
536	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

L.  S.  NORCUTT

T

Ship Self-Defense System Architecture

Larry S. Norcutt

he Ship Self-Defense System (SSDS) was devised to provide self-protection and
combat system capability to non-Aegis ships of the U.S. Navy. This automated combat
direction system uses many commercial hardware and software elements to achieve the
first Navy distributed processing combat system, integrating already developed weapon
and sensor systems. The SSDS architecture was an innovation and somewhat of a risk,
but well justified in light of its successful development and the continued benefits it has
shown. The SSDS Mk 1 is currently operational on 11 Navy LSDs and its bigger variant,
Mk 2, is well under development for the Navy’s newest aircraft carrier and ship class.
SSDS architecture concepts have succeeded in advancing both the state of the art and the
tactical capabilities of the U.S. Fleet.

INTRODUCTION
The primary mission of the LSD (landing ship, dock)

class of Navy ships is to support amphibious assault–
conveying and –landing Marine troops onto potentially
hostile shores. With the increasing capabilities of the
anti-ship missile threat and the likelihood of Navy
combat operations in the near-shore littoral regions
came the requirement to significantly improve the self-
defense capabilities of this ship class. In effect, the ships
needed an automated Combat Direction System (CDS),
smaller in scale than that of primary combatants such
as destroyers, cruisers, and carriers, but highly capable of
the detect, control, and engage functions necessary for
self-defense.

Limited by budget and time constraints, Navy efforts
focused on the automation, optimization, and integra-
tion of existing weapons and sensors to more effectively
defend the ship. The resultant automation and inte-
gration, performed by a networked set of commercial

computers and operator displays, was named the Ship
Self‑Defense System (SSDS) Mk 1.

The new SSDS design incorporated lessons learned
from over 20 years of experience in Navy tactical soft-
ware and sensor integration development, and applied
those lessons to the particular characteristics of combat
system data and processing needs in an open-architecture
distributed-processing commercial-off-the-shelf (COTS)
environment. This included interfaces, processors, data
distribution, computer languages, operating systems, dis-
plays, software design concepts, and sensor integration
concepts. The software architecture was based on many
years of experience dealing with Navy combat systems,
and on ship self-defense studies performed by APL in the
1980s as part of the NATO Anti-Air Warfare (AAW)
Program.

SSDS Mk 1 formed the basis of the SSDS Mk 2 	
system currently in development. This larger variant adds

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 537

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

to the baseline self-defense capabilities to encompass
more of the traditional shipboard combat system func-
tions such as air control and tactical data links. The 	
Mk 2 has a bigger role as the tactical combat system
for the Navy’s newest aircraft carrier USS Ronald Reagan
(CVN 76) and the developing landing ship, platform–
class USS San Antonio (LPD 17). The same basic archi-
tectural concepts apply to both SSDS variants.

EVOLUTION OF COMBAT DIRECTION
SYSTEM SOFTWARE

The first Navy computer programs were developed
in the early 1960s primarily to support manual operator
functions (e.g., track plotting and track symbol display)
and to send surveillance data to other ships (Fig. 1).
Computer functions provided bookkeeping and numeric
calculation to assist the operator. Because of the manual
intervention needed for track maintenance, however,
combat system computer loading in the early days was
relatively low. Tracking accuracy was also highly depen-
dent on the interest, dexterity, and energy level of the
combat system operators. Additional operator support,
such as the synthetic display of information, evolved
into computer-based CDSs.

Early CDS computers allowed coordination of mul-
tiple ship operations for AAW by automating ship-to-
ship data transfer via the radio transmitters and receiv-
ers of the tactical digital data link, Link 11. They also
provided the control of real-time data communications
and formatted digital information for exchange. Owing
to the reliance on manual data input, initial digital
link data rates were relatively low, and ship-to-ship data
accuracy and consistency were poor. Correspondingly,
demands for sophisticated CDS processing were rela-
tively low.

CDS automation needs were greatly accelerated
during the late 1960s owing to more stressing tactical
environments and the introduction of sensor automa-
tion using digital computers. Improved sensor perfor-
mance made it necessary to account for more tracks
within the ship’s surveillance region. These large 	
numbers of tracks within the CDS area of interest
accentuated the need to acquire and maintain timely
and accurate information on each track. Naturally, more
interfaces, functions, and operator displays and controls
were added to the existing computers to automatically
process the information.

As more sensors and weapons were automated, addi-
tional interfaces and processing software were added
to the CDSs. Building on central computer concepts
of the past, where simple functions were automatically
supported and easily added to the software, the growth
of CDS computer processing software continued by
expanding the central computer program (Fig. 2). Addi-
tional memory was added when required, and speedier
mainframe processors were phased in to handle process-
ing loads. Further evolutions partitioned functionality
and processing loads into two or three mainframe pro-
cessors for improved performance and functional vis-
ibility. However, while these fixes relieved individual 	
difficulties, they resulted in new and larger problems in
software development and maintenance.

CDS functionality grew, but the basic software and
computer architecture did not. After years of functional
growth, the large, centrally oriented programs became
very complex and functionally interconnected, as illus-
trated in Fig. 3. After years of maintenance, functional
tweaking, and special fixes arranged among program-
mers in different areas, software became large and com-
plicated. Software maintenance itself evolved into a
specialized art. In such environments it is very difficult

Figure 1.  Early computer use in Combat Information Centers
involved a central computer performing calculation functions
involved in manual tracking and providing operator displays.
The computer also formatted tracking data for communication to
other ships.

Figure 2.  The CDS central computer architecture featured one or
more computers that controlled data communications and began
to provide automatic sensor processing and display. The hard-
ware architecture remained simple; peripherals were attached to
a core processor.

538	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

L.  S.  NORCUTT

to understand the whole program organization and pro-
vide changes or improvements in performance without
incurring unpredicted degradations in other program
functions. The large programs became subject to error
due to numerous users of common databases and the dif-
ficulty of troubleshooting the complex functional inter-
action, data sharing, and program errors in unrelated
functional code. Software maintenance and configura-
tion management were further affected by the program
size and logical complexities that exacerbated the train-
ing of new software support personnel and often pro-
duced unexpected consequences of code alteration.

CDS software development and maintenance also
became severely hampered by the use of militarized, non-
standard equipment (computers, displays, I/O devices)
and software language. Not only were the military
computers relatively expensive, but they had limited
availability and were relatively inflexible. This subse-
quently limited personnel productivity and increased
both development and maintenance costs.

Large central processor programs became easily satu-
rated in processing time demands. Logical processes had
to be more sophisticated to form proper automatic eval-
uations and responses to a larger, more complicated set
of information than ever before. The growing tactical
environment encompassed larger ranges and required
larger track capacities. Processing loads, from both
logical complexity and data volume aspects, quickly
exceeded the capabilities of individual processors. In
short, the software/computer environment of shipboard
CDSs (including sensors, weapons, command support,
and communications) became a very complex problem.

Such was the typical CDS environment in 1991, the
beginning of SSDS Mk 1.

SSDS EVOLUTION: THE SSDS
OPPORTUNITY

From a computer system and software architecture
perspective, the SSDS had the good fortune of an absent

past. Since the ship for which it was developed had no
prior computerized CDS and no major combatant air
warfare mission, there was little justification for install-
ing existing CDS components and then tailoring them
to the LSD self-defense role. It was easier to provide
new automation for this well-defined need. The SSDS
computer, software, display, and data distribution archi-
tecture could use new concepts of software engineering
and computer science that were not available in the
early days of the CDS. Furthermore, the SSDS design
could apply lessons learned from past CDS experiences.

The opportunity to develop a new combat system
was offset somewhat by a lack of guiding specifications
for system functions, computer architecture, and soft-
ware architecture. As described in the next article by
Thomas et al., the system’s tactical functional require-
ments were defined by flowing down top-level opera-
tional requirements. This is a relatively straightforward
process. The requirements for the supporting computer
system and software architecture, however, were not so
well defined. Typically, they had to be derived from
the tactical functional requirements to extract data pro-
cessing performance requirements implicit in the tacti-
cal needs and the nature of the data available to the
combat system. For the SSDS, data processing perfor-
mance requirements were derived from detect/control/
engage reaction time requirements, from the volume of
tracks expected in the ship’s surveillance region, and
from the observed and predicted data rates of the ship’s
sensors (the most demanding of the data providers).

Additional guidance came from higher-level require-
ments of a programmatic and historic nature. SSDS
software and computer architecture designers recognized
this ill-defined but critical feature of combat system
development. The following general requirements con-
tributed to the SSDS architecture. They are almost non-
quantifiable and largely historic—reflecting 20 years’
observance of Navy tactical software—but significant
nonetheless.

One of the main contributors to the SSDS architec-
ture was the desire to simplify the functional relation-
ships among the software so as to logically and perhaps
physically decouple the complex interactions seen in
much of the historic tactical software. In addition, the
Navy tactical processing architecture had to achieve
cost and performance benefits derived from the quickly
improving processing and data transfer performance
offered by COTS products as well as improvements in
computer languages; however, the architecture had to
be easily adapted to the brief life of each new product.

Tactical software architectures must address the
nature of computer processing and the system interfaces
of the combat system. Tactical data processing is time-
critical and must address large volumes of data from
ownship sensors and offboard platforms. The features
found in typical commercial operating systems such

Figure 3.  Many unique logical and data transfer “interfaces”
among functions within the central processor lead to complex
interactions that are difficult and expensive to expand, modify, or
maintain. The central processor is easily CPU- and I/O-bound,
particularly with the high-order language requirement and increas-
ing numbers of sensors and weapons. This organization is not
well matched to the characteristics of combat system data flow or
processing.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 539

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

as UNIX do not support the critical response times
and predictable performance needs of tactical process-
ing. Tactical processing must occur in real time at
high volume and low latency. It must also address the
“…ility” requirements that greatly affect system cost,
development ease, and general long-term quality; e.g.,

	 Maintainability: Can software fixes and corrections be
made easily?

	 Extensibility: Does the software architecture easily
support growth in functionality, processors, inter-
faces, and languages?

	 Understandability/visibility/comprehensibility: Is the soft-
ware system conceptually simple, or are its operations
complex and obtuse?

	 Reliability: Can the software system give predictable
performance?

	 Testability: Can the software be easily tested, and are
there convenient measurement points?

The software must have a robust design to accom-
modate the unpredictable nature of tactical processing
loads and potential equipment faults; function in a less-
than-complete processing environment; not be suscepti-
ble to critical single points of failure; and be loosely cou-
pled so that functions can be removed or added easily.
Also, because of the frequent revision and improve-
ment of COTS products, the software and processing
elements must be easily updated, and a change to one
must not generally affect the other.

These requirements, together with lessons learned
from past CDS efforts and APL’s sensor integration
experience, resulted in an SSDS design that was new
conceptually, physically, and functionally.

SSDS ARCHITECTURE DESCRIPTION

Architecture Concepts

Information-Oriented Design Concept
The SSDS software architecture incorporated the

information-oriented design (IOD) concept that evolved
from APL’s NATO AAW studies. This software design
concept was specifically applicable to a distributed
combat system environment, satisfied all the “ility”
requirements, and provided an “open,” loosely coupled,
logical processing environment. Rather than focus on
point-to-point functional and physical interfaces, the
IOD concept recognized the continuous and concur-
rent nature of combat system data processing, and con-
centrated on the information that was being produced
and the responsibility for its creation. As illustrated in 	
Fig. 4, IOD combat system functions do not interact
with each other, but rather with the flow of combat
system information.

Functions are simply assigned unique responsibilities
to produce unique system information, which is broad-
cast as messages throughout the system. Each function is
offered access to the system information flow from which
it will perform its own duties. For robust design, each
function must deal with potentially incomplete infor-
mation and must recognize system information events
that are particularly sensitive or pivotal to the function’s
purpose. Collectively, this robust information focus pro-
vides functional independence and a loose coupling of
the software processes.

In general, information is only generated upon
change. This serves two purposes: (1) the general revi-
sion and minimal data loading of information poten-
tially used by other system functions (i.e., database
update), and (2) the possible triggering of other func-
tion processes that are keyed to changes in particular
information.

From a software system design/development point of
view, the functional independence of the IOD removes
the logical complications of sequential function coordi-
nation and communication. From an integration/testing
point of view, if a function is not available, its only
impact is the lack of its particular information in the
system-wide database. Other functions must continue
to operate to their best capacity on less information.
Testing and development of individual functions may
be performed in isolation, stimulated only by a con-
trolled message flow and evaluated solely on their abil-
ity to generate their assigned information.

Given this form of functional independence, it is
easy to develop physical independence in the form of
distributed processor architectures. This allows massive
computing power to be focused on particularly impor-
tant functions, providing growth and change that are
completely independent of other system processes.

Combat system information flow

Combat system functions and subfunctions

Not this:

But this:

Figure 4.  The information-oriented software design concept
decouples complex, highly interrelated functions and instead fea-
tures independent functions with access to a common information
source.

540	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

L.  S.  NORCUTT

The addition of a new system function in such an
environment requires only the definition of the infor-
mation (if any) it will add to the system information.
Existing functions need to be changed only if the addi-
tional information is desired to improve the quality of
their current output. By definition, the new function has
access to all system information and will be informed
upon update of any portion. In this environment there is
total independence of functional definition and imple-
mentation. New processes may be added to the system
to analyze or extract system information on a com-
pletely independent basis. Information display functions
may similarly be added with total independence.

Information Attribute, Message, and
Distribution Concepts

Following the IOD theme, SSDS concepts describe
the system in terms of information “entities” having
numerous “attributes” and relations among attributes.
Furthermore, the data are broadcast upon change to all
interested functions within the SSDS to use as each sees
fit. In a sense, this is a form of object orientation where
the objects are active rather than passive.

It should be noted that the combat system itself may
be considered an entity described by status attributes.
Also, surveillance tracks may be thought of as entities,
having attributes of position, velocity, identification,
engagement status, etc. Collectively, the attribute data
define the state of the combat system. Its functions con-
tribute to that state and react to changes in it, as illus-
trated in Fig. 5.

Additional features of these concepts are as follows:

•	 The responsibility for data entities and attributes is
assigned to particular and unique functions within
the SSDS. This method of segmentation allows a

clear separation of the contributions from each SSDS
element and function. System information has a dis-
tinct source, directly related to a specific portion of
software and traceable to specific message output to
the data distribution architecture.

•	 System messages containing the entities and attri-
butes are defined and broadcast. Messages are more
oriented to attribute assignment than to total entity
description. The sum of system messages constitutes
the total of the system information, which all the
SSDS functions use as needed and contribute as
assigned.

•	 Messages are filtered upon receipt. Upon initializa-
tion, each principal function within the SSDS regis-
ters its message needs with data distribution commu-
nications packages (“infrastructure” software). Using
broadcast and multicast techniques, the communi-
cations packages transfer all function message out-
puts to all other required destinations and filter input
messages to accept only those desired.

•	 Each function uses system data and records the data
as needed locally. There is no central data manager.
Each function outputs its contribution to the system
in the form of (nominally) broadcast messages. Data
are nominally sent only upon change. Aside from
means to initialize functions that gain access to the
distributed system after steady-state operations are
achieved and for system reconfiguration after casualty,
data transfer is to be minimized to operational need.
Data transfer is used as much for change notification
as for stimulation of other functions.

•	 Functions do not use the system messages as a
coordination device. This incurs functional coupling,
which is to be avoided in functional design.

•	 Most data transfers are expected to be broadcast
“send and forget.” This minimizes overhead in mes-

Figure 5.  The SSDS functional examples shown are assigned entity and attribute
responsibilities; their visible and physical mechanism of message generation and receipt
allows simple, manageable function (process or processor) distribution. Processes
may be as elaborate as necessary, but also may be totally independent of all other
processes.

sage acknowledgment and log-
ical dependence. Special cases
may require acknowledgment for
safety or critical events, but these
are expected to be relatively
infrequent within the total data
distribution environment.

SSDS functions attached to the
distributed architecture impact the
system only through their message
contribution to entity and attribute
definition. Processing techniques,
languages, and data structures within
a function are independent of the
remainder of the SSDS. Response 	
to message receipt is totally the
responsibility of the receiving func-
tion. Messages may be used to update 	
a function’s copy of track data 	

Messages of
interest

Messages of
interest

Messages of
interest

Message stream: sensor tracks, system tracks, track positions, track ID,
track engage order, etc.

Track identification
message

Track engage
order message

Track module Identification module Tactical action
module

System track existence message
Track position, velocity message

Track emitter message

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 541

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

(organized optimally locally for the function’s needs) or
may be used as triggers for functional response.

The flexibility of the concept allows SSDS processes
to be totally distributed within the system as long as
an underlying communication system is available. To
accommodate survivability requirements, duplicate pro-
cesses are provided within separate enclosures to pro-
duce a passive monitor of data flow and to provide
backup in the event of casualty to active processes.

Distributed Sensor Integration Concept
Another principal element of the SSDS conceptual

design is the partitioning of tactical functions that col-
lectively form and maintain the system’s surveillance
track information. The concept recognizes the continu-
ity and accuracy benefit of frequent and complemen-
tary sensor detections; the ability of individual sensors
to optimize their individual performance; the benefit
of central track organization and flexible data access;
the importance of a priori information; and the power
of processing distribution. In the SSDS IOD concept,
individual sensors take what information they need and
do their best to contribute their piece (Fig. 6). The
SSDS provides central management, feedback, and false
system track control.

Robust Common Time and Time-Tagged Data Concepts
The use of time is critical to the architecture and

technical processing performance of a distributed system.
Although computers are very fast, the reliance on per-
forming a process quickly so that the results have an
epoch of “now” is very risky, subject to data inaccura-
cies, and intolerant of the randomness of processor load-
ing and external events. To maintain accuracy in data
calculations, the data must be time-tagged when it is
measured or created. This “valid time” then maintains
the epoch integrity of the measurement, which allows
later processing with no loss in calculation accuracy.

Another element of time and data is latency, which
may be thought of as the delay from data measure-
ment to the subsequent processing of the data. In its
most general terms, latency is the time between any
two events of interest. It is critical in particular situa-
tions such as threat detection as well as in response and
tracking loops. Latency within 10% of measurement
periods is generally necessary for reasonable tracking
maintenance.

A robust common time is a particular requirement
of the SSDS. In the interest of system independence
and the avoidance of single points of failure, the SSDS
establishes a time base within its own collection of
distributed processors, initialized and maintained over
the network connections. In keeping with this system
independence, the first processing node to be powered 	
distributes its internal clock for all successors to receive

and accept as the time base. (Each node listens briefly
before it assumes it is the first.) After a node receives the
initial clock value, subsequent tuning of the networked
time is maintained through the functions of NTP (Net-
work Time Protocol) implemented in the infrastructure
software. In this manner, there is no requirement on the
order of start-up of SSDS components.

Another important function and element of the
SSDS distributed system concept is its feature of broad-
casting system track information in a minimum period.
Normally the frequency of sensor updates causes system
track information to be broadcast within the minimum
period (about 5 s), but a background process ensures the
minimum for all tracks within the system. This feature
allows each function within the SSDS to start up at any
time and absorb the track picture within a few seconds.

Figure 6.  Conceptually, the SSDS provides each sensor with
current system track information. If the sensor can associate a
sensor observation with the track, it provides the system with the
measurement data, forming an Associated Measurement Report
(AMR). A central SSDS function uses this measurement to cal-
culate an updated estimate of system track position and velocity
and broadcasts this updated attribute information throughout the
system. Special functions, such as custom filters, may selectively
use measured data in the AMRs for particular needs.

New local
tracks, AMRs

System
track state,
new system

tracks

New local
tracks, AMRs

System
track state,
new system

tracks

New local
tracks, AMRs

System
track state,
new system

tracks

New local
tracks, AMRs

System
track state,
new system

tracks

Custom
filter(s)

Composite
track

management

Central
track

update

AMRs

New local
tracks

New system
tracks

AMRs

System
track state

542	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

L.  S.  NORCUTT

To maintain the robust nature of the functional and
physical architecture and to accommodate independent
start-up of processors, each application processor is pro-
vided with common code to receive system track data
messages over the network and populate its own local
database. This code can be tailored to retain only the
information of interest to the local user. An important
feature of this common code is its logic to “age” each
track and delete it from the user’s local database if no
updates have been received within a reasonable period
of time (longer than the nominal system update period).
This process, when coupled with the nominal system
track broadcast feature, ensures that the user’s local
information is consistent with the remainder of the
combat system.

The SSDS data broadcast feature also complements
the SSDS concept of distributed, independent operator
display support. This concept uses CDK (Common Dis-
play Kernel) software within each console to render
the majority of operator displays. By operating totally
from broadcast system messages, multiple displays can
be added to the combat system with virtually no net-
work load. Unique displays and controls are appended
to the CDK software as specific application code to
support particular user needs, with portions replicated 	
in different consoles as equipment casualty backup. A

successive variant of the concept, incorporated in SSDS
Mk 2, retains a common display core in each display,
efficiently supplied from the network broadcast. The
low-demand, tailored operator controls and displays are
implemented in CORBA and a server over the network.
This hybrid display implementation provides console
and operator mode independence while matching effi-
cient processing and data loads with flexibility of soft-
ware design and implementation.

Physical Architecture
CDS history, derived and implicit requirements,

NATO AAW studies, the rapidly emerging COTS
computer and networking environment, and IOD soft-
ware architecture concepts all contributed to the design
of the SSDS physical architecture. Being the ship’s only
combat system and having a critical self-defense role,
the SSDS must be dependable, robust, and able to sur-
vive at least limited battle damage. Its processors have
to handle full track and sensor data loading and must be
able to adapt.

The SSDS physical architecture, shown in Fig. 7,
consists of a local area network (LAN) connection of
clustered VME-based single-board computers and inter-
face cards that form LAN access units (LAUs) for the
various functional elements of the SSDS.

Figure 7.  The LSD 41/49 combat system consists of sensor systems, SSDS components, and weapon systems, all connected to the
fiber-optic LAN via similar LAUs.

AN/SPS-67
radar

AN/SPS-49A
radar

AN/SLQ-32
ESM IFF

Sensor
Supervisor

Console

TAO
Weapon

RAM
system (2)

Phalanx
Close-In Weapon

System (2)

ECM

(IFF
antennas)

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 543

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

LAUs typically contain single-board computers and
interface cards to provide tactical processing and to com-
municate with specific shipboard systems such as sen-
sors, weapons, data links, and operator displays. Because
of the broadcast nature of SSDS system data, computer
programs that do not service a particular physical exter-
nal interface may execute in any processor, any LAU.
Those functions that handle interfaces and integrate
with particular external systems are placed in the same
LAU and VME backplane as the corresponding physical
interface boards. Figure 8 illustrates a generic LAU con-
figuration, which contains a LAN interface, numerous
general-purpose single-board application computers, and
an external interface. LAUs, connected via the LAN,
may be placed anywhere on the ship. SSDS message
infrastructure software operates within the LAN inter-
face and within each general-purpose application com-
puter to provide message distribution, board start-up,
and common time synchronization.

SSDS single-board computers are general-purpose,
COTS, and non-proprietary to capitalize on cost, avail-
ability, language supportability, growth, and simplicity of
software programming constructs. Multiple individual pro-
cessors allow each principal tactical function to have its
own computer, with the intent to operate at minimal CPU	
loading. This simplified distributed processing environ-
ment is a particularly effective means of avoiding resource
contention problems among multiple programs sharing
the same CPU, adding functionality, and allowing more
predictable software processing performance. It also more
easily accommodates the processing of data bursts that
are typical of the tactical data flow environment.

Figure 8.  The LAU concept provides both physical independence
as well as functional and physical adaptation to particular interface
and integration needs. While operating within the overall SSDS
integration and broadcast information-oriented architecture, LAU
components can support processors, languages, functions, and
physical interfaces that are unique to a particular interface. This
prototype LAU consists of a commercial VME card cage popu-
lated with LAN interfaces, device interfaces, application single-
board computers, and tape drives.

Requirements for system survivability, ease of growth,
and flexibility led to the networking of SSDS compo-
nents. Network architectures, supported by data broad-
cast capabilities, also formed a physical complement to
the IOD concepts of concurrent processing and univer-
sal access/contribution to system data. Further supported
by general software infrastructure that facilitated mes-
sage distribution, the SSDS architecture acquired both
the physical and functional open-access nature intended
for the IOD. The physical distribution of SSDS compo-
nents, combined with redundancies of the chosen net-
work, also provided a degree of system survivability in
the event of battle damage.

Common network middle-layer protocols of the IP
(Internet Protocol) family proved more than adequate
for efficient data transfer and were universally avail-
able for software development. The ease, efficiency,
and independence of the UDP (User Datagram Pro-
tocol) broadcast and multicast protocols were used to
convey the bulk of SSDS network data, such as sensor 	
track updates. In a few critical cases, data transfer
acknowledgment was implemented to help ensure
data receipt. In general, minimal network loading was
desired to ensure the reliability and accessibility of net-
work communications.

Despite the desire to use a minimal amount of the
network data bandwidth, it is interesting to note that
the Ethernet CSMA/CD (carrier-sense, multiple access/
collision detect) physical layer protocol was not thought
at the time to be predictable enough for use as the SSDS
network backbone. The combination of numerous, fre-
quent contributors of data (e.g., the numerous dis-
tributed processors and the characteristics of tactical
data within the combat system) and the random, pro-
gressively longer back-off and retry characteristic of
Ethernet could disastrously delay critical SSDS data 	
transfers. For its automatic rerouting features, more pre-
dictable physical layer token “ring” protocol, 100-Mbit
performance, and commercial software support, the
FDDI (Fiber-Distributed Data Interface) was chosen as
the physical network. The glass fiber for data transfer
was selected for its performance, low weight (Fig. 9),
and low electromagnetic susceptibility.

The SSDS network uses a dual home star topology
incorporating network hubs that are positioned in dif-
ferent regions of the ship. Network star topology, illus-
trated in Fig. 10, uses a hub to connect to each 	
network node. This provides ease of troubleshooting,
simplified COTS growth, and ease of reconfiguration.
In the case of FDDI, the hub avoided the problems of
optical bypass relays when reconfiguring around breaks
or inactive nodes in the FDDI token ring architecture.
(Conversion of the network to another technology such
as ATM or high-bandwidth Ethernet would use the
same topology but different hub equipment and inter-
face cards at the network nodes.) Dual hubs provide

544	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

L.  S.  NORCUTT

Figure 9.  The 144 copper cables for CDS parallel channels on the left are compared with
a single fiber-optic cable containing 144 individual glass fibers. The change in physical
media, resulting in a potential cable plant weight reduction from 35.3 to 0.05 lb/ft, was
only part of the technology challenge. To exploit fiber optics, an evolution in equipment
interfaces was also required.

Hub

Hub

LAN
access

LAN
access

LAN
access

LAN
access

LAN
access

LAN
access

Figure 10.  SSDS use of a double star topology provides significant network reliability
and battle damage survivability by automatically reconfiguring data flow in the event of
damage to any node interconnection or to the alternate hub.

battle damage resistance and automatic communications redundancy for
system reliability.

Common Infrastructure Concept
Common infrastructure software (middleware) developed by APL pro-

vided message distribution, time synchronization, and processor start-up
coordination services, in addition to offering common API (Applications
Programmer Interface) functions that facilitated development of tactical
code within the multiple processors. This software, like the concepts of
sensor integration, evolved in performance and maturity over many years
of use in the NATO AAW experiments, Cooperative Engagement Capabil-
ity (CEC) development, and SSDS development. Synergism was achieved
by combining the network concepts of the SSDS with the VME backplane

message distribution features of the
CEC (Fig. 11).

COTS Refresh Concept
Recognizing the rapidly chang-

ing (and the generally performance-
improving) nature of commercial
products, SSDS design and imple-
mentation focus on the use of the
most common commercial hard-
ware, software, and network stan-
dards; the avoidance of proprietary
products; and the adaptability of
its interfaces. Although early SSDS
development followed the standard
DoD language of Ada, the subse-
quent COTS commonality of the
C and C++ languages and their
familiarity to software developers
have since led to their use in the
SSDS. The CORBA language is
also employed in lightly loaded dis-
play interface software owing to its
flexibility and productivity.

The SSDS LAN design, through
its fiber star topology and its reli-
ance on the common IP middle-
layer protocols, allows flexibility in
the choice of the underlying physi-
cal implementation. Because SSDS
tactical software uses the Transmis-
sion Control Protocol (TCP)/IP and
UDP communication software com-
monly provided by network inter-
face vendors, minimal changes are
required to accommodate different
physical network implementations.

Because the commercial market
normally provides upgraded com-
mon language (such as C) compil-
ers to complement upgraded pro-
cessor boards, the impact of refresh 	
on SSDS tactical code in such
events is typically minimal. Since
its inception, the SSDS has expe-
rienced COTS refresh twice, pro-
ceeding from Motorola M68020 	
processors to the M68040, and now
the Power PC.

COTS refresh has minimal effect
on SSDS software and no effect
on the conceptual architecture.
The flexibility of the network and
LAU structure allows adaptation to
handle exceptions to processors and
languages in each node if required.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)	 545

SHIP SELF-DEFENSE SYSTEM ARCHITECTURE

Functional Architecture
In classic Navy combat system terms, the SSDS per-

forms the functions of detect, control, and engage. In true
IOD context, these may be shown as any combination
of functional bubbles in a “flat” representation (Fig. 4)
and could be implemented at various places throughout
the network. A functional flow representation, shown in

NATO AAW
System

government
program of work

experiments

LAN/
software
concept
demo.

SSDS
at-sea
demo.

SSDS
production;

engineering and
manufacturing
development

SSDS
development

and operational
tests

SSDS
Mk 2

Mod 0, 1, 2

Cooperative
Engagement
Processor,

backplane bus
development

CEC
demo.

90

VX
works

CEC
 demo.

94

Enhanced
power PC
bus control

CEC 2.0/2.1

1988 1990 1992 1994 1996 1998 2000

LAN software concepts

LAN/bus
commonality

LAN/bus
combination

SSDS Mk 1
production (12 ships)

Common
Genealogy
Architecture
Interface 3.0

Backplane messaging concepts

SSDS

CEC

Figure 11.  Common infrastructure software synergistically evolved over multiple programs, benefiting performance and
development productivity.

Figure 12.  SSDS software functional architecture (sensor focus example). SSDS functions that collectively provide the
detect, control, and engage combat system functionality are dispersed throughout the network, providing ease of extension,
adaptation, and growth.

the IOD context, is illustrated in Fig. 12. This orients the
functions in a left-to-right manner, illustrating the detect-
to-engage sequence of operations that may occur. Tap-
ping onto the stream of system information, and shown
above the network flow, are the display functions of the
SSDS Mk 1 Sensor Supervisor, Weapons Supervisor, and

Tactical Action
Officer

Weapons
Supervisor

Sensor
Supervisor

System information and time message stream

Alignment

Identification

Sensor
integration
and control

Weapons
integration
and control

Weapons
direction

and control

Local
command
and control

Sensor
coordinaton
and control

Track/
management

update

Sensor,
identification
controls

Weapon,
local command
and control

Sensor
tracks

Pad
align-
ment

Com-
posite
tracks

Conflict
identification,
system
identification

Sensor
cues, track
confidence

Engage
orders

Weapon
schedule,
orders

Weapons
status,
engage
status

Sensors
Weapons

546	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

L.  S.  NORCUTT

Tactical Action Officer. The display functions absorb
whatever information is needed for display and provide
operator actions back to the network to be interpreted by
the interested functions.

SSDS DEVELOPMENT HISTORY

Prototype Demonstration Phase
The SSDS began as a proof-of-concept demonstra-

tion for the Quick Response Combat Capability Pro-
gram in 1991. Incorporating some APL software reuse
from the Navy Auto-ID and CEC programs and experi-
mental network IOD demonstration software from the
NATO AAW effort, the new SSDS distributed archi-
tecture was formed. Under Navy direction, APL pro-
vided lead system architecture design and developed the
sensor integration, displays, and infrastructure software.
Complementing the team were the Naval Surface War-
fare Center and Hughes Aircraft (now Raytheon), who
developed weapons scheduling and control and weapon
interface software, respectively. This trio of software
developers, building code at three independent sites, pro-
vided an early “ility” test of the SSDS architecture and
integration concepts that proved quite successful through
careful management of system message definition.

In June 1993, following land-based testing and
shipboard installation and integration aboard USS
Whidbey Island (LSD 41), SSDS—automatically inte-
grating seven shipboard sensors and three weapon sys-
tems—performed a successful, near-simultaneous, fully
automatic and coordinated detect-to-fire live engage-
ment of two target “threats” (a towed decoy unit and a
remotely piloted jet drone) using the Rolling Airframe
Missile and Phalanx gun system.

Production Phase
After the successful demonstration efforts, the SSDS

Mk 1 software and COTS components were ruggedized
for shipboard operational use by Hughes Aircraft. 	

Production-quality LAU equipment and multiple LAU
enclosures were developed to house the COTS proces-
sors, and additional integration software was developed
by the Laboratory to incorporate the AN/SPS-67 sur-
face search radar and the AN/UPX-36 Identification,
Friend or Foe (IFF) sensors. The first production SSDS
Mk 1 was developed for USS Ashland (LSD 48), on
which the system passed formal Navy operational test-
ing and evaluation in the summer of 1997 in its first
attempt.

The low cost and short schedule of SSDS Mk 1
development earned it the U.S. government’s Hammer
Award for efficiency of government procurement. 	

Current Status
The SSDS Mk 1 is now installed and operational on

11 of the 12 ships in the LSD 41/49 class, with the 12th
nearing completion. The SSDS Mk 1 successor, SSDS
Mk 2, is currently being developed for two more ships
and classes, USS Ronald Reagan and USS San Antonio,
where the system will provide full combat system func-
tionality. In the Mk 2 configuration, much of the sur-
veillance sensor integration is provided by the installed
CEC, which incorporates the same shipboard sensor
integration concept as the SSDS.

SUMMARY
The SSDS architecture was an innovation and some-

what of a risk. But the risk was well justified for the
success of its development and the continued benefits
the architecture has shown. SSDS architecture concepts
have succeeded in advancing both the state of the art
and the tactical capabilities of the U.S. Fleet.

SSDS Mk 1 development and capabilities are a suc-
cess story, due largely to the contributions of many tal-
ented system and software engineers, the experience
base of those people, new software design paradigms,
and the effective use of COTS software and computer
components.

THE AUTHOR

LARRY S. NORCUTT is a member of the APL Principal Professional Staff. He
received a B.S.E.E. from Michigan State University in 1969 and an M.S.E.E. from
The Johns Hopkins University in 1972. He joined APL in 1969 and has an exten-
sive background in the integration and automation of Navy surveillance systems
in the real-time combat system environment. He was a principal design and soft-
ware engineer on the development of the AN/SYS-1 and AN/SYS-2 integrated
automatic detection and tracking systems, led the development and integration of
surveillance software for the Navy’s ACDS Block 0, and was APL combat system
architect lead for the NATO AAW Program. Recent efforts have included concepts
for integration of passive sensors and improving Navy Surface Fleet interoperability
and combat system training. Mr. Norcutt was the lead engineer for the SSDS Mk 1
system architecture design. His e-mail address is larry.norcutt@jhuapl.edu.

	Ship Self-Defense System Architecture
	Larry S. Norcutt
	INTRODUCTION
	EVOLUTION OF COMBAT DIRECTION SYSTEM SOFTWARE
	SSDS EVOLUTION: THE SSDS OPPORTUNITY
	SSDS ARCHITECTURE DESCRIPTION
	Architecture Concepts
	Information-Oriented Design Concept
	Information Attribute, Message, and Distribution Concepts
	Distributed Sensor Integration Concept
	Robust Common Time and Time-Tagged Data Concepts

	Physical Architecture
	Common Infrastructure Concept
	COTS Refresh Concept

	Functional Architecture

	SSDS DEVELOPMENT HISTORY
	Prototype Demonstration Phase
	Production Phase
	Current Status

	SUMMARY
	THE AUTHOR
	FIGURES
	Figure 1. Early computer use in Combat Information Centers.
	Figure 2. The CDS central computer architecture.
	Figure 3. Many unique logical and data transfer “interfaces” among functions.
	Figure 4. The information-oriented software design concept.
	Figure 5. The SSDS functional examples shown are assigned entity and attribute responsibilities.
	Figure 6. Conceptually, the SSDS provides each sensor with current system track information.
	Figure 7. The LSD 41/49 combat system.
	Figure 8. The LAU concept provides both physical independenceas well as functional and physical adaptation to particular interfac eand integration needs.
	Figure 9. The 144 copper cables for CDS parallel channels on the left are compared with a single fiber-optic cable.
	Figure 10. SSDS use of a double star topology.
	Figure 11. Common infrastructure software.
	Figure 12. SSDS software functional architecture.

