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A

Approaches to Multisensor Data Fusion

Joseph S. J. Peri

s part of an Office of Naval Research–funded science and technology develop-
ment task, APL is developing an identification (ID) sensor data fusion testbed. The test-
bed is driven by an APL-modified version of the Joint Composite Tracking Network pilot 
benchmark called the Composite Combat ID Analysis Testbed (CAT). The CAT pro-
vides accurate tracking for realistic scenarios involving multiple targets and netted radar 
and ID sensors. Track state outputs from the CAT include feature information from elec-
tronic support measures and noncooperating target recognition sensors. These data are 
combined to improve the confidence of aircraft-type declarations using both Bayesian 
and evidential reasoning–based algorithms. We use measure theoretic methods to describe 
the relationship between Bayesian theory and the Dempster-Shafer evidential reasoning 
theory.

BACKGROUND
Positive identification (ID) of targets as friend, foe, 

or neutral is recognized as a major operational problem 
for military forces. Friendly ID is assisted by various 
resources, such as identification, friend or foe (IFF) 
Mode 4 or operational procedures such as return to 
force corridors, air tasking orders, or unencrypted IFF 
modes. These techniques are clearly inadequate for neu-
tral platforms, hostile platforms using deceptive tactics, 
or friendly aircraft operating with damaged equipment 
or forced to operate outside normal or agreed upon oper-
ating procedures. To support the development of more 
robust ID capabilities, the Office of Naval Research 
is funding a science and technology task, Composite 
Combat Identification (CCID), to develop improve-
ments in techniques and algorithms.

The goal of the CCID project is to develop a 
method for networking multiple sensors and integrating 	

observational data to provide target classification and 
ID. Target classification addresses the issue of the type 
of target observed; for example, is the target a MiG, 
cruise missile, or airbus? Target ID addresses the issue 
of deciding whether the target is friendly, hostile, or 
neutral. Positive target ID supports the engagement 
decision in ship self-defense. The project will demon-
strate the CCID concept by using the existing Coop-
erative Engagement Capability (CEC) to net various 	
sensors and to provide composite tracks together with 
composite ID.

As part of this task, APL is teamed with several 
other organizations, including the Naval Research Lab-
oratory (NRL) and General Dynamics Electronics Sys-
tems, to demonstrate the effectiveness of integrating 
electronic warfare and other ID sensors and sources 
into a high-capacity, real-time, netted sensor system. 
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The demonstration will initially be performed using 
non-real-time modeling and simulation. This will be 
followed by real-time demonstrations driven by high-
fidelity models of sensors. Finally, a real-time dem-
onstration using live sensors and sources will be per-
formed in the field.

The problem of target ID must address real-world 
issues. For example, Fig. 1 dramatizes a possible setting 
in a littoral environment in which there could be sev-
eral non-co-located Navy platforms, each with its local 
sensor picture of the real world. The sensors could 
be radar, electronic support measures (ESMs), or non-	
cooperative target recognition (NCTR). Netting these 
platforms, as in a CEC setting, would allow the sharing 
of information and the creation of both composite 
tracks and composite ID. Thus, each Navy platform 
benefits from the shared information in case physical 
factors (e.g., terrain obscuration) should cause loss of 
local tracks and local ID.

Multiple targets would normally be present in a real 
scenario, the nature of the targets being neutral, friendly, 
or hostile. Composite ID would help greatly to resolve 
targets. The problem of unresolved targets addresses the 
issue of multiple targets in close proximity within the 
uncertainty region of the sensor or multiple tracks that 
cross. After such track interactions, one must solve the 
problem of which track goes with which target.

This article discusses the CCID status, technical 
demonstrations, and conceptual approaches. Highlights 
of mathematical machinery used in the target classifier’s 
reasoning engine are also addressed.

APL’S CCID EFFORTS
The Laboratory’s CCID work has focused on the 

creation of a high-fidelity model of netted sensors. As 
a starting point, the development team used the exist-
ing Joint Composite Tracking Network (JCTN) pilot 
benchmark. Developed for the Ballistic Missile Defense 
Office, the pilot benchmark served as the basis for the 
CCID Analysis Testbed (CAT). Certain modules of the 
pilot benchmark were modified and new modules were 
added for the development of the testbed.

Figure 2 shows the basic files and processing mod-
ules of the pilot benchmark, and highlights those areas 
that were modified or added to support the CAT. Pilot 
benchmark code is written in MATLAB and is rela-
tively easy to modify and use.

FY2000 Demonstration (00 DEMO)
The CCID is presently in its second year of devel-

opment. The first year’s efforts consisted of the devel-
opment of the CAT as well as in-depth analysis of the 
various mathematical methods used in the reasoning 
engine. FY2000 culminated in the 00 DEMO, high-
lighting the infrastructure of the CAT with key compo-
nents such as ESM interface modules; ESM-to-ESM and 
ESM-to-radar track correlation logic; evidential reason-
ing classifier; and data extraction, reduction, and display 
capabilities.

The 00 DEMO scenario was a derivative of the North-
east Asian Design Reference Mission, with emphasis on 
air targets and the netted sensor platforms. The net-

Figure 1.  A possible scenario in which netted sensors and target ID could improve the 
warfighter’s decision criteria. Netted ID sensors provide integrated passive electronic sup-
port measures (PESM), improved classification, and an enhanced air picture via passive 
tracking. Limitations include a restricted set of sensors, limited noncooperative target rec-
ognition capability, and aspect angle/terrain blockage.

work consisted of two cruisers, one 
aircraft carrier, and an E-2C sur-
veillance aircraft. Figure 3 is a plot 
of track state update messages for a 
20-min period of this 6-h scenario.

The infrastructure demonstration 
portion of 00 DEMO revealed the 
system’s ability to form high-quality 
tracks using the line-of-sight mea-
surements of the ESM sets before 
the radars acquired the tracks. The 
system successfully correlated many 
ESM reports to already existing 
composite radar tracks. Although 
we used simulated ESM electronic 
notation data, the system demon-
strated its ability to combine var-
ious pieces of evidence to classify 
and identify the composite tracks.

FY2001 Demonstration (01 
DEMO)

The success of the 00 DEMO 
served as the launching point for the 
01 DEMO planned for the end of 
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the 2001 time frame. The 01 DEMO will include (1) the implementation 
of a multi-hypothesis tracker (MHT) process within the CAT for improved 
ESM contact to composite track data association, (2) relative performance 
comparison of the two classifier reasoning approaches, i.e., Dempster-	
Shafer theory and Bayesian theory, and (3) implementation of “real-time” 
ID processing driven by outputs from the CAT, including operator-entered 
doctrine, use of geographic and air route information, etc. The ID improve-
ments will not be discussed further in this article.

The MHT process is based on a structure-branching approach to 
hypothesis updating. In collaboration with NRL, the developers of the 
MHT tracker, APL has been integrating the MHT algorithm within the 
CAT to address the issue of associating ESM contact data with composite 
track data. The 01 DEMO implementation will use all remote radar and 
ESM reports in its hypotheses formulations. Future implementations of 
MHT functionality will be expanded to include all aspects of track forma-
tion and maintenance.

DATA FUSION 
APPROACHES/ISSUES, 
THEORETICAL 
ASPECTS OF  
REASONING ENGINES

To achieve target classification, 
a reasoning engine must be used to 
combine the various pieces of evi-
dence (i.e., information from mul-
tiple netted sensors) and to pro-
duce the target classification and 
ID. Figure 4 contains a simple image 
of our basic problem. For example, 
the ESM detects radiation from an 
active radar on an airborne plat-
form. It analyzes the attributes of the 
detected radiation, i.e., frequency, 
pulse width, pulse repetition inter-
val, etc.; compares the attributes to 
those in its library; and outputs a list 
of interpretations for the detected 
evidence. The list of interpreta-
tions takes the form of a list of possi-
ble emitters, together with relative 
probabilities, that could have pro-
duced the physical evidence. Sim-
ilarly, for any other netted sensor 
(e.g., an NCTR sensor such as 
an electro-optic imaging system or 
high-resolution radar), the reason-
ing engine combines all the inter-
pretations of the physical evidence 
to provide platform classification 
and ID.

Figure 2.  Joint Composite Tracking Network pilot benchmark with CAT modifications (blue = modified, cream 
= existing, brown = new).

Figure 3.  Target tracks from the 00 DEMO showing 20 min of data.
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One can consider many mathematical techniques 
to address the CCID problem.1,2 However, based on 
the recommendations of the Multi-Source Integration 
System Engineering Team,3 the Dempster-Shafer fusion 
approach is well-suited for handling partial probability 
attributes, while the Bayesian fusion approach is well-
suited for handling complete probability attributes. An 
example of an operational Dempster-Shafer ID system 
is the Canadian Navy ESM Warning System, Version 2 
(CANEWS 2).4

The decision to use one approach versus another 
depends on many factors such as the characteristics of 
targets, sensors, and systems. One must also consider 
how to handle various kinds of information (e.g., prob-
abilistic, nonprobabilistic). Finally, the output of the 
reasoning engine, such as posterior probability or evi-
dential interval, must be interpreted properly. Thus, 
the emphasis of CCID is to achieve a robust ID 
system while investigating the basics of system perfor-
mance, algorithms, network limitations, and mathemat-
ical approaches.

There are apparent differences between the Dempster- 
Shafer theory and the Bayesian theory that have led to 
misunderstandings of the various terms used in them. 
For example, suppose evidence indicates a set of aircraft 
types without pointing to any particular member of the 
set. The Bayesian representation would consider a uni-
form distribution of the weight of evidence over all mem-
bers of the set. However, in the Dempster-Shafer repre-
sentation the weight of evidence would be attributed to 
the set itself, and not to any particular member. Not sur-
prisingly, the two approaches would give results differing 
in their fundamental structures. One can mistakenly con-
clude that the Dempster-Shafer theory is ad hoc, com-
peting against the well-established Bayesian theory, and 
that because its implementation can be computationally 
intensive, one should therefore not use it.

Bayesian theory is fundamentally classical probabil-
ity theory. Although it has evolved for over 250 years, 
not all problems have been solved. The very concept of 
independence gives probability theory its unique char-
acteristics and familiar language. One of the highlights 
is Bayes’ theorem, which relates posterior probability to 
its prior probability,

	 P A B
P B A P A
P B A P Ai
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where, for i = 1, 2, …, n, Ai and B are random events, and 
P(BAi) is the conditional probability of event B given 
that event Ai has occurred. A similar interpretation goes 
with the posterior probability P(AiB). The conditional 
probabilities are used to model the stochastic nature of 
sensor response given some target. In a recursive manner, 
the posterior probabilities are then used as priors for the 
next cycle. Kolmogorov5 shows how one can develop the 
theory of probability axiomatically, and therefore place it 
on a solid mathematical foundation.

The Dempster-Shafer theory introduces new con-
cepts such as basic probability assignments, belief, plau-
sibility, multivalued functions, upper and lower prob-
abilities, and Dempster’s combination rule. There has 
been much discussion about this theory, largely stem-
ming from confusion about its terms, their origin, and 
how they are related. Dempster’s original paper6 intro-
duced upper and lower probabilities, multivalued map-
pings, and a rule for combining multiple sources of 
information (see Appendix A, Dempster’s Construc-
tion). Shafer’s approach postulates the existence of a 
belief function satisfying some axiomatic conditions.7 
He also introduces the notions of the basic probability 
assignment and plausibility (see Appendix B, Shafer’s 
Approach). The most recurring questions about the 
theory are: What do belief and plausibility mean? From 
where did the Dempster combination rule come? Under 
what conditions is it applicable? All these questions can 
be answered in the context of measure theory. Demp-
ster, Shafer, and others8,9 are aware of the measure theo-
retic connections.

Measure theory is a branch of mathematics that is 
intimately related to integration theory. One can con-
struct a theory of measure and then develop integration 
based on measure. Measure is a generalization of famil-
iar concepts such as the length of a line segment, the 
area of a plane figure, or the integral of a non-negative 
function over a region of space. Appendix C, Elements 
of Measure Theory, gives some highlights of measure 
theory relevant to demonstrating the close relationship 
between evidential reasoning and Bayesian theory.

In a Bayesian setting, one begins with a set X of ele-
ments called elementary events, a -algebra S of subsets 
of X called random events, and a probability function p 
that maps elements of S to the unit interval [0, 1]. For 
the CCID problem, X is the set of emitters output by 
the ESM, with relative probabilities, p, of producing the 
detected physical evidence. The -algebra S represents 
a collection of subsets of X such that the members of 
S are sets of emitters and their set complements; and 
for any two sets of emitters in S, S also contains their 
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Figure 4.  Basic problem.
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union. Thus, the mathematical structure permits address-
ing questions about the occurrence probability of emit-
ters and of classes of emitters. The system consisting of 
the three items X, S, and p—denoted (X, S, p), and called 
a probability space—satisfies the axioms of classical prob-
ability. The structure of S depends on the nature of the 
experiment. When the experiment takes place, one of 
the elementary events x0 is realized. If x0 is an element of 
the random event A, then we say that the random event 
A has occurred as a result of the experiment. So far, the 
material is the familiar classical probability theory.

What happens when a function, say , maps the 	
elementary events of X to another set, say , whose ele-
ments are actually subsets of some set ? Then  and p 
induce a probability structure on , say (, T, ), that 
satisfies all the axioms of probability. T is a -algebra of 
subsets of , and  is the probability function that maps 
the elements of T to the unit interval. These concepts 
are at the foundation of the Dempster-Shafer theory. 
We apply these mathematical constructs to the target 
ID problem as follows. When the classifier consults the 
platform database to determine a relationship between 
the list of emitters and the sets of possible platforms 
that carry such emitters, the mapping  is established 
between X, the set of emitters, and a set  of subsets of 
, the collection of platforms. Thus, the elements of , 
which are subsets of , behave like elementary events, 
and the elements of T behave like random events. 
Because the elements of  are subsets of ,  is called a 
random set.10 Hence,  is the (generalized) probability 
law of the random set . The Dempster-Shafer theory 
is precisely a theory of random sets, and the CCID clas-
sification problem is perfectly described by this theory.

In summary, the ESM detects radiation and claims 
that the evidence could have come from several emitter 
types, accompanied by relative probabilities. This situa-
tion is described by the probability space (X, S, p). The 
classifier checks the platform database to see which plat-
forms are associated with each emitter type. This asso-
ciation is described by the mapping . A natural ambi-
guity can easily arise in that each emitter type may be 
associated with multiple platforms. The ambiguity is 
described by the fact that each element of X, i.e., each 
emitter type, is mapped to a subset of , i.e., is associ-
ated to multiple platforms. The set  is that collection 
of elements, each representing multiple platforms, with 
which the emitters are associated. T is the collection 
of subsets of  on which probability  is constructed, 
and  is the probability function related to  and p. We 
therefore have the induced probability space (, T, ).

COMPARISON OF CLASSIFIER 
APPROACHES

Preliminary comparison of the classifier approaches 
involves the need for fair scoring methods and proper 

interpretation of the classifier outputs. The comparison 
is modeled after the example given by Blackman and 
Popoli.11 Figure 5 shows the feature space for this exam-
ple, which consists of four targets, each capable of oper-
ating in one of two equally likely modes: Mode A and 
Mode B. For each target, the modes are associated with 
a dynamic feature. For example, if the mode represents 
radiation frequency, then the dynamic feature is the fre-
quency band associated with that mode. Various regions 
of the dynamic feature arise because all targets are con-
sidered potential sources of the detected evidence. If 
Mode A evidence is detected in Region IV, a natural 
ambiguity arises in that the evidence may have come 
from Target 2 or Target 3.

Blackman and Popoli describe two sets of probability 
density functions (PDFs) for these modes. Both sets 
of PDFs are described in Fig. 6, the first as mixed 
uniform and the second as mixed normal. The mixed 
normal distributions are truncated Gaussians with 
the same means and limits as those of the mixed 
uniform cases, and with the standard deviations 	
one-sixth those of the corresponding mixed uniform 
distributions.

The performance comparison for the two classifier 
approaches consisted of Monte Carlo runs for four 
cases:

1.	 Target truth based on mixed uniform and classifier 
tuned to mixed uniform (u-u)

2.	 Target truth based on mixed normal and classifier 
tuned to mixed uniform (n-u)

3.	 Target truth based on mixed uniform and classifier 
tuned to mixed normal (u-n)

4.	 Target truth based on mixed normal and classifier 
tuned to mixed normal (n-n)

Figure 7 contains a plot of the probability of correct 
classification versus independent sample number for the 
Bayesian classifier. The horizontal axis spans 20 sam-
ples, but the arrow indicates a more realistic situation 
consisting of 5 samples.

Figure 5.  Target modes and features intervals. Each mode 
is assumed to be equally likely.
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Figure 7 shows good performance for the Bayesian 
classifier properly tuned to the target distributions. How-
ever, the plot indicates the performance degradation 
that could occur with mismatches. Figure 8 contains 
a plot of the probability of correct classification versus 
independent sample number for the evidential reason-
ing classifier. It was generated using the basic probabil-
ity assignments indicated in Ref. 11. In general, the 
Bayesian results are better except in the (u-n) case, in 
which the data were generated using mixed uniform dis-
tributions but the classifier was tuned to expect mixed 
normal distributions.

There are many ways to define regions in the target 
feature space. Each of the region definitions results in dif-
ferent mass assignments. Figure 9 shows the performance 
changes in the evidential classifier that result with a 

variant set of masses differing from those of the Black-
man and Popoli example. It contains only the (u-u) and 
(n-u) cases for both the Bayesian and the evidential rea-
soning classifiers. The matching cases indicate that both 
classifiers perform identically, on the average. However, 
the mismatched cases show that the evidential classifier 
slightly outperforms the Bayesian classifier. These analy-
ses give a flavor of the many ways that masses can be 
assigned and reasoning approaches compared. 

J. Altoft4 and the NRL group suggest another 
approach to mass assignment whereby masses can be 
estimated using plausibility outputs from an evidential 
reasoning system. Also, J. K. Haspert of IDA (personal 
communication, Feb 2000) noted the equality of the 
ratio of plausibilities to the ratio of likelihoods. The first 
relationship states that the plausibility for a given set 
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Figure 7.  Bayesian classifier probability of correct classification versus independent 
sample number for all the combinations of target distributions and classifier tuning. (Refer-
ence point = sample no. 5; mean Pcc = 0.70; spread = 0.36.)

is related to the belief of the set’s 
complement as follows:

	 Pls(A) = 1  Bel(AC)  ,

where Pls(A) = plausibility of Set 
A and Bel(AC) = belief of the com-
plement of Set A. Note that the 
belief in AC is equal to the basic 
mass assignment of AC using the 
relationship

	 Bel( ) ( ) ,A m DC

D AC

=
⊂
∑ 	

where m(D) = basic mass assignment 
of D, a subset of the complement 	
of A.
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assuming target features are mixed uniform distributions.

All the mass is assigned to AC under the assumption that the 	
information at hand does not justify distributing mass to any of the 	
subsets of AC. This concept is consistent with a maximum entropy approach. 
Therefore

	 m(AC) = Bel(AC)  .

The remaining mass is assigned to the frame of discernment , i.e., 
m() = 1 – m(AC). We have made extensive use of both ideas in our current 
mass assignment algorithm, deriving the plausibilities within regions from 
likelihoods related directly to the PDFs for each target type. Implementa-
tion of these concepts has improved our algorithm’s performance by allow-
ing the algorithm to take advantage of the plausibility output of CANEWS 
2. Much of this work uses relationships from Shafer’s book.7 

FUTURE EFFORTS
As gleaned from the preceding discussion, much effort has gone 

into the development of the algorithm infrastructure, analysis of the vari-
ous mathematical approaches for the reasoning engine, and testing and 	

demonstration of the system. The 
data used so far have been simplistic 
for development purposes. To test 
the various reasoning approaches, 
we need more realistic data. Exten-
sive testing still needs to be done 
using distributions drawn from 
existing and future ESM databases. 
More effort must be expended on 
improving the fair scoring method 
for accurate and realistic algorithm 
testing. In the near future, NRL will 
provide APL with ESM likelihood 
data for more realist input data. 
The NRL effort to get CANEWS 
2 up and running is a critical 
step in establishing realistic ESM 	
databases.

More emphasis will be placed on 
understanding the details of sensor 
performance. Until now, we have 
assumed that various modes are uni-
formly distributed. This is a simpli-
fication adapted because actual dis-
tributions are poorly documented. 
We have learned many lessons from 
the implementation of the Black-
man and Popoli example, but we 
must go beyond the simple distri-
butions to the distributions from 
actual ESM data.

We have focused on the math-
ematical foundations of evidential 
reasoning and Bayesian theory in 
order to give the ID technology an 
unassailable foundation. The inter-
pretations of the theory still need 
clarification. Probabilities on sets 
of sets still need proper interpre-
tations. The human engineering 
aspects, such as how to effectively 
display classification and ID infor-
mation to the warfighter, are also 
being evaluated.

CONCLUSIONS
We have presented a description 

of an analysis testbed employed 
to develop and test algorithms for 
use in a network of radar and 
ID sensors. The complexity of the 
environment requires high-fidelity 
models of the targets, sensors, and 
processing algorithms. The process-
ing algorithms first demonstrated 
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in this testbed will be the basis for real-time code 
implementations. This code will then be demonstrated 
in real-time laboratory and field tests.

FY2000 activity culminated in a successful dem-
onstration of the CAT with several new processing 
algorithms, including an ESM interface module, ESM-
to-ESM and ESM-to-radar track correlation, and an 
evidential reasoning–based classification algorithm. In 
FY2001 these capabilities will be extended to include 
an MHT module for associating ESM tracks to the 
composite track database. A Bayesian-based classifier is 
being added for comparison with the evidential reason-
ing–based classifier that already exists. 

Belief, plausibility, lower and upper probabilities, 
and Dempster’s rule of combination are firmly based 
on measure theoretic concepts. Dempster’s multivalued 
mapping is actually a random set (i.e., a mapping analo-
gous to the familiar concept of random variable), and 
the combination rule originates as a product measure 
on the Cartesian product of measure spaces. The origin 
of Dempster’s independence assumption is the need 
to construct a joint cumulative distribution associated 
with the frame of discernment. The problem allows 
us to know the marginal distributions; the theory tells 
us how to combine them to get the joint distribution. 	

Further analysis of the correct interpretation of eviden-
tial reasoning engine output must take place.

Many processing and algorithmic issues remain to 
be resolved. The MHT algorithm being integrated into 
the CAT promises to provide improved performance in 
correctly associating ESM emitter reports to composite 
tracks. MHT testing will also provide valuable insights 
into implementation issues such as number of maintain-
able hypotheses and speed of processing. With respect 
to classifier implementation, the CAT will provide valu-
able insights into the relative performance of the Bayes-
ian and evidential reasoning approaches. There are many 
significant issues that need to be resolved. Two of these 
are the focus of much activity: (1) What, if any, is the 
optimal way to calculate the basic mass assignments, and 
(2) How should one interpret the evidential intervals 
associated with the target sets? 

The CAT provides a valuable means to evaluate the 
effectiveness of netting ID sensors, developing and testing 
alternative data association and tracking algorithms, and 
comparing and selecting target classification approaches.  
The algorithms developed in this testbed can serve as the 
basis for real-time code, testable at land-based sites and at 
sea, that can ultimately be transitioned to the Fleet to pro-
vide much needed improvement in target identification.

APPENDIX A. DEMPSTER’S CONSTRUCTION
Let (X, S, p) be a probability space and let  be the frame of 

discernment, i.e., the collection of platforms that fits the prob-
lem. For example, X may be a set of interpretations of data gath-
ered in the field.12 The data could be detected radiation together 
with attributes. The interpretations could be the possible emit-
ter, or set of emitters, that could produce such data together with 
measures of probability of occurrence of the interpretations. S is 
a -algebra of subsets of X.  could be a collection of possible 
answers to a question, e.g., what platforms could possess emitters 
that would produce the data gathered that would lead us to form 
our set X of interpretations of these data?

Let :X →  be a multivalued map from X to a collection 
 of subsets of . The mapping  is the association between 
the interpretations, i.e., emitters, of the measured data and 
the potential answers to the question of what platform could 
produce the evidence. For our problem, the platform database 
provides this association. Given this relationship between the 
probability space (X, S, p) and , what probability statements 
can we make about ?

The mappings  and p induce the probability space (, T, 
), where the induced probability function  is the composi-
tion of p and 1, denoted  = p ° 1, as shown in the figure.

Dempster constructs the upper and lower probabilities of an 
arbitrary subset A of  using three key ingredients. (1) Let A* 
be the collection of elements of X such that the image of each 
of these elements, under , meets A. (2) Similarly, let A* be the 
collection of elements of X such that the image of each of these 
elements under  is a non-empty subset of A. (3) Define U to be 
that subset of X, each of the elements of which has a non-empty 
image in . These three subsets of X are also elements of the 
-algebra S, which are mapped to the unit interval. Then, the 
following ratios define the upper and lower probabilities of A,

	 P A
p A
p U

*
*

( )
( )
( )

= 	

and

	 P A
p A
p U*

*( )
( )
( )

,= 	

respectively, such that

	 P A P A*
C( ) ( ),*= −1

where AC is the complement of A.

Diagram of mathematical structure.
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= p °  – 1
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Dempster formulates the combination of n pieces of evidence 
using n probability spaces, (Xi, Si, pi), i = 1, ..., n together with 
n multivalued mappings, 1, ..., n. Assuming independence of 
evidence, Dempster defines the combined upper and lower prob-
abilities as the ratios

	 P A
p A p A
p U p U

* n n

n n
( )

( )... ( )
( )... ( )

* *
= 1 1

1 1
	

and

	 P A
p A p A
p U p U*

n n*

n n
( )

( )... ( )
( )... ( )

,*= 1 1

1 1
	

respectively, where for each i = 1, 2,…, n, (1) Ai
* is the collec-

tion of elements of Xi such that the image of each of these ele-
ments under i meets A, (2) Ai* is the collection of elements of 
Xi such that the image of each of these elements under i is a 
non-empty subset of A, and (3) Ui is the subset of Xi, each of the 
elements of which has a non-empty image.

We explain Dempster’s independence assumption as fol-
lows. Our target classification problem is posed such that we 
have knowledge of the sequence of marginal distributions asso-
ciated with each of the measurements, but no knowledge of the 
joint cumulative distribution associated with the combination 
of measurements. Consequently, we are compelled to invoke 
independence because the joint cumulative distribution is not 
available from measurements.

APPENDIX B. SHAFER’S APPROACH
Let  be the frame of discernment representing a set of tar-

gets carrying the set of emitters that could produce the detected 
evidence. The basic probability assignment is the function m, 
with sum unity, from the subsets of  to the unit interval.

For any subset A of , Shafer defines belief, Bel(A), and 
plausibility, Pl(A), of A as

	 Bel( ) ( ), (sum over all subsets of ) ,A m B B A
B A

=
⊂
∑

and

	

Belief and plausibility are related by the expression

	 Pl(A) = 1  Bel(AC)

and numerically

	 Bel(A) ≤ Pl(A)  ,

where AC is the complement of A.
If two independent pieces of information (measurement 1 

and measurement 2) arrive, they can be combined using the 
Dempster combination rule

	
m C

m A m B

m A m B

i j
i, j

A B C

i j
i, j

A B

i j

i j

12

1 2

1 2

1
( )

( ) ( )

,

( ) ( ) ,

=
−

=

∩ =

∩ =

∑

∑

where m1 and m2 are the basic probability assignments associ-
ated with the first and second measurements, respectively. Each 
Ai, i = 1,…, k, is a collection of platforms associated with the 
first measurement, and each Bj, j = 1,…, n, is a collection of 
platforms associated with the second measurement. C is a set 
of platforms for which we wish to calculate its combined 
basic probability assignment, m12(C). The summation in the 
numerator is over all pairs of platform sets, one associated with 
the first measurement and the other with the second, whose 
intersection is exactly the subset C of . The factor  repre-
sents the degree of evidential conflict. The summation in  
is over all pairs of platform sets, one associated with the first 
measurement and the other with the second, which have no 
elements in common. The combined mass can be used to cal-
culate the combined belief and plausibility. The concept is 
used recursively as new information comes in.

APPENDIX C. ELEMENTS OF MEASURE THEORY
We present the following measure theoretic facts to give the 

reader a feel for some aspects of measure theory applicable to the 
CCID problem. My primary source for measure theory is Halmos.13

A measure is a mapping  from a collection of sets to the 
non-negative real numbers. The measure of a set can be infinite, 
but the measure of the empty set ∅ is always zero.

A measure space is a set X together with a -algebra S of sub-
sets of X such that X is the union of all the elements of S, and a 
measure  on S. Elements of S are called measurable subsets of X. 
A measure space is denoted as the triple (X, S, ).

A probability space is a specialized measure space for which 
(X) = 1. Thus, the set of arrival is the unit interval. The mea-
sure  is called a probability measure, and typically we use the 
symbol p to denote a probability function.

In the CCID application, X is the set of emitters and S is the 
-algebra of subsets of X determined solely by the evidence. Of 
course p is the probability function as determined by the output 

of the ESM. Dempster’s construction begins at this fundamental 
stage.

Having introduced measurable sets, we now introduce the 
notion of a measurable mapping. Starting with a probability 
space (X, S, p) and an arbitrary set , let there be a mapping 
 from X to . , then, causes the formation of the -	
algebra T of subsets of .  and p, together, create a probabil-
ity measure  on T, and therefore induce the probability space 
(, T, ).  The inverse images of measurable subsets of  are 
measurable subsets of X.  is called a measurable map. In classi-
cal probability theory, a random variable is simply a measurable 
map. It may happen that the elements of  could be subsets of 
another set, in which case  is called a random set.10

Dempster’s multivalued mapping is simply a random set. 
Shafer refers to this process of inducing probability spaces as the  
“allocation of probabilities.” Shafer’s basic probability assign-
ment is nothing more than an induced probability function.

Pl( ) ( ), (sum over all subsets of that meet ) .A m B B A
B A
=
∩ ≠∅
∑ 
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We now introduce the notions of inner and outer measures 
of a set. The figure gives an intuitive notion of these measures. 
Suppose the only measurable subsets of X are represented by 
small rectangles, and that we are interested in the measure of 
the arbitrary subset A. Since A is not measurable, we cannot 	
calculate its measure. However, the outer measure of A is the 
measure of the smallest union of rectangles for which A is a 
subset. The inner measure of A is the measure of the largest 
union of rectangles for which A is a superset. Thus, the outer 
and inner measures represent the upper and lower bounds of the 
measure of A. The outer and inner measures are related in the 
following way:

	 *(A) = (X)  *(AC)

and

	 *(A) ≤ *(A)  .

Hence, plausibility and upper probability are special cases of 
outer measures. Belief and lower probability are special cases of 
inner measures. 

Measure theory provides an elegant way of combining sev-
eral probability spaces. The technique utilizes the notion of the 
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Cartesian product of sets. This results in what is called a product 
probability space, and the probability function on this space is 
called the product probability. Dempster’s rule of combination 
is simply a special case of a product probability on a product 
space. The setting of measure theory unifies and simplifies the 
various concepts introduced by Dempster and Shafer in their 
studies of evidential reasoning.

Diagram for the discussion of inner and outer measures.
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