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Ship Self-Defense System Architecture
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he Ship Self-Defense System (SSDS) was devised to provide self-protection and 
combat system capability to non-Aegis ships of the U.S. Navy. This automated combat 
direction system uses many commercial hardware and software elements to achieve the 
first Navy distributed processing combat system, integrating already developed weapon 
and sensor systems. The SSDS architecture was an innovation and somewhat of a risk, 
but well justified in light of its successful development and the continued benefits it has 
shown. The SSDS Mk 1 is currently operational on 11 Navy LSDs and its bigger variant, 
Mk 2, is well under development for the Navy’s newest aircraft carrier and ship class. 
SSDS architecture concepts have succeeded in advancing both the state of the art and the 
tactical capabilities of the U.S. Fleet.

INTRODUCTION
The primary mission of the LSD (landing ship, dock) 

class of Navy ships is to support amphibious assault–
conveying and –landing Marine troops onto potentially 
hostile shores. With the increasing capabilities of the 
anti-ship missile threat and the likelihood of Navy 
combat operations in the near-shore littoral regions 
came the requirement to significantly improve the self-
defense capabilities of this ship class. In effect, the ships 
needed an automated Combat Direction System (CDS), 
smaller in scale than that of primary combatants such 
as destroyers, cruisers, and carriers, but highly capable of 
the detect, control, and engage functions necessary for 
self-defense.

Limited by budget and time constraints, Navy efforts 
focused on the automation, optimization, and integra-
tion of existing weapons and sensors to more effectively 
defend the ship. The resultant automation and inte-
gration, performed by a networked set of commercial 

computers and operator displays, was named the Ship 
Self‑Defense System (SSDS) Mk 1. 

The new SSDS design incorporated lessons learned 
from over 20 years of experience in Navy tactical soft-
ware and sensor integration development, and applied 
those lessons to the particular characteristics of combat 
system data and processing needs in an open-architecture 
distributed-processing commercial-off-the-shelf (COTS) 
environment. This included interfaces, processors, data 
distribution, computer languages, operating systems, dis-
plays, software design concepts, and sensor integration 
concepts. The software architecture was based on many 
years of experience dealing with Navy combat systems, 
and on ship self-defense studies performed by APL in the 
1980s as part of the NATO Anti-Air Warfare (AAW) 
Program. 

SSDS Mk 1 formed the basis of the SSDS Mk 2 	
system currently in development. This larger variant adds 
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to the baseline self-defense capabilities to encompass 
more of the traditional shipboard combat system func-
tions such as air control and tactical data links. The 	
Mk 2 has a bigger role as the tactical combat system 
for the Navy’s newest aircraft carrier USS Ronald Reagan 
(CVN 76) and the developing landing ship, platform–
class USS San Antonio (LPD 17). The same basic archi-
tectural concepts apply to both SSDS variants.

EVOLUTION OF COMBAT DIRECTION 
SYSTEM SOFTWARE

The first Navy computer programs were developed 
in the early 1960s primarily to support manual operator 
functions (e.g., track plotting and track symbol display) 
and to send surveillance data to other ships (Fig. 1). 
Computer functions provided bookkeeping and numeric 
calculation to assist the operator. Because of the manual 
intervention needed for track maintenance, however, 
combat system computer loading in the early days was 
relatively low. Tracking accuracy was also highly depen-
dent on the interest, dexterity, and energy level of the 
combat system operators. Additional operator support, 
such as the synthetic display of information, evolved 
into computer-based CDSs.

Early CDS computers allowed coordination of mul-
tiple ship operations for AAW by automating ship-to-
ship data transfer via the radio transmitters and receiv-
ers of the tactical digital data link, Link 11. They also 
provided the control of real-time data communications 
and formatted digital information for exchange. Owing 
to the reliance on manual data input, initial digital 
link data rates were relatively low, and ship-to-ship data 
accuracy and consistency were poor. Correspondingly, 
demands for sophisticated CDS processing were rela-
tively low.

CDS automation needs were greatly accelerated 
during the late 1960s owing to more stressing tactical 
environments and the introduction of sensor automa-
tion using digital computers. Improved sensor perfor-
mance made it necessary to account for more tracks 
within the ship’s surveillance region. These large 	
numbers of tracks within the CDS area of interest 
accentuated the need to acquire and maintain timely 
and accurate information on each track. Naturally, more 
interfaces, functions, and operator displays and controls 
were added to the existing computers to automatically 
process the information.

As more sensors and weapons were automated, addi-
tional interfaces and processing software were added 
to the CDSs. Building on central computer concepts 
of the past, where simple functions were automatically 
supported and easily added to the software, the growth 
of CDS computer processing software continued by 
expanding the central computer program (Fig. 2). Addi-
tional memory was added when required, and speedier 
mainframe processors were phased in to handle process-
ing loads. Further evolutions partitioned functionality 
and processing loads into two or three mainframe pro-
cessors for improved performance and functional vis-
ibility. However, while these fixes relieved individual 	
difficulties, they resulted in new and larger problems in 
software development and maintenance.

CDS functionality grew, but the basic software and 
computer architecture did not. After years of functional 
growth, the large, centrally oriented programs became 
very complex and functionally interconnected, as illus-
trated in Fig. 3. After years of maintenance, functional 
tweaking, and special fixes arranged among program-
mers in different areas, software became large and com-
plicated. Software maintenance itself evolved into a 
specialized art. In such environments it is very difficult 

Figure 1.  Early computer use in Combat Information Centers 
involved a central computer performing calculation functions 
involved in manual tracking and providing operator displays.  
The computer also formatted tracking data for communication to 
other ships.

Figure 2.  The CDS central computer architecture featured one or 
more computers that controlled data communications and began 
to provide automatic sensor processing and display. The hard-
ware architecture remained simple; peripherals were attached to 
a core processor.
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to understand the whole program organization and pro-
vide changes or improvements in performance without 
incurring unpredicted degradations in other program 
functions. The large programs became subject to error 
due to numerous users of common databases and the dif-
ficulty of troubleshooting the complex functional inter-
action, data sharing, and program errors in unrelated 
functional code. Software maintenance and configura-
tion management were further affected by the program 
size and logical complexities that exacerbated the train-
ing of new software support personnel and often pro-
duced unexpected consequences of code alteration.

CDS software development and maintenance also 
became severely hampered by the use of militarized, non-
standard equipment (computers, displays, I/O devices) 
and software language. Not only were the military 
computers relatively expensive, but they had limited 
availability and were relatively inflexible. This subse-
quently limited personnel productivity and increased 
both development and maintenance costs.

Large central processor programs became easily satu-
rated in processing time demands. Logical processes had 
to be more sophisticated to form proper automatic eval-
uations and responses to a larger, more complicated set 
of information than ever before. The growing tactical 
environment encompassed larger ranges and required 
larger track capacities. Processing loads, from both 
logical complexity and data volume aspects, quickly 
exceeded the capabilities of individual processors. In 
short, the software/computer environment of shipboard 
CDSs (including sensors, weapons, command support, 
and communications) became a very complex problem. 

Such was the typical CDS environment in 1991, the 
beginning of SSDS Mk 1.

SSDS EVOLUTION: THE SSDS  
OPPORTUNITY

From a computer system and software architecture 
perspective, the SSDS had the good fortune of an absent 

past. Since the ship for which it was developed had no 
prior computerized CDS and no major combatant air 
warfare mission, there was little justification for install-
ing existing CDS components and then tailoring them 
to the LSD self-defense role. It was easier to provide 
new automation for this well-defined need. The SSDS 
computer, software, display, and data distribution archi-
tecture could use new concepts of software engineering 
and computer science that were not available in the 
early days of the CDS. Furthermore, the SSDS design 
could apply lessons learned from past CDS experiences. 

The opportunity to develop a new combat system 
was offset somewhat by a lack of guiding specifications 
for system functions, computer architecture, and soft-
ware architecture. As described in the next article by 
Thomas et al., the system’s tactical functional require-
ments were defined by flowing down top-level opera-
tional requirements. This is a relatively straightforward 
process. The requirements for the supporting computer 
system and software architecture, however, were not so 
well defined. Typically, they had to be derived from 
the tactical functional requirements to extract data pro-
cessing performance requirements implicit in the tacti-
cal needs and the nature of the data available to the 
combat system. For the SSDS, data processing perfor-
mance requirements were derived from detect/control/
engage reaction time requirements, from the volume of 
tracks expected in the ship’s surveillance region, and 
from the observed and predicted data rates of the ship’s 
sensors (the most demanding of the data providers). 

Additional guidance came from higher-level require-
ments of a programmatic and historic nature. SSDS 
software and computer architecture designers recognized 
this ill-defined but critical feature of combat system 
development. The following general requirements con-
tributed to the SSDS architecture. They are almost non-
quantifiable and largely historic—reflecting 20 years’ 
observance of Navy tactical software—but significant 
nonetheless.

One of the main contributors to the SSDS architec-
ture was the desire to simplify the functional relation-
ships among the software so as to logically and perhaps 
physically decouple the complex interactions seen in 
much of the historic tactical software. In addition, the 
Navy tactical processing architecture had to achieve 
cost and performance benefits derived from the quickly 
improving processing and data transfer performance 
offered by COTS products as well as improvements in 
computer languages; however, the architecture had to 
be easily adapted to the brief life of each new product.

Tactical software architectures must address the 
nature of computer processing and the system interfaces 
of the combat system. Tactical data processing is time-
critical and must address large volumes of data from 
ownship sensors and offboard platforms. The features 
found in typical commercial operating systems such 

Figure 3.  Many unique logical and data transfer “interfaces” 
among functions within the central processor lead to complex 
interactions that are difficult and expensive to expand, modify, or 
maintain. The central processor is easily CPU- and I/O-bound, 
particularly with the high-order language requirement and increas-
ing numbers of sensors and weapons. This organization is not  
well matched to the characteristics of combat system data flow or 
processing.
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as UNIX do not support the critical response times 
and predictable performance needs of tactical process-
ing. Tactical processing must occur in real time at 
high volume and low latency. It must also address the 
“…ility” requirements that greatly affect system cost, 
development ease, and general long-term quality; e.g., 

	 Maintainability: Can software fixes and corrections be 
made easily? 

	 Extensibility: Does the software architecture easily 
support growth in functionality, processors, inter-
faces, and languages?

	 Understandability/visibility/comprehensibility: Is the soft-
ware system conceptually simple, or are its operations 
complex and obtuse?

	 Reliability: Can the software system give predictable 
performance?

	 Testability: Can the software be easily tested, and are 
there convenient measurement points? 

The software must have a robust design to accom-
modate the unpredictable nature of tactical processing 
loads and potential equipment faults; function in a less-
than-complete processing environment; not be suscepti-
ble to critical single points of failure; and be loosely cou-
pled so that functions can be removed or added easily. 
Also, because of the frequent revision and improve-
ment of COTS products, the software and processing 
elements must be easily updated, and a change to one 
must not generally affect the other.

These requirements, together with lessons learned 
from past CDS efforts and APL’s sensor integration 
experience, resulted in an SSDS design that was new 
conceptually, physically, and functionally. 

SSDS ARCHITECTURE DESCRIPTION 

Architecture Concepts

Information-Oriented Design Concept 
The SSDS software architecture incorporated the 

information-oriented design (IOD) concept that evolved 
from APL’s NATO AAW studies. This software design 
concept was specifically applicable to a distributed 
combat system environment, satisfied all the “ility” 
requirements, and provided an “open,” loosely coupled, 
logical processing environment. Rather than focus on 
point-to-point functional and physical interfaces, the 
IOD concept recognized the continuous and concur-
rent nature of combat system data processing, and con-
centrated on the information that was being produced 
and the responsibility for its creation. As illustrated in 	
Fig. 4, IOD combat system functions do not interact 
with each other, but rather with the flow of combat 
system information. 

Functions are simply assigned unique responsibilities 
to produce unique system information, which is broad-
cast as messages throughout the system. Each function is 
offered access to the system information flow from which 
it will perform its own duties. For robust design, each 
function must deal with potentially incomplete infor-
mation and must recognize system information events 
that are particularly sensitive or pivotal to the function’s 
purpose. Collectively, this robust information focus pro-
vides functional independence and a loose coupling of 
the software processes.

In general, information is only generated upon 
change. This serves two purposes: (1) the general revi-
sion and minimal data loading of information poten-
tially used by other system functions (i.e., database 
update), and (2) the possible triggering of other func-
tion processes that are keyed to changes in particular 
information.

From a software system design/development point of 
view, the functional independence of the IOD removes 
the logical complications of sequential function coordi-
nation and communication. From an integration/testing 
point of view, if a function is not available, its only 
impact is the lack of its particular information in the 
system-wide database. Other functions must continue 
to operate to their best capacity on less information. 
Testing and development of individual functions may 
be performed in isolation, stimulated only by a con-
trolled message flow and evaluated solely on their abil-
ity to generate their assigned information.

Given this form of functional independence, it is 
easy to develop physical independence in the form of 
distributed processor architectures. This allows massive 
computing power to be focused on particularly impor-
tant functions, providing growth and change that are 
completely independent of other system processes.

Combat system information flow

Combat system functions and subfunctions

Not this:

But this:

Figure 4.  The information-oriented software design concept 
decouples complex, highly interrelated functions and instead fea-
tures independent functions with access to a common information 
source.



540	 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 22, NUMBER 4 (2001)

L.  S.  NORCUTT

The addition of a new system function in such an 
environment requires only the definition of the infor-
mation (if any) it will add to the system information. 
Existing functions need to be changed only if the addi-
tional information is desired to improve the quality of 
their current output. By definition, the new function has 
access to all system information and will be informed 
upon update of any portion. In this environment there is 
total independence of functional definition and imple-
mentation. New processes may be added to the system 
to analyze or extract system information on a com-
pletely independent basis. Information display functions 
may similarly be added with total independence.

Information Attribute, Message, and  
Distribution Concepts

Following the IOD theme, SSDS concepts describe 
the system in terms of information “entities” having 
numerous “attributes” and relations among attributes. 
Furthermore, the data are broadcast upon change to all 
interested functions within the SSDS to use as each sees 
fit. In a sense, this is a form of object orientation where 
the objects are active rather than passive. 

It should be noted that the combat system itself may 
be considered an entity described by status attributes. 
Also, surveillance tracks may be thought of as entities, 
having attributes of position, velocity, identification, 
engagement status, etc. Collectively, the attribute data 
define the state of the combat system. Its functions con-
tribute to that state and react to changes in it, as illus-
trated in Fig. 5.

Additional features of these concepts are as follows:

•	 The responsibility for data entities and attributes is 
assigned to particular and unique functions within 
the SSDS. This method of segmentation allows a 

clear separation of the contributions from each SSDS 
element and function. System information has a dis-
tinct source, directly related to a specific portion of 
software and traceable to specific message output to 
the data distribution architecture.

•	 System messages containing the entities and attri-
butes are defined and broadcast. Messages are more 
oriented to attribute assignment than to total entity 
description. The sum of system messages constitutes 
the total of the system information, which all the 
SSDS functions use as needed and contribute as 
assigned.

•	 Messages are filtered upon receipt. Upon initializa-
tion, each principal function within the SSDS regis-
ters its message needs with data distribution commu-
nications packages (“infrastructure” software). Using 
broadcast and multicast techniques, the communi-
cations packages transfer all function message out-
puts to all other required destinations and filter input 
messages to accept only those desired.

•	 Each function uses system data and records the data 
as needed locally. There is no central data manager. 
Each function outputs its contribution to the system 
in the form of (nominally) broadcast messages. Data 
are nominally sent only upon change. Aside from 
means to initialize functions that gain access to the 
distributed system after steady-state operations are 
achieved and for system reconfiguration after casualty, 
data transfer is to be minimized to operational need. 
Data transfer is used as much for change notification 
as for stimulation of other functions.

•	 Functions do not use the system messages as a 
coordination device. This incurs functional coupling, 
which is to be avoided in functional design.

•	 Most data transfers are expected to be broadcast 
“send and forget.” This minimizes overhead in mes-

Figure 5.  The SSDS functional examples shown are assigned entity and attribute 
responsibilities; their visible and physical mechanism of message generation and receipt 
allows simple, manageable function (process or processor) distribution. Processes  
may be as elaborate as necessary, but also may be totally independent of all other  
processes. 

sage acknowledgment and log-
ical dependence. Special cases 
may require acknowledgment for 
safety or critical events, but these 
are expected to be relatively 
infrequent within the total data 
distribution environment.

SSDS functions attached to the 
distributed architecture impact the 
system only through their message 
contribution to entity and attribute 
definition. Processing techniques, 
languages, and data structures within 
a function are independent of the 
remainder of the SSDS. Response 	
to message receipt is totally the 
responsibility of the receiving func-
tion. Messages may be used to update 	
a function’s copy of track data 	

Messages of
interest

Messages of
interest

Messages of
interest

Message stream: sensor tracks, system tracks, track positions, track ID,
track engage order, etc.

Track identification
message

Track engage
order message

Track module Identification module Tactical action
module

System track existence message
Track position, velocity message

Track emitter message
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(organized optimally locally for the function’s needs) or 
may be used as triggers for functional response.

The flexibility of the concept allows SSDS processes 
to be totally distributed within the system as long as 
an underlying communication system is available. To 
accommodate survivability requirements, duplicate pro-
cesses are provided within separate enclosures to pro-
duce a passive monitor of data flow and to provide 
backup in the event of casualty to active processes.

Distributed Sensor Integration Concept
Another principal element of the SSDS conceptual 

design is the partitioning of tactical functions that col-
lectively form and maintain the system’s surveillance 
track information. The concept recognizes the continu-
ity and accuracy benefit of frequent and complemen-
tary sensor detections; the ability of individual sensors 
to optimize their individual performance; the benefit 
of central track organization and flexible data access; 
the importance of a priori information; and the power 
of processing distribution. In the SSDS IOD concept, 
individual sensors take what information they need and 
do their best to contribute their piece (Fig. 6). The 
SSDS provides central management, feedback, and false 
system track control. 

Robust Common Time and Time-Tagged Data Concepts
The use of time is critical to the architecture and 

technical processing performance of a distributed system. 
Although computers are very fast, the reliance on per-
forming a process quickly so that the results have an 
epoch of “now” is very risky, subject to data inaccura-
cies, and intolerant of the randomness of processor load-
ing and external events. To maintain accuracy in data 
calculations, the data must be time-tagged when it is 
measured or created. This “valid time” then maintains 
the epoch integrity of the measurement, which allows 
later processing with no loss in calculation accuracy. 

Another element of time and data is latency, which 
may be thought of as the delay from data measure-
ment to the subsequent processing of the data. In its 
most general terms, latency is the time between any 
two events of interest. It is critical in particular situa-
tions such as threat detection as well as in response and 
tracking loops. Latency within 10% of measurement 
periods is generally necessary for reasonable tracking 
maintenance.

A robust common time is a particular requirement 
of the SSDS. In the interest of system independence 
and the avoidance of single points of failure, the SSDS 
establishes a time base within its own collection of 
distributed processors, initialized and maintained over 
the network connections. In keeping with this system 
independence, the first processing node to be powered 	
distributes its internal clock for all successors to receive 

and accept as the time base. (Each node listens briefly 
before it assumes it is the first.) After a node receives the 
initial clock value, subsequent tuning of the networked 
time is maintained through the functions of NTP (Net-
work Time Protocol) implemented in the infrastructure 
software. In this manner, there is no requirement on the 
order of start-up of SSDS components. 

Another important function and element of the 
SSDS distributed system concept is its feature of broad-
casting system track information in a minimum period. 
Normally the frequency of sensor updates causes system 
track information to be broadcast within the minimum 
period (about 5 s), but a background process ensures the 
minimum for all tracks within the system. This feature 
allows each function within the SSDS to start up at any 
time and absorb the track picture within a few seconds.

Figure 6.  Conceptually, the SSDS provides each sensor with 
current system track information. If the sensor can associate a 
sensor observation with the track, it provides the system with the 
measurement data, forming an Associated Measurement Report 
(AMR). A central SSDS function uses this measurement to cal-
culate an updated estimate of system track position and velocity 
and broadcasts this updated attribute information throughout the 
system. Special functions, such as custom filters, may selectively 
use measured data in the AMRs for particular needs. 
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To maintain the robust nature of the functional and 
physical architecture and to accommodate independent 
start-up of processors, each application processor is pro-
vided with common code to receive system track data 
messages over the network and populate its own local 
database. This code can be tailored to retain only the 
information of interest to the local user. An important 
feature of this common code is its logic to “age” each 
track and delete it from the user’s local database if no 
updates have been received within a reasonable period 
of time (longer than the nominal system update period). 
This process, when coupled with the nominal system 
track broadcast feature, ensures that the user’s local 
information is consistent with the remainder of the 
combat system.

The SSDS data broadcast feature also complements 
the SSDS concept of distributed, independent operator 
display support. This concept uses CDK (Common Dis-
play Kernel) software within each console to render 
the majority of operator displays. By operating totally 
from broadcast system messages, multiple displays can 
be added to the combat system with virtually no net-
work load. Unique displays and controls are appended 
to the CDK software as specific application code to 
support particular user needs, with portions replicated 	
in different consoles as equipment casualty backup. A 

successive variant of the concept, incorporated in SSDS 
Mk 2, retains a common display core in each display, 
efficiently supplied from the network broadcast. The 
low-demand, tailored operator controls and displays are 
implemented in CORBA and a server over the network. 
This hybrid display implementation provides console 
and operator mode independence while matching effi-
cient processing and data loads with flexibility of soft-
ware design and implementation.

Physical Architecture
CDS history, derived and implicit requirements, 

NATO AAW studies, the rapidly emerging COTS 
computer and networking environment, and IOD soft-
ware architecture concepts all contributed to the design 
of the SSDS physical architecture. Being the ship’s only 
combat system and having a critical self-defense role, 
the SSDS must be dependable, robust, and able to sur-
vive at least limited battle damage. Its processors have 
to handle full track and sensor data loading and must be 
able to adapt.

The SSDS physical architecture, shown in Fig. 7, 
consists of a local area network (LAN) connection of 
clustered VME-based single-board computers and inter-
face cards that form LAN access units (LAUs) for the 
various functional elements of the SSDS. 

Figure 7.  The LSD 41/49 combat system consists of sensor systems, SSDS components, and weapon systems, all connected to the 
fiber-optic LAN via similar LAUs.
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LAUs typically contain single-board computers and 
interface cards to provide tactical processing and to com-
municate with specific shipboard systems such as sen-
sors, weapons, data links, and operator displays. Because 
of the broadcast nature of SSDS system data, computer 
programs that do not service a particular physical exter-
nal interface may execute in any processor, any LAU. 
Those functions that handle interfaces and integrate 
with particular external systems are placed in the same 
LAU and VME backplane as the corresponding physical 
interface boards. Figure 8 illustrates a generic LAU con-
figuration, which contains a LAN interface, numerous 
general-purpose single-board application computers, and 
an external interface. LAUs, connected via the LAN, 
may be placed anywhere on the ship. SSDS message 
infrastructure software operates within the LAN inter-
face and within each general-purpose application com-
puter to provide message distribution, board start-up, 
and common time synchronization.

SSDS single-board computers are general-purpose, 
COTS, and non-proprietary to capitalize on cost, avail-
ability, language supportability, growth, and simplicity of 
software programming constructs. Multiple individual pro-
cessors allow each principal tactical function to have its 
own computer, with the intent to operate at minimal CPU	
loading. This simplified distributed processing environ-
ment is a particularly effective means of avoiding resource 
contention problems among multiple programs sharing 
the same CPU, adding functionality, and allowing more 
predictable software processing performance. It also more 
easily accommodates the processing of data bursts that 
are typical of the tactical data flow environment. 

Figure 8.  The LAU concept provides both physical independence 
as well as functional and physical adaptation to particular interface 
and integration needs. While operating within the overall SSDS 
integration and broadcast information-oriented architecture, LAU 
components can support processors, languages, functions, and 
physical interfaces that are unique to a particular interface. This 
prototype LAU consists of a commercial VME card cage popu-
lated with LAN interfaces, device interfaces, application single-
board computers, and tape drives.

Requirements for system survivability, ease of growth, 
and flexibility led to the networking of SSDS compo-
nents. Network architectures, supported by data broad-
cast capabilities, also formed a physical complement to 
the IOD concepts of concurrent processing and univer-
sal access/contribution to system data. Further supported 
by general software infrastructure that facilitated mes-
sage distribution, the SSDS architecture acquired both 
the physical and functional open-access nature intended 
for the IOD. The physical distribution of SSDS compo-
nents, combined with redundancies of the chosen net-
work, also provided a degree of system survivability in 
the event of battle damage. 

Common network middle-layer protocols of the IP 
(Internet Protocol) family proved more than adequate 
for efficient data transfer and were universally avail-
able for software development. The ease, efficiency, 
and independence of the UDP (User Datagram Pro-
tocol) broadcast and multicast protocols were used to 
convey the bulk of SSDS network data, such as sensor 	
track updates. In a few critical cases, data transfer 
acknowledgment was implemented to help ensure 
data receipt. In general, minimal network loading was 
desired to ensure the reliability and accessibility of net-
work communications. 

Despite the desire to use a minimal amount of the 
network data bandwidth, it is interesting to note that 
the Ethernet CSMA/CD (carrier-sense, multiple access/
collision detect) physical layer protocol was not thought 
at the time to be predictable enough for use as the SSDS 
network backbone. The combination of numerous, fre-
quent contributors of data (e.g., the numerous dis-
tributed processors and the characteristics of tactical 
data within the combat system) and the random, pro-
gressively longer back-off and retry characteristic of 
Ethernet could disastrously delay critical SSDS data 	
transfers. For its automatic rerouting features, more pre-
dictable physical layer token “ring” protocol, 100-Mbit 
performance, and commercial software support, the 
FDDI (Fiber-Distributed Data Interface) was chosen as 
the physical network. The glass fiber for data transfer 
was selected for its performance, low weight (Fig. 9), 
and low electromagnetic susceptibility. 

The SSDS network uses a dual home star topology 
incorporating network hubs that are positioned in dif-
ferent regions of the ship. Network star topology, illus-
trated in Fig. 10, uses a hub to connect to each 	
network node. This provides ease of troubleshooting, 
simplified COTS growth, and ease of reconfiguration. 
In the case of FDDI, the hub avoided the problems of 
optical bypass relays when reconfiguring around breaks 
or inactive nodes in the FDDI token ring architecture. 
(Conversion of the network to another technology such 
as ATM or high-bandwidth Ethernet would use the 
same topology but different hub equipment and inter-
face cards at the network nodes.) Dual hubs provide 
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Figure 9.  The 144 copper cables for CDS parallel channels on the left are compared with 
a single fiber-optic cable containing 144 individual glass fibers. The change in physical 
media, resulting in a potential cable plant weight reduction from 35.3 to 0.05 lb/ft, was 
only part of the technology challenge. To exploit fiber optics, an evolution in equipment 
interfaces was also required.

Hub

Hub

LAN
access

LAN
access

LAN
access

LAN
access

LAN
access

LAN
access

Figure 10.  SSDS use of a double star topology provides significant network reliability 
and battle damage survivability by automatically reconfiguring data flow in the event of 
damage to any node interconnection or to the alternate hub.

battle damage resistance and automatic communications redundancy for 
system reliability.

Common Infrastructure Concept
Common infrastructure software (middleware) developed by APL pro-

vided message distribution, time synchronization, and processor start-up 
coordination services, in addition to offering common API (Applications 
Programmer Interface) functions that facilitated development of tactical 
code within the multiple processors. This software, like the concepts of 
sensor integration, evolved in performance and maturity over many years 
of use in the NATO AAW experiments, Cooperative Engagement Capabil-
ity (CEC) development, and SSDS development. Synergism was achieved 
by combining the network concepts of the SSDS with the VME backplane 

message distribution features of the 
CEC (Fig. 11). 

COTS Refresh Concept
Recognizing the rapidly chang-

ing (and the generally performance-
improving) nature of commercial 
products, SSDS design and imple-
mentation focus on the use of the 
most common commercial hard-
ware, software, and network stan-
dards; the avoidance of proprietary 
products; and the adaptability of 
its interfaces. Although early SSDS 
development followed the standard 
DoD language of Ada, the subse-
quent COTS commonality of the 
C and C++ languages and their 
familiarity to software developers 
have since led to their use in the 
SSDS. The CORBA language is 
also employed in lightly loaded dis-
play interface software owing to its 
flexibility and productivity. 

The SSDS LAN design, through 
its fiber star topology and its reli-
ance on the common IP middle-
layer protocols, allows flexibility in 
the choice of the underlying physi-
cal implementation. Because SSDS 
tactical software uses the Transmis-
sion Control Protocol (TCP)/IP and 
UDP communication software com-
monly provided by network inter-
face vendors, minimal changes are 
required to accommodate different 
physical network implementations. 

Because the commercial market 
normally provides upgraded com- 
mon language (such as C) compil-
ers to complement upgraded pro-
cessor boards, the impact of refresh 	
on SSDS tactical code in such 
events is typically minimal. Since 
its inception, the SSDS has expe-
rienced COTS refresh twice, pro-
ceeding from Motorola M68020 	
processors to the M68040, and now 
the Power PC. 

COTS refresh has minimal effect 
on SSDS software and no effect 
on the conceptual architecture. 
The flexibility of the network and 
LAU structure allows adaptation to 
handle exceptions to processors and 
languages in each node if required.
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Functional Architecture
In classic Navy combat system terms, the SSDS per-

forms the functions of detect, control, and engage. In true 
IOD context, these may be shown as any combination 
of functional bubbles in a “flat” representation (Fig. 4) 
and could be implemented at various places throughout 
the network. A functional flow representation, shown in 

NATO AAW
System

government
program of work

experiments

LAN/
software
concept
demo.

SSDS
at-sea
demo.

SSDS
production;

engineering and
manufacturing
development

SSDS
development

and operational
tests

SSDS
Mk 2

Mod 0, 1, 2

Cooperative
Engagement
Processor,

backplane bus
development

CEC
demo.

90

VX
works

CEC
 demo.

94

Enhanced
power PC
bus control

CEC 2.0/2.1

1988 1990 1992 1994 1996 1998 2000

LAN software concepts

LAN/bus
commonality

LAN/bus
combination

SSDS Mk 1
production (12 ships)

Common
Genealogy
Architecture
Interface 3.0

Backplane messaging concepts

SSDS

CEC

Figure 11.  Common infrastructure software synergistically evolved over multiple programs, benefiting performance and 
development productivity.

Figure 12.  SSDS software functional architecture (sensor focus example). SSDS functions that collectively provide the 
detect, control, and engage combat system functionality are dispersed throughout the network, providing ease of extension, 
adaptation, and growth.

the IOD context, is illustrated in Fig. 12. This orients the 
functions in a left-to-right manner, illustrating the detect-
to-engage sequence of operations that may occur. Tap-
ping onto the stream of system information, and shown 
above the network flow, are the display functions of the 
SSDS Mk 1 Sensor Supervisor, Weapons Supervisor, and 
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Tactical Action Officer. The display functions absorb 
whatever information is needed for display and provide 
operator actions back to the network to be interpreted by 
the interested functions.

SSDS DEVELOPMENT HISTORY

Prototype Demonstration Phase
The SSDS began as a proof-of-concept demonstra-

tion for the Quick Response Combat Capability Pro-
gram in 1991. Incorporating some APL software reuse 
from the Navy Auto-ID and CEC programs and experi-
mental network IOD demonstration software from the 
NATO AAW effort, the new SSDS distributed archi-
tecture was formed. Under Navy direction, APL pro-
vided lead system architecture design and developed the 
sensor integration, displays, and infrastructure software. 
Complementing the team were the Naval Surface War-
fare Center and Hughes Aircraft (now Raytheon), who 
developed weapons scheduling and control and weapon 
interface software, respectively. This trio of software 
developers, building code at three independent sites, pro-
vided an early “ility” test of the SSDS architecture and 
integration concepts that proved quite successful through 
careful management of system message definition. 

In June 1993, following land-based testing and 
shipboard installation and integration aboard USS 
Whidbey Island (LSD 41), SSDS—automatically inte-
grating seven shipboard sensors and three weapon sys-
tems—performed a successful, near-simultaneous, fully 
automatic and coordinated detect-to-fire live engage-
ment of two target “threats” (a towed decoy unit and a 
remotely piloted jet drone) using the Rolling Airframe 
Missile and Phalanx gun system. 

Production Phase
After the successful demonstration efforts, the SSDS 

Mk 1 software and COTS components were ruggedized 
for shipboard operational use by Hughes Aircraft. 	

Production-quality LAU equipment and multiple LAU 
enclosures were developed to house the COTS proces-
sors, and additional integration software was developed 
by the Laboratory to incorporate the AN/SPS-67 sur-
face search radar and the AN/UPX-36 Identification, 
Friend or Foe (IFF) sensors. The first production SSDS 
Mk 1 was developed for USS Ashland (LSD 48), on 
which the system passed formal Navy operational test-
ing and evaluation in the summer of 1997 in its first 
attempt. 

The low cost and short schedule of SSDS Mk 1 
development earned it the U.S. government’s Hammer 
Award for efficiency of government procurement. 	

Current Status
The SSDS Mk 1 is now installed and operational on 

11 of the 12 ships in the LSD 41/49 class, with the 12th 
nearing completion. The SSDS Mk 1 successor, SSDS 
Mk 2, is currently being developed for two more ships 
and classes, USS Ronald Reagan and USS San Antonio, 
where the system will provide full combat system func-
tionality. In the Mk 2 configuration, much of the sur-
veillance sensor integration is provided by the installed 
CEC, which incorporates the same shipboard sensor 
integration concept as the SSDS.

SUMMARY
The SSDS architecture was an innovation and some-

what of a risk. But the risk was well justified for the 
success of its development and the continued benefits 
the architecture has shown. SSDS architecture concepts 
have succeeded in advancing both the state of the art 
and the tactical capabilities of the U.S. Fleet. 

SSDS Mk 1 development and capabilities are a suc-
cess story, due largely to the contributions of many tal-
ented system and software engineers, the experience 
base of those people, new software design paradigms, 
and the effective use of COTS software and computer 
components. 
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