
488	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

M.  E.  SCHMID  and  D.  G.  CROWE

A

Distributed Computer Architectures for Combat Systems

Mark E. Schmid and Douglas G. Crowe

dvances in computer hardware, networks, and support software have brought dis-
tributed computing to the forefront of today’s Navy combat systems. An effort known as
the High Performance Distributed Computing (HiPer-D) Program was established in 1991
to pursue advantageous applications of this technology to the Navy’s premier Aegis cruiser
and destroyer combatants. This article provides an overview of the program accomplish-
ments and presents a brief discussion of some of the intercomputer communications issues
that were paramount to the program’s success. Most significant was the credibility built
for distributed computing within the Aegis community. This was accomplished through
many demonstrations of combat system functions that exhibited capacity, timeliness, and
reliability attributes necessary to meet stringent Aegis system requirements.

INTRODUCTION
In the 1950s, the Navy embarked on its course

of developing standardized computers for operational
use. The AN/UYK-7, AN/UYK-20, AN/UYK-43, and
AN/UYK-44 are still the primary combat system com-
puters deployed today (Fig. 1). They function at the
heart of the Navy’s premier surface ships, merging infor-
mation from sensor systems, providing displays and
warnings to the crew, and controlling the use of weap-
ons. These computers are wholly Navy developed. The
processing units, interfaces, operating system, and sup-
port software (e.g., compilers) were all built by the
Navy and its contractors. The AN/UYK-43 is the
last in the line of Navy standard computers (oddly
enough going into production after its smaller sibling,
the AN/UYK-44). Described in 1981 as “the new large
scale computer . . . expected to be in service for the next
25 years,”1 it will actually see a service life beyond that.

The Navy Standard Computer Program was success-
ful at reducing logistics, maintenance, and a host of
other costs related to the proliferation of computer vari-
ants; however, in the 1980s, the Navy faced a substan-
tial increase in the cost of developing its own machines.
Pushed by leaps in the commercial computing industry,
everything associated with Navy Standard Computer
development—from instruction set design to program-
ming language capabilities—was becoming more com-
plex and more expensive.

By 1990, it was clear that a fundamental shift was
occurring. The shrinking cost and dramatically growing
performance of computers were diminishing the signifi-
cance of the computer itself. The transformation of cen-
tralized mainframe computing to more local and respon-
sive minicomputers was bringing about the proliferation
of even lower-cost desktop computers. Microprocessors

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 489

DISTRIBUTED COMPUTER ARCHITECTURES

had indeed achieved the performance of their main-
frame predecessors just 10 years earlier, but this was only
half of the shift! Spurred by new processing capabilities,
system designers were freed to tackle increasingly com-
plex problems with correspondingly more intricate solu-
tions. As a new generation of complex software took
shape, the balance of computer hardware and software
investments in Navy systems cascaded rapidly to the
software side.

Harnessing the collective power of inexpensive main-
stream commercial computers for large, complex systems
was clearly becoming prominent in Navy combat system
design. The highly successful demonstration in 1990 of
the Cooperative Engagement Capability (CEC) proto-
type, built with over 20 Motorola commercial micro-
processors, was a milestone in distributed computing
for Navy combat system applications. Developments
in both Aegis and non-Aegis combat systems focused
thereafter on applying the capabilities of distributed
computing to virtually all of the Navy’s prototype efforts.
Distributed computing offered the potential for provid-
ing substantially more powerful and extensible comput-
ing, the ability to replicate critical functions for reli-
ability, and the simplification of software development
and testing through the isolation of functions in their
own computing environments. Indeed, when the Navy’s
Aegis Baseline 7 and Ship Self-Defense System (SSDS)
Mk 2 Mod 1 are delivered (expected in 2002), a com-
mercial distributed computing infrastructure will have
been established for all new builds and upgrades of the
Navy’s primary surface combatants (carriers, cruisers,
and destroyers).

Distributed computing for combat systems, however,
is not without its difficulties. Requirements for systems
such as Aegis are stringent (response times, capacities,
and reliability) and voluminous (dozens of independent
sensor systems, weapon systems, operator interfaces, and
networks to be managed), and the prior large body of
design knowledge has been focused on Navy Standard

Computer implementation. (As an example, the Aegis
Combat System had a small number of AN/UYK-7 [later
AN/UYK-43] computers. Each represented an Aegis
“element” such as the Weapon Control System, Radar
Control System, or Command and Decision System.
Within an element, interactions among subfunctions
were carried out primarily via shared memory segments.
These do not map well to a distributed computing envi-
ronment because the distributed nodes do not share any
physical memory.)

Among the most fundamental issues facing this
new generation of distributed computing design was
the pervasive need for “track” data to be available
“everywhere”—at all the computing nodes. Tracks com-
prise the combat system’s best assessment of the loca-
tions, movements, and characteristics of the objects 	
visible to its sensors. They are the focal point of both
automated and manual decision processes as well as
the subject of interactions with other members of the
battle group’s networks. Ship sensors provide new infor-
mation on each track periodically, sometimes at high
rate. While the reported information is relatively small
(e.g., a new position and velocity), the frequency of the
reports and the large number of objects can combine to
yield a demanding load. The number of track data con-
sumers can easily amount to dozens and place the over-
all system communication burden in the region of 50
to 100,000 messages per second. (Figure 2 shows a scan
with many tracks feeding messages forward.)

Although commercial machines and networks have
advanced admirably in their ability to communicate
data across networks, the combat system applications
have some unusual characteristics that make their needs
substantially different from the commercial mainstream.
The track information that comprises the bulk of the
combat system communications consists of many small
(a few hundred bytes) messages. These messages can be
independently significant to the downstream consum-
ers, with varying requirements to arrive “quickly” at par-
ticular destinations. Commercial systems are not tuned
to handle large numbers of small messages; they focus on
handling the needs of the mass market, which are typi-
cally less frequent and larger sets of data.

HIGH PERFORMANCE DISTRIBUTED
COMPUTING

The HiPer-D Program originated as a joint Defense
Advanced Research Projects Agency (DARPA)/Aegis
(PMS-400) endeavor, with three participating techni-
cal organizations: APL, Naval Surface Warfare Center
Dahlgren Division (NSWCDD), and Lockheed Martin
Corporation. It was inspired by a future shipboard com-
puting vision2 and the potential for synergy between
it and a wave of emerging DARPA research products
in distributed computing. The program commenced in

Figure 1.  Navy family computers.

490	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

M.  E.  SCHMID  and  D.  G.  CROWE

June 1991 and has been an ongoing research and devel-
opment effort designed to reduce risk due to the intro-
duction of distributed computing technologies, meth-
ods, and tools into the Aegis Weapon System.

Many of the significant developments of HiPer-D
have been showcased in demonstrations. Since 1994,
when the first major HiPer-D demonstration was held,
there have been seven demonstrations that provided
exposure of concepts and techniques to Aegis and other
interested communities. The first HiPer-D integrated
demonstration (Fig. 3) focused primarily on the poten-
tial for applying massively parallel processor (MPP)
technology to combat system applications. It brought
together a collection of over 50 programs running on
34 processors (including 16 processors on the Intel
Paragon MPP) as a cooperative effort of APL and
NSWCDD. The functionality included a complete sen-
sor-to-weapon path through the Aegis Weapon System,
with doctrine-controlled automatic and semi-automatic
system responses and an operator interface that pro-
vided essential tactical displays and decision interfaces.
The major anomaly relative to the actual Aegis system
was the use of core elements from CEC (rather than
Aegis) to provide the primary sensor integration and
tracking.

By many measures, this first demonstration was a
significant success. Major portions of weapon system
functionality had been repartitioned to execute on a
large collection of processors, with many functions con-
structed to take advantage of replication for reliability
and scaling. The Paragon MPP, however, suffered severe
performance problems connecting with computers out-
side its MPP communication mesh. Key external net-
work functions were on the order of 20 times slower
than on Sun workstations of the same era. The resulting 	

impact on track capacity (less than 100) drove later
exploration away from the MPP approach.

The next-generation demonstration had two signifi-
cant differences: (1) it focused on the use of networked
workstations to achieve the desired computing capacity,
and (2) it strove for a stronger grounding in the existing
Aegis requirements set. The primary impact of these dif-
ferences was to switch from a CEC-based ship tracking
approach to an Aegis-derived tracking approach. Addi-
tional fidelity was added to the doctrine processing, and

Figure 2.  Information originates from sensor views of each object. Each report is small, but the quantity can be very large (because
of high sensor report rates and potentially large numbers of objects). The reports flow throughout to be integrated and modified, and to
enable rapid reaction to change.

Figure 3.  First HiPer-D demonstration physical/block diagram.

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Network

Distributed system
Track information

Ship sensors

0100110011110111010000101
10011001111011101000010110
0100110011110111010000101
10011001111011101000010110
0100110011110111010000101
10011001111011101000010110
0100110011110111010000101
10011001111011101000010110
0100110011110111010000101
10011001111011101000010110
0100110011110111010000101
10011001111011101000010110
0100110011110111010000101
10011001111011101000010110
0100110011110111010000101
10011001111011101000010110
0100110011110111010000101
10011001111011101000010110

Ta
ct

ic
al

 d
is

pl
ay

s

Filter and correlation

Paragon MPP

Control and instrumentation

E
th

er
ne

t

D
oc

tr
in

e
an

d
ta

ct
ic

al
si

m
ul

at
io

n

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 491

DISTRIBUTED COMPUTER ARCHITECTURES

the rapid self-defense response capability referred to as
“auto-special” was added to provide a context in which
to evaluate stringent end-to-end timing requirements.
The 1995 HiPer-D demonstration3–5 represented a sig-
nificant milestone in assessing the feasibility of moving
commercial distributed computing capabilities into the
Aegis mission-critical systems’ domain. Track capacity
was improved an order of magnitude over the original
demonstration; a variety of replication techniques pro-
viding fault tolerance and scalability were exhibited;
and critical Aegis end-to-end timelines were met.

Subsequent demonstrations in 1996 to 1998 built
upon the success of the 1995 demonstration, adding
increased functionality; extending system capacity;
exploring new network technologies, processors, and
operating systems; and providing an environment in
which to examine design approaches that better matched
the new distributed paradigm. Indeed, a fairly complete
software architecture named “Amalthea”4 was created
to explore the feasibility of application-transparent scal-
able, fault-tolerant distributed systems. It was inspired
by the Delta-4 architecture done in the late 1980s by
ESPRIT (European Strategic Programme for Research
and Development in Information Technology)5 and was
used to construct a set of experimental, reliable appli-
cations. In addition to architectural exploration, the
application domain itself was addressed. Even though
the top-level system specification continued to convey
a valid view of system performance requirements, the
decomposition of those top-level requirements into the
Aegis element program performance specifications had
been crafted 20 years earlier with a computing capacity
and architecture vastly different from the current dis-
tributed environment.

The command and decision element, from which
much of the HiPer-D functionality originated, seemed
like a particularly fertile area for significant change. An
example of this was the tendency of requirements to
be specified in terms of a periodic review. In the case
of doctrine-based review for automatic actions, the real
need was to ensure that a track qualifying for action was
identified within a certain amount of time, not neces-
sarily that it be done periodically. In the HiPer-D archi-
tecture, it is simple to establish a client (receiver of
track data) that will examine track reports for the doc-
trine-specified action upon data arrival. From a respon-
siveness standpoint, this far exceeds the performance
of the periodic review specified in the element require-
ments and yet is a very straightforward approach for
the high-capacity and independent computing environ-
ment of the distributed system.

The 1999 and 2000 demonstrations6,7 continued the
pattern, bringing in new functionality and a significant
new paradigm for scalable fault-tolerant servers that 	
use new network switch technology (see next section).
This phase of development also addressed a need for

instrumenting the distributed system which had been
identified early in the program but met with a less-than-
satisfactory solution.

Distributed systems apply the concept of “work in
parallel,” where each working unit has its own indepen-
dent resources (processor and memory). Although this
eases the contention between functions running in par-
allel, it elevates the complexity of test and analysis to
a new level. Collection and integration of the informa-
tion required to verify performance or diagnose prob-
lems require sophisticated data gathering daemons to be
resident on each processor, and analysis capabilities that
can combine the individual processor-extracted data
streams must be created. Early in the HiPer-D effort, a
German research product called “JEWEL”8 was found
to provide such capabilities with displays that could be
viewed in real time. The real-time monitoring/analysis
capability of HiPer-D was not only one of its most prom-
inent demonstration features, but some would claim also
one of the most significant reasons that the annual inte-
gration of the complex systems was consistently com-
pleted on time. JEWEL, however, never achieved status
as a supported commercial product and was somewhat
cumbersome from the perspective of large system devel-
opment. For example, it had an inflexible interface for
reporting data, allowing only a limited number of inte-
gers to be reported on each call. Data other than inte-
gers could be reported, but only by convention with the
ultimate data interpreter (graphing program).

Beginning in 1999, a real-time instrumentation tool
kit called Java Enhanced Distributed System Instru-
mentation (JEDSI) was developed and employed as a
replacement for JEWEL. It followed the JEWEL model
of providing very low overhead extraction of data from
the processes of interest but eliminated the interface
issues that made it awkward for large-scale systems. It
also capitalized on the use of commercially available
Java-based graphics packages and communications sup-
port to provide an extensive library of real-time analysis
and performance visualization tools.

Current and planned initiatives in HiPer-D are
moving toward multi-unit operations. Functionality for
integrating data from Navy tactical data links has been
added to the system, and the integration of real CEC
components is planned for late 2001. Such a capability
will provide the necessary foundation to extend the
exploration of distributed capabilities beyond the indi-
vidual unit.

EVOLUTION OF COMMUNICATIONS
IN HiPer-D

The first phase of HiPer-D, culminating in the
system shown in Fig. 3, had a target computing environ-
ment that consisted of an MPP as the primary comput-
ing resource, surrounded by networked computers that 	

492	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

M.  E.  SCHMID  and  D.  G.  CROWE

modeled the sensor inputs and workstations that pro-
vided graphical operator interfaces. The MPP was an
Intel Paragon (Fig. 4). It had a novel internal inter-
connect and an operating system (Mach) that had mes-
sage passing as an integral function. Mach was the first
widely used (and, for a brief period, commercially sup-
ported) operating system that was built as a “distrib-
uted operating system”—intended from the outset to
efficiently support the communication and coordina-
tion requirements of distributed computing.

Despite these impressive capabilities, an important
principle had been established within the DARPA com-
munity that rendered even these capabilities incom-
plete for the objective of replication for fault tolerance
and scalability. Consider the computing arrangement in 	
Fig. 5. A simple service—the allocation of track num-
bers to clients who need to uniquely label tracks—is rep-
licated for reliability. The replica listens to the requests
and performs the same simple assignment algorithm, but
does not reply to the requester as the primary server
does. This simple arrangement can be problematic if the
communications do not behave in specific ways. If one
of the clients’ requests is not seen by the backup (i.e.,
the message is not delivered), the backup copy will be
offset 1 from the primary. If the order of multiple cli-
ents’ requests is interchanged between the primary and
backup servers, the backup server will have an errone-
ous record of numbers assigned to clients. Furthermore,

at such time as the primary copy is declared to have
failed, the backup will not know which client requests
have been serviced and which have not.

Communication attributes required to achieve the
desired behavior in this server example include reliable
delivery, ordered delivery, and atomic membership
change. Reliable delivery assures that a message gets to
all destinations (or none at all) and addresses the prob-
lem of the servers getting “out of synch.” Ordered deliv-
ery means that, within a defined group (specifying both
members and messages), all messages defined as part of
the group are received in the same order. This elimi-
nates the problem that can occur when the primary and
replica see messages in a different order. Atomic mem-
bership change means that, within a defined group, any
member entering or leaving the group (including fail-
ure) is seen to do so at the same point of the message
stream among all group members. In our simple server
example above, this allows a new replica to be estab-
lished with a proper understanding of how much “his-
tory” of previous primary activity must be supplied, and
how much can be picked up from the current client
request stream.

A convenient model for providing these communi-
cation attributes is “process group communications.” In
this model, the attributes above are guaranteed, i.e., all
messages are delivered to all members or none, all mes-
sages are delivered to all group members in the same
order, and any members that leave or join the group
are seen to do so at the same point within the group’s
message stream. Early HiPer-D work used a toolkit
called the Isis Distributed Toolkit9 that served as the
foundation for process group communications. Initially
developed at Cornell University, it was introduced as 	
a commercial product by a small company named Isis 	
Distributed Systems. Figure 4.  Paragon.

Shadow
copy

Next # = 11

I n
ee

d
a

nu
m

be
r

Client

Track
number
server

Next # = 11

10

Shadow
copy

Next # = 10

I n
ee

d
a

nu
m

be
r

Client

Track
number
server

Next # = 11

10

X

Normal Flawed

Figure 5.  Simple replicated track number service operations.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 493

DISTRIBUTED COMPUTER ARCHITECTURES

The cornerstone element of the HiPer-D commu-
nications chain was an application called the Radar
Track Server (RTS). Its task was to service a large set
of (potentially replicated) clients, providing them with
track data at their desired rate and staleness. Fed from
the stream of track data emerging from the primary
radar sensor and its subsequent track filter, the RTS
allows each consumer of the track information to spec-
ify desired update rates for the tracks and further spec-
ify latency or staleness associated with the delivery of
track information. This was a significant, new architec-
tural strategy. In prior designs, track reports were either
delivered en masse at the rate produced by the sensor
or delivered on a periodic basis. (Usually, the same
period was applied to all tracks and all users within the
system, which meant a compromise of some sort.) These
new server capabilities brought the ability to selectively
apply varying performance characteristics (update rate
and latency) based on each client’s critical evaluation of
each individual track.

The RTS matches a client’s requested rate for a track
by filtering out unnecessary reports that occur during
the target report intervals (Fig. 6). For instance, if the
sensor provides an update every second but a client
requests updates every 2 s, the RTS will send only 	

alternate updates. Of course, this is client- and track-
specific. In the previous example, should a track of more
extreme interest appear, the client could direct the RTS
to report that specific track at the full 1-s report rate.
(There was also successful experimentation in use of
the RTS to feed back consumer needs to the sensor to
enable optimization of sensor resources.) If a consum-
er’s desired report rate is not an integral multiple of
the sensor rate, the RTS maintains an “achieved report
rate” and decides whether to send an update based on
whether its delivery will make the achieved report rate
closer or further away from the requested report rate.

One lesson learned very early in the HiPer-D effort
was that, in network communications, the capacity to
deliver messages benefits immensely from buffering and
delivery of collections of messages rather than individ-
ual transmission of each message. Of course, this intro-
duces latency to the delivery of the messages that are
forced to wait for others to fill up the buffer. The RTS
uses a combination of buffering and timing mechanisms
that allows the buffer to fill for a period not to exceed
the client’s latency specification. Upon reaching a full
buffer condition or the specified maximum latency, the
buffer—even if it is only a single message—is then
delivered to the client.

1–100 4 s

4 s
2 s

4 s

100 ms

100 ms
50 ms

200 ms

A

B

C 1–100

1–50
50–100

Track set Rate LatencyClient

Filter out
unneeded

reports

Track
reports

Client
buffers

Track
report
to Client B

Track
report
to Client A

Track
report
to Client C

Drive
time out
(max. wait
time)
on client
buffer

Figure 6.  Radar track server.

The criticality of the RTS to
the system and the anticipated load
from the large number of clients led
to its immediate identification as a
prime candidate for applying repli-
cation to ensure reliability and scal-
ability to high load levels. All
these factors made the RTS a rich
subject for exploration of process
group communications. Figure 7
depicts the basic set of process group
communications–based interactions
among a set of cooperating servers
providing track data to a set of cli-
ents. The process group communica-
tions delivery properties (combined
with the particular server design)
allowed the server function to be
replicated for both improved capac-
ity and reliability. It also allowed
clients to be replicated for either or
both purposes.

The first Paragon-centered dem-
onstration included the use of the
process group communications par-
adigm and the RTS. Even though
the internal Paragon communica-
tions mesh proved to be very capa-
ble, the system as a whole suffered
from a severe bottleneck in mov-
ing track data into and out of the 	

494	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

M.  E.  SCHMID  and  D.  G.  CROWE

Paragon. The 16-node Paragon mesh was shown capa-
ble of 8 pairs of simultaneous communications streams
of 1000 messages a second (with no buffering!). Com-
pared to the roughly 300 messages per second being
achieved on desktops of that period, the combination of
Mach messaging features and Paragon mesh was impres-
sive. However, as described earlier, the Paragon’s Ether-
net-based external connectivity was flawed. Apparently,
in the niche of Paragon customers, Ethernet interface
performance was not of substantial concern. Serving the
“supercomputer market,” the Paragon was more attuned
to high-performance parallel input devices (primarily
disk) and high-end graphics engines that had HiPPi’s
(High-Performance Parallel Interfaces).

The migration from Paragon MPP hardware, with
its mesh-based communications, to the network-based
architecture of subsequent demonstrations proved to be
smooth for process group communications. The elimina-
tion of poor-performance Paragon Ethernet input/output
allowed the network-based architecture to achieve a
realistic capacity of 600 tracks while meeting subsecond
timelines for high-profile, time-critical functions. The
RTS scalable design was able to accommodate 9 distinct
clients (with different track interests and report charac-
teristics), some of them replicated, for a 14-client total.

Although the network architecture and process group
communications were major successes, the Isis Distrib-
uted Toolkit mentioned earlier was encountering real-
world business practices. When Isis Distributed Systems
was acquired by Stratus Computer, the event was ini-
tially hailed as a positive maturation of the technology
into a solid product that could be even better marketed
and supported. However, in 1997, Stratus pulled Isis
from the market and terminated support.

This was unsettling. Even though there was no need
to panic (the existing Isis capabilities and licenses would
continue to serve the immediate needs), the demise

of Isis signaled the indifference of the commercial
world to the type of distributed computing that Isis sup-
ported (and was found to be so useful). APL eventually
employed another research product, “Spread,” devel-
oped by Dr. Yair Amir of The Johns Hopkins Uni-
versity.10 It provides much of the same process group
communications support present in Isis, is still used by
HiPer-D today, and has just recently been “productized”
by Spread Concepts LLC, Bethesda, MD. The absence
of any large market for commercial process group com-
munications, however, is an important reminder that,
although systems that maximize the use of commercial
products are pursued, the requirements of the Navy’s
deployed combat systems and those of the commercial
world will not always coincide.

In 1998, an interesting new capability in network
switches, combined with some ingenuity, provided a
new approach for developing fault-tolerant and scalable
server applications. Recent advances in network switch
technology allowed for fast, application-aware switching
(OSI Level 4). With an ability to sense whether a server
application was “alive,” a smart switch could intel-
ligently balance incoming client connections among
multiple servers and route new connections away from
failed ones.

The RTS was chosen as a proving ground for this
new technology. Because of its complexity, the RTS was
the one remaining HiPer-D function that employed Isis.
It also had the potential to benefit substantially (per-
formance-wise) by eliminating the burden of inter-RTS
coordination. The inter-RTS coordination used features
of Isis to provide a mechanism for exchange of state
information (e.g., clients and their requested track char-
acteristics) between server replicas. This coordination
added complexity to the RTS and the underlying com-
munications and consumed processing time, network
bandwidth, and memory resources.

The switch-based RTS continues to support the
major functionality of the original RTS but does so with
a much simpler design and smaller source code base.
The guiding principle in the design of the new RTS was
simplicity. Not only would this prove easier to imple-
ment, it would also provide fewer places to introduce
latency, thus improving performance. Each RTS replica
operates independently of all others. In fact, the serv-
ers do not share any state information among them
and are oblivious to the existence of any other servers.
The implementation of a design that does not require
knowledge of other servers was a dramatic change from
the original RTS design, which had required extensive
coordination among the servers to ensure that all clients
were being properly served, particularly under the aber-
rant conditions of a client or server failure.

Clients of the switch-based RTS server set view it as
a single virtual entity (Fig. 8). Each time a new client
requests service from the “virtual RTS,” the Level 4

Replicated
client

Client

Replicated
client

Server

Server

Server

Server
coordination

group

Client
service
groups

Tracking service sign-on group

Figure 7.  Basic RTS operations (different groups and
message content).

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 495

DISTRIBUTED COMPUTER ARCHITECTURES

RTS 1

RTS 3

RTS 2 Level 4
switch

A

B

C

D

Virtual
server

complex
Clients

Tr
ac

k
in

fo
rm

at
io

n

Figure 8.  Switch-based RTS block diagram.

switch selects one of the RTS servers to handle the
request. The selection is currently based on a rotating
assignment policy but could be based on other loading
measures that are fed to the switch. Once a client
is established with a particular server, that server han-
dles all its needs. In the event of server failure, a client-
side library function establishes connection with a new
server and restores all the previously established ser-
vices. In addition to replication of the server, the Level
4 switch itself can be replicated to provide redundant
paths to the servers. This accommodates failure of the
switch itself as well as severance of a network cable.

Figure 9a is a time plot of a typical end-to-end
response for the combat system demonstration applica-
tion that uses the RTS. From sensor origination through
track filtering and RTS delivery to the client, average
latencies are approximately 80 ms. The 80-ms latency
is a nominal level of performance that is intended for
tracks and processing purposes where low latency is not

(a) (b)

Figure 9.  Nominal performance with recovery (a) and performance with cable pull
diagram (b).

of high concern. By tuning the pro-
cessing functions and clients, laten-
cies in the 20- to 30-ms range can
be achieved but at the expense of
capacity. This is a clear engineer-
ing trade-off situation, where the
proper balance can be adjusted for a
particular application (using com-
mand line parameters).

A server software failure was
forced in the center of the run
shown in Fig. 9a, with little per-
ceptible impact. Figure 9b shows
the spikes in maximum latency that
occur as a result of physical dis-
connection of the server from the
switch. Physical reconfigurations,
however, take 2 to 4 s to complete.

The switch-based RTS is a sig-
nificant simplification, reducing the

source code from 12,000 to 5,000 lines; however, two
of its performance attributes are of potential concern to
clients:

1.	 Delivery of all data to a client is not strictly guar-
anteed. When a server fails, messages that transpire
between the server failure and the client’s rees-
tablishment with a new server are not eligible for 	
delivery to that client. However, when the client
reconnects, it will immediately receive the freshly
arriving track updates. In the case of periodically
reported radar data, this is sufficient for most needs.

2.	 Failures of the switch itself, the cabling, or server
hardware incur a relatively large delay to recovery.
This is a more serious potential problem for clients
because the reestablishment of service takes multi-
ple seconds. Initially, much of this time was used to
detect the fault. A “heartbeat” message was added to
the client-server protocol to support subsecond fault
detection, but the mechanisms in the Level 4 switch
for dismantling the failed connection and establish-
ing a new one could not be accelerated without
greater vendor assistance than has been available.
This seemed to be a classic case of not representing
a strong enough market to capture the vendor’s
attention. Had this been a higher-profile effort, with 	
more potential sales on the line, it is our perception
that this problem could have been addressed more
satisfactorily.

The use of Level 4 network switch technology pro-
vides two major advantages. First, server implementation
is much simpler. The new RTS architecture is similar in
design to a replicated commercial Internet server. The
complex server-to-server coordination protocols required
to manage server and client entries exist, and failures
have been eliminated. Second, the communications layer

496	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

M.  E.  SCHMID  and  D.  G.  CROWE

used between the server and its clients is the same
“socket” service used by major Internet components like
browsers and Web servers. The use of standard commer-
cial communications greatly reduces the dependency of
the software system on specific products. Therefore, port-
ing the software to new (both processor and network)
environments will be straightforward, lowering the life-
cycle and hardware upgrade costs.

CONCLUSION
Foremost among the accomplishments of the HiPer-D

Program is the long list of proof-of-concept demonstra-
tions to the Aegis sponsor and design agent, Lockheed
Martin:

•	 The sufficiency of distributed computing for Aegis
requirements

•	 The ability to replicate services for reliability and
scalability

•	 The ability to employ heterogeneous computing
environments (e.g., Sun and PC)

•	 The feasibility and advantages of a track data server
•	 A single track numbering scheme and server for

allocating/maintaining track numbers
•	 The feasibility of standard network approaches like

Ethernet, FDDI (Fiber-Distributed Data Interface)
and ATM (asynchronous transfer mode)

•	 Strategies for control of the complex distributed
system and reconfiguration for reliability or scaling

•	 The value of real-time instrumentation

The relationship between these accomplishments
and the production Aegis baselines is primarily indi-
rect. While it would be improper to claim “responsibil-
ity” for any of the advances that the Lockheed Martin
engineering team has been able to infuse into ongoing
Aegis developments, it is clear that the HiPer-D efforts
have emboldened the program to advance rapidly. 	
Currently, three major Aegis baselines are under devel-
opment, each with increasingly higher reliance on dis-
tributed computing and technology. The most recent,
referred to as Aegis Open Architecture, will fully
capitalize on its distributed architecture, involving a 	
complete re-architecting of the system for a commer-
cial-off-the-shelf distributed computing infrastructure.

In the specific area of communications, HiPer-D has
continued to follow the advance of technology in its

pursuit of services that can effectively meet Aegis tac-
tical requirements. Robust solutions with satisfyingly
high levels of performance have been demonstrated.
The problem remains, however, that the life of commer-
cial products is somewhat fragile. The bottom-line need
for profit in commercial offerings constrains the set of
research products that reach the commercial market and
puts their longevity in question. The commercial world,
particularly the computing industry, is quite dynamic.
Significant products with apparently promising futures
and industry support can arrive and disappear in a very
short time. An interesting example of this is FDDI net-
work technology. Arriving in the early 1990s as an
alternative to Ethernet that elevated capacity to the
“next level” (100 Mbit), and garnering the support of
virtually all computer manufacturers, it has all but dis-
appeared. However, it is this same fast-paced change
that is enabling new system concepts and architectural
approaches to be realized.

The challenge, well recognized by Lockheed Martin
and integrated into its strategy for Aegis Open Archi-
tecture, is to build the complex application system
on a structured foundation that isolates the applica-
tion from the dynamic computing and communica-
tion environment.

REFERENCES
  1Wander, K. R., and Sleight, T. P., “Definition of New Navy Large

Scale Computer,” in JHU/APL Developments in Science and Technol-
ogy, DST-9, Laurel, MD (1981).

  2Zitzman, L. H., Falatko, S. M., and Papach, J. L., “Combat System
Architecture Concepts for Future Combat Systems,” Naval Eng. J.
102(3), 43–62 (May 1990).

  3HiPer-D Testbed 1 Experiment Demonstration, F2D-95-3-27, JHU/APL,
Laurel, MD (16 May 1995).

  4Amalthea Software Architecture, F2D-93-3-064, JHU/APL, Laurel, MD
(10 Nov 1993).

  5Powell, D. (ed.), Delta-4: A Generic Architecture for Dependable Distrib-
uted Computing, ESPRIT Project 818/2252, Springer-Verlag (1991).

  6High Performance Distributed Computing Program 1999 Demonstration
Report, ADS-01-007, JHU/APL, Laurel, MD (Mar 2001).

  7High Performance Distributed Computing Program (HiPer-D) 2000 Dem-
onstration Report, ADS-01-020, JHU/APL, Laurel, MD (Feb 2001).

  8Gergeleit, M., Klemm, L., et al., Jewel CDRS (Data Collection and
Reduction System) Architectural Design, Arbeitspapiere der GMD, No.
707 (Nov 1992).

  9Birman, K. P., and Van Renesse, R. (eds.), Reliable Distributed Comput-
ing with the Isis Toolkit, IEEE Computer Society Press, Los Alamitos,
CA (Jun 1994).

10Stanton, J. R., A Users Guide to Spread Version 0,1, Center for Net-
working and Distributed Systems, The Johns Hopkins University, Bal-
timore, MD (Nov 2000).

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 497

DISTRIBUTED COMPUTER ARCHITECTURES

THE AUTHORS

MARK E. SCHMID received a B.S. from the University of Rochester in 1978 and
an M.S. from the University of Maryland in 1984, both in electrical engineering.
He joined APL in 1978 in ADSD’s Advanced Systems Development Group, where
he is currently an Assistant Group Supervisor. Mr. Schmid’s technical pursuits have
focused on the application of emergent computer hardware and software technol-
ogy to the complex environment of surface Navy real-time systems. In addition to
the HiPer-D effort, his work includes pursuit of solutions to Naval and Joint Force
system interoperability problems. His e-mail address is mark.schmid@jhuapl.edu.

DOUGLAS G. CROWE is a member of the APL Senior Professional Staff and
Supervisor of the A2D-003 Section in ADSD’s Advanced Systems Development
Group. He has B.S. degrees in computer science and electrical engineering, both
from The Pennsylvania State University, as well as an M.A.S. from The Johns Hop-
kins University. Mr. Crowe has been the lead for groups working on the develop-
ment of automatic test equipment for airborne avionics, training simulators, and air
defense C3I systems. He joined APL in 1996 and is currently the lead for APL’s
HiPer-D efforts. His e-mail address is douglas.crowe@jhuapl.edu.

	Distributed Computer Architectures for Combat Systems
	Mark E. Schmid and Douglas G. Crowe
	INTRODUCTION
	HIGH PERFORMANCE DISTRIBUTED COMPUTING
	EVOLUTION OF COMMUNICATIONS IN HiPer-D
	CONCLUSION
	REFERENCES
	THE AUTHORS
	FIGURES
	Figure 1. Navy family computers.
	Figure 2. Information originates from sensor views of each object.
	Figure 3. First HiPer-D demonstration physical/block diagram.
	Figure 4. Paragon.
	Figure 5. Simple replicated track number service operations.
	Figure 6. Radar track server.
	Figure 7. Basic RTS operations.
	Figure 8. Switch-based RTS block diagram.
	Figure 9. Nominal performance with recovery and performance with cable pull diagram.

