns Hopkins Uni-
versity.10 It provides much of the same process group 
communications support present in Isis, is still used by 
HiPer-D today, and has just recently been “productized” 
by Spread Concepts LLC, Bethesda, MD. The absence 
of any large market for commercial process group com-
munications, however, is an important reminder that, 
although systems that maximize the use of commercial 
products are pursued, the requirements of the Navy’s 
deployed combat systems and those of the commercial 
world will not always coincide.

In 1998, an interesting new capability in network 
switches, combined with some ingenuity, provided a 
new approach for developing fault-tolerant and scalable 
server applications. Recent advances in network switch 
technology allowed for fast, application-aware switching 
(OSI Level 4). With an ability to sense whether a server 
application was “alive,” a smart switch could intel-
ligently balance incoming client connections among 
multiple servers and route new connections away from 
failed ones. 

The RTS was chosen as a proving ground for this 
new technology. Because of its complexity, the RTS was 
the one remaining HiPer-D function that employed Isis. 
It also had the potential to benefit substantially (per-
formance-wise) by eliminating the burden of inter-RTS 
coordination. The inter-RTS coordination used features 
of Isis to provide a mechanism for exchange of state 
information (e.g., clients and their requested track char-
acteristics) between server replicas. This coordination 
added complexity to the RTS and the underlying com-
munications and consumed processing time, network 
bandwidth, and memory resources. 

The switch-based RTS continues to support the 
major functionality of the original RTS but does so with 
a much simpler design and smaller source code base. 
The guiding principle in the design of the new RTS was 
simplicity. Not only would this prove easier to imple-
ment, it would also provide fewer places to introduce 
latency, thus improving performance. Each RTS replica 
operates independently of all others. In fact, the serv-
ers do not share any state information among them 
and are oblivious to the existence of any other servers. 
The implementation of a design that does not require 
knowledge of other servers was a dramatic change from 
the original RTS design, which had required extensive 
coordination among the servers to ensure that all clients 
were being properly served, particularly under the aber-
rant conditions of a client or server failure. 

Clients of the switch-based RTS server set view it as 
a single virtual entity (Fig. 8). Each time a new client 
requests service from the “virtual RTS,” the Level 4 
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Figure 8.  Switch-based RTS block diagram.

switch selects one of the RTS servers to handle the 
request. The selection is currently based on a rotating 
assignment policy but could be based on other loading 
measures that are fed to the switch. Once a client 
is established with a particular server, that server han-
dles all its needs. In the event of server failure, a client-
side library function establishes connection with a new 
server and restores all the previously established ser-
vices. In addition to replication of the server, the Level 
4 switch itself can be replicated to provide redundant 
paths to the servers. This accommodates failure of the 
switch itself as well as severance of a network cable.

Figure 9a is a time plot of a typical end-to-end 
response for the combat system demonstration applica-
tion that uses the RTS. From sensor origination through 
track filtering and RTS delivery to the client, average 
latencies are approximately 80 ms. The 80-ms latency 
is a nominal level of performance that is intended for 
tracks and processing purposes where low latency is not 

(a) (b)

Figure 9.  Nominal performance with recovery (a) and performance with cable pull  
diagram (b).

of high concern. By tuning the pro-
cessing functions and clients, laten-
cies in the 20- to 30-ms range can 
be achieved but at the expense of 
capacity. This is a clear engineer-
ing trade-off situation, where the 
proper balance can be adjusted for a 
particular application (using com-
mand line parameters). 

A server software failure was 
forced in the center of the run 
shown in Fig. 9a, with little per-
ceptible impact. Figure 9b shows 
the spikes in maximum latency that 
occur as a result of physical dis-
connection of the server from the 
switch. Physical reconfigurations, 
however, take 2 to 4 s to complete. 

The switch-based RTS is a sig-
nificant simplification, reducing the 

source code from 12,000 to 5,000 lines; however, two 
of its performance attributes are of potential concern to 
clients:

1.	 Delivery of all data to a client is not strictly guar-
anteed. When a server fails, messages that transpire 
between the server failure and the client’s rees-
tablishment with a new server are not eligible for 	
delivery to that client. However, when the client 
reconnects, it will immediately receive the freshly 
arriving track updates. In the case of periodically 
reported radar data, this is sufficient for most needs.

2.	 Failures of the switch itself, the cabling, or server 
hardware incur a relatively large delay to recovery. 
This is a more serious potential problem for clients 
because the reestablishment of service takes multi-
ple seconds. Initially, much of this time was used to 
detect the fault. A “heartbeat” message was added to 
the client-server protocol to support subsecond fault 
detection, but the mechanisms in the Level 4 switch 
for dismantling the failed connection and establish-
ing a new one could not be accelerated without 
greater vendor assistance than has been available. 
This seemed to be a classic case of not representing 
a strong enough market to capture the vendor’s 
attention. Had this been a higher-profile effort, with 	
more potential sales on the line, it is our perception 
that this problem could have been addressed more 
satisfactorily.

The use of Level 4 network switch technology pro-
vides two major advantages. First, server implementation 
is much simpler. The new RTS architecture is similar in 
design to a replicated commercial Internet server. The 
complex server-to-server coordination protocols required 
to manage server and client entries exist, and failures 
have been eliminated. Second, the communications layer 
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used between the server and its clients is the same 
“socket” service used by major Internet components like 
browsers and Web servers. The use of standard commer-
cial communications greatly reduces the dependency of 
the software system on specific products. Therefore, port-
ing the software to new (both processor and network) 
environments will be straightforward, lowering the life-
cycle and hardware upgrade costs. 

CONCLUSION
Foremost among the accomplishments of the HiPer-D 

Program is the long list of proof-of-concept demonstra-
tions to the Aegis sponsor and design agent, Lockheed 
Martin: 

•	 The sufficiency of distributed computing for Aegis 
requirements

•	 The ability to replicate services for reliability and 
scalability

•	 The ability to employ heterogeneous computing 
environments (e.g., Sun and PC)

•	 The feasibility and advantages of a track data server
•	 A single track numbering scheme and server for 

allocating/maintaining track numbers
•	 The feasibility of standard network approaches like 

Ethernet, FDDI (Fiber-Distributed Data Interface) 
and ATM (asynchronous transfer mode) 

•	 Strategies for control of the complex distributed 
system and reconfiguration for reliability or scaling

•	 The value of real-time instrumentation

The relationship between these accomplishments 
and the production Aegis baselines is primarily indi-
rect. While it would be improper to claim “responsibil-
ity” for any of the advances that the Lockheed Martin 
engineering team has been able to infuse into ongoing 
Aegis developments, it is clear that the HiPer-D efforts 
have emboldened the program to advance rapidly. 	
Currently, three major Aegis baselines are under devel-
opment, each with increasingly higher reliance on dis-
tributed computing and technology. The most recent, 
referred to as Aegis Open Architecture, will fully 
capitalize on its distributed architecture, involving a 	
complete re-architecting of the system for a commer-
cial-off-the-shelf distributed computing infrastructure. 

In the specific area of communications, HiPer-D has 
continued to follow the advance of technology in its 

pursuit of services that can effectively meet Aegis tac-
tical requirements. Robust solutions with satisfyingly 
high levels of performance have been demonstrated. 
The problem remains, however, that the life of commer-
cial products is somewhat fragile. The bottom-line need 
for profit in commercial offerings constrains the set of 
research products that reach the commercial market and 
puts their longevity in question. The commercial world, 
particularly the computing industry, is quite dynamic. 
Significant products with apparently promising futures 
and industry support can arrive and disappear in a very 
short time. An interesting example of this is FDDI net-
work technology. Arriving in the early 1990s as an 
alternative to Ethernet that elevated capacity to the 
“next level” (100 Mbit), and garnering the support of 
virtually all computer manufacturers, it has all but dis-
appeared. However, it is this same fast-paced change 
that is enabling new system concepts and architectural 
approaches to be realized.

The challenge, well recognized by Lockheed Martin 
and integrated into its strategy for Aegis Open Archi-
tecture, is to build the complex application system 
on a structured foundation that isolates the applica-
tion from the dynamic computing and communica-
tion environment. 
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