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The Interacting Multiple Model Algorithm for Accurate 
State Estimation of Maneuvering Targets

Anthony F. Genovese

ccurate state estimation of targets with changing dynamics can be achieved 
through the use of multiple filter models. The interacting multiple model (IMM) algo-
rithm provides a structure to efficiently manage multiple filter models. Design of an IMM 
requires selection of the number and type of filter models and selection of each of the indi-
vidual filter parameters. In this article the results for five filter models on 10 target trajec-
tory segments are discussed and compared. The complexity of the filter models increases 
from a single constant velocity model to a three-model IMM filter. The results show that 
the overall performance of the state estimates, for most targets, improves as the complexity 
of the filter models increases. Selection of IMM filter parameters is addressed and results 
are provided to show that performance of the IMM appears to be relatively insensitive to 
large changes in filter parameters. The performance of an IMM is primarily determined by 
the selection of the component filter models.

INTRODUCTION
The performance of a tracking system is governed 

by the performance of the state estimation algorithm 
employed. Accurate state estimation of targets in a 
tracking system is required for reliable data association 
and correlation. The states to be estimated are typi-
cally the kinematic quantities of position, velocity, and 
acceleration. Filters are used on measurements to reduce 
the uncertainty due to noise on the observation and 
to estimate quantities not directly observed. The filter 
uses a model of the state process that can be used to 
accurately predict the behavior of the observed target to 
estimate the desired kinematic quantities.

State estimation of potentially maneuvering targets 
from sensor measurements often requires the use of 

multiple filter models to account for varying target 
behavior. Efficient management of the multiple filter 
models is critical to limiting algorithm computations 
while achieving the desired tracking performance. This 
requirement is achieved with the interacting multiple 
model (IMM) algorithm.1

The IMM algorithm is a method for combining state 
hypotheses from multiple filter models to get a better 
state estimate of targets with changing dynamics. The 
filter models used in the IMM for each state hypothesis 
can be selected to match the behavior of targets of inter-
est. Model management for the IMM algorithm is gov-
erned by an underlying Markov chain that controls the 
switching behavior among the multiple models. For the 
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resulting algorithm, logic decisions are not required for 
estimation of the model probabilities.2,3

BACKGROUND
State estimation for tracking is most effectively done 

by modeling the target trajectory as a linear system. The 
discrete-time state representation of a linear system is 
given in the following equation:

	 Xk + 1 = kXk  wk  ,

where Xk is the state estimate, k is a state transition 
matrix from time k to k + 1, and wk is system process 
noise assumed to be Gaussian-distributed zero mean and 
white. 

Observations for this process are assumed to be linear 
with respect to the state estimate. The observations are 
then given as

	 yk = HkXk + vk  ,

where Hk is the matrix relating the state to observation 
quantities and vk is observation noise assumed to be 
Gaussian-distributed zero mean and having zero cross 
correlation with the process noise wk.

The Kalman filter provides the minimum mean 
squared error solution to this linear system problem 
when the process under observation is completely rep-
resented by the state model.4 The equations used to pre-
dict and update the state and covariance for a Kalman 
filter are given as follows:
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where
	 X 	 = the state estimate,
	 P 	 = the covariance matrix, 
	 ~, ^ = the predicted and filtered quantities, 	

	 	 respectively,
	  	 = 	the discrete time state transition matrix,
	 Q 	 = 	the process noise matrix,
	 K 	 = 	the Kalman gain,
	 R 	 = 	the covariance of the measurement quantity,
	 I 	 = 	an identity matrix, 
	 yk 	 = 	the measurement quantity used to update the 

	 	 state estimate, and 
	 T	 = the matrix transpose operation.

Most tracking systems employ a single filter model 
with adaptive gains for state estimation of maneuvering 

targets. These systems require the detection of the target 
maneuver via a second estimator and decision-directed 
logic to change gains. The problems with this system 
are that the decision to switch can be delayed as a 
result of lags in the maneuver detection filter and false 
alarms can give false maneuver indications. In addition, 
a single state estimator will exhibit biases when the 
model is not matched to the target motion.

Multiple filter models enable a tracking system to 
better match changing target dynamics. This will yield 
the best overall performance on the maneuvering and 
nonmaneuvering time intervals of targets. The effective 
application of multiple models requires an algorithm 
to manage the models. Desired performance must be 
weighed against system resources. The IMM algorithm 
has been shown to be a very efficient implementation of 
the multiple model approach.1

The IMM Algorithm
The IMM algorithm is a method for combining state 

hypotheses from multiple filter models to get a better 
state estimate of targets with changing dynamics. The 
filter models used to form each state hypothesis can be 
derived to match the behavior of targets of interest. 
Figure 1 shows the flow diagram for an IMM algorithm 
with two filter models. Superscripts in the state vari-
ables represent the model hypotheses (1 and 2), and the 
symbols ^ and ~ are used to represent filtered and pre-
dicted quantities, respectively.

The state estimates for each model from the previ-
ous cycle, X̂1 and X̂2, are mixed prior to state update 
using a set of conditional model probabilities. The con-
ditional model probabilities ( ˜ ) i j  are computed using 
the model probabilities from the previous update and a 

Figure 1.  A block diagram of the IMM algorithm with two filter 
models.
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state switching matrix selected a priori. The mixed state 
estimates are updated using each filter model. The like-
lihood (i) for each filter model is computed during 
the state update from the innovations (Zi) and inno-
vations covariance matrix. The likelihood, prior model 
probabilities, and state switching matrix are then used 
to update the model probabilities. The estimates from 
each filter model are combined as a weighted sum using 
the updated model probabilities.

The equations governing the IMM algorithm for an 
arbitrary number of filter models, N, are outlined in the 
following steps. The process then begins with the com-
puted quantities from the previous filter iteration. Ini-
tialization procedures are required to obtain the state 
estimate, covariance, and initial probabilities for each 
filter model.

State Interaction
Prior to the filter update, the model state estimates 

and covariances are mixed using computed conditional 
model probabilities. The mixed state and covariance for 
model j at time k is computed as
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where pij is the ij element of the state switching matrix 
() that defines the a priori probability for switching 
from model i to model j, and c j  is a normalization 
vector used to maintain a total model probability of 1. 
Also note that X̂0 j is the mixed state estimate for each 
filter model and P̂0 j is the mixed state covariance.

Model Probability Update
The likelihood of each model is computed using 

the innovations Z j computed during state update and 
the innovations covariance matrix S̃ j  computed in the 
Kalman gain. This step is done after state prediction 
of each mixed state estimate. If Gaussian statistics are 
assumed, the likelihood of model j is given by
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where mo is a vector of observations for the current 
update and m̃ j  is the predicted track state for filter 
model j transformed into the frame of the observations.

The model probabilities are updated after all filter 
models have been updated as

	 ˆ j j j
c= 1

c 	

with

	 c i i

i =
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1
, 	

where ̃ j  is the updated model probability for model j 
and c is a normalization constant. Note that innovations 
covariance matrix S̃ j  is computed using the predicted 
covariance matrix P̂0 j.

State Estimate Combination
The combined state estimate and covariance is com-

puted from the updated filtered states from each model 
weighted by the updated model probabilities:
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FILTER MODEL DEFINITIONS
Three filter models have been selected to test the 

IMM algorithm with different configurations. These 
models are a constant velocity (CV), a constant accel-
eration (CA), and a three-dimensional turn with a kine-
matic constraint (TURN).

CV Model 
The state vector for the CV filter model is defined as

	 X = [ ˙ ˙ ˙ ,x x y y z z]T
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where x corresponds to the east component, y corre-
sponds to the north component, z corresponds to the 
zenith component, and ẋ , ẏ, and ż  are the corre-
sponding rates. Target accelerations are modeled as a 	
continuous-time white noise process to ensure model 
stability. This model will yield the best estimates of 
position and velocity on nonmaneuvering targets. The 
extended Kalman filter derived in Ref. 5 is used as the 
basis for the CV filter model.

The state transition matrix for the CV model is 
defined for a linear prediction from the track valid time 
to the time of the measurements
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and where ∆t is the difference of the measurement time 
and valid time of the track.

The plant noise matrix for the CV filter model is 
derived as the discrete time representation of the white 
noise acceleration. This matrix is given as
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The parameter q is the filter plant noise spectral den-
sity and has units of m2/s3. This parameter is selected to 
control the steady-state gain performance of the filter.

CA Model 
The filter state vector for the CA filter model is 

defined as

	 X T= [ ˙ ˙ ˙ ] ,
..

x x x y y y z z z
.. ..

	

where the position and rate terms are the same as those 
in the CV model and x

..
, y

..
, and z

..
 are the acceleration 	

estimates.
The state transition matrix is defined for a linear pre-

diction in all three dimensions using all state estimate 
terms
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The plant noise matrix is defined as
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The parameter q for this model has units of m2/s5. 
The prediction and process noise model for this filter is 
derived in Ref. 6.

TURN Model 
The filter state vector for the TURN filter model is 

the same as that for the CA model,

	 X T= [ ˙ ˙ ˙ ] .
..

x x x y y y z z z
.. ..

	

The state transition matrix for this model is defined 
to perform a constant-speed turn maneuver along the 
trajectory defined by the state estimates of velocity and 
acceleration. This matrix is given as
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and  is the turning rate calculated from elements of 
the filtered track state as
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filter model covariance, with the result that the covari-
ance is smaller than true measurement noise-only errors. 
However, lag errors are significantly reduced during the 
turn period using this procedure. The full derivation of 
this procedure is given in Ref. 7, and the filter model is 
applied within an IMM structure in Ref. 8.

The constraint is applied as a pseudo-measurement 
update to the TURN model. The filtering equations for 
this formation have been derived as
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where the superscript c in each equation denotes terms 
related to the pseudo-measurement update. Rc is the 
variance of the pseudo-measurement update selected 
for this application to achieve a gain of 0.5. In the 
IMM filter model this constraint is applied twice: once 
after state interaction and once after the measurement 
update for the TURN filter model.

FILTER MODELS FOR PERFORMANCE 
COMPARISON

A study has been conducted to compare the perfor-
mance of five filtering methods. The application con-
sidered is tracking of airborne targets. The filtered root 
mean square (RMS) position and velocity errors have 
been compared on a variety of maneuvering targets. 
The five filtering methods with operating parameters 
are given in Table 1.

The five filter models have been selected to show 
filter performance as a function of increasing filter com-
plexity. The first two methods are single filter methods, 

Table 2. Sensor model parameters.

	 	 High 
	 Scan	 precision 
Update period (s)	   4	 1
Range accuracy (m)	 50	 5
Bearing accuracy (Mrad)	   5	 1
Elevation accuracy (Mrad)	   5	 1

Table 1. Filtering methods for comparison study.

Method	 Filter models	 Filter parameters	
	 1	 CV	 qCV 	= 400 m2/s3	
	 2	 CA	 qCA 	= 400 m2/s5	
	 3	 CV-CV IMM 	 qCV  	= 1 m2/s3 
	 	 	 qCA  	= 3600 m2/s3	

	 4	 CV-CA IMM 	 qCV 	= 1 m2/s3 
	 	 	 qCA 	= 400 m2/s5	

	 5	 CV-CA-TURN IMM 	 qCV 	= 1 m2/s3 
	 	 	 qCA = 400 m2/s5 
	 	 	 qTURN = 25 m2/s5	
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The plant noise matrix for this 
model is the same as for the CA 
model.

The TURN model also uses a 
pseudo-measurement update derived 
from the constraint that the target is 
undergoing a constant-speed turning 
maneuver. Using the pseudo-mea-
surement derived from this maneu-
ver assumption tends to influence 
the state estimates to change to fit 
the profile of this type of target. 
Namely, the vector representation 
of the acceleration estimate will 
change to be normal to the velocity 
vector. Application of this pseudo-
measurement will also affect the 

and the last three are IMM filters. Methods 1 and 2 will 
show filter model performance for nonadaptive single 
model filters. The CV filter q value for method 1 was 
selected high in order to reasonably limit lags during 
target maneuvers. The CA filter q value was selected the 
same for all filter methods where a CA model is used. 
The three IMM methods represent an increase in com-
plexity that should be reflected in the results. The filter 
parameters were selected experimentally using general 
guidelines. Filter parameter selection and its impact on 
the IMM filter performance will be addressed later in 
this article.

Two sensor models are selected to provide a broader 
view of the filter performance as applied under different 
operating conditions. The first sensor is a surveillance 
(scan) radar that provides detections at a 4-s update 
period. The second is a high-precision (HP) radar with 
an update period of 1 s. Each sensor model provides 
three-dimensional measurements of position that are 
zero-mean and Gaussian. The standard deviation of 
measurement noise for each sensor model is given in 
Table 2.

The two sensor models are used in combination with 
five maneuvering target models to provide a testing suite 
for the filter models. The five maneuvering target models 
are a weaving maneuver with a 12-s weave period, 10-g 
linear speed acceleration for 10 s, high-altitude 6-g dive, 
1-g constant speed turn, and 5.6-g constant speed turn.
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RESULTS
The simulation results for each filter model are 

obtained from Monte Carlo simulations with 100 real-
izations. The RMS errors for position and velocity 
are computed from the filtered track state estimate of 	
each filter model. Table 3 provides the peak RMS posi-
tion and velocity errors for 10 selected periods of the 
target and sensor combinations. The target and sensor 
combination for each period is listed in the first two col-
umns of Table 3.

The first two rows of Table 3 show the peak RMS 
errors of each filter model on the nonmaneuvering 
period of a target model. The scan sensor was the mea-
surement source for period 1, and the HP sensor was the 
measurement source for period 2. Examination of the 
table entries shows that each of the IMM models out-
performs the single filter models. This finding indicates 
that the proper model of each IMM, the CV with low 
process noise, was primarily selected for the nonmaneu-
vering trajectory. The single CV filter model could not 
achieve the same variance reduction on nonmaneu-
vering tracks as the IMM filters because the q value was 
selected high to limit lags on target maneuvers. The 
single CA filter model has the largest position and rate 
errors. Since the majority of most track periods in practi-
cal applications are nonmaneuvering, that would make 
this filter model undesirable.

The third row of Table 3 shows the peak RMS 
errors for the weaving target. None of the filter models 
selected for the IMM methods is matched to the chang-
ing dynamics of the weaving target. Thus, the results for 
this target do not show a clear advantage of one filter 
model over any of the others. Figure 2 shows the RMS 
velocity errors for all filter models as a function of time 
for the weaving target. This plot shows the relative per-
formance of each filter model during the nonmaneuver-
ing period (<60 s), as well as the magnitude of the errors 
during the weave. Although the IMM does not reduce 
errors during the weaving period, the performance is 
not degraded from any single model. Figure 3 shows 

Table 3. Peak RMS errors for selected target periods.

		  Position errors (m)/Velocity errors (m/s)
Target	 Sensor	 CV	 CA	 CV-CV	 CV-CA	 CV-CA-TURN
No maneuver	 Scan	 289/42	 360/133	 243/20	 233/17	 241/22
No maneuver	 HP	 50/23	 59/49	 40/10	 34/7	 36/9
Weave	 HP	 51/55	 44/60	 54/60 	 49/56	 48/57
10-g acceleration	 HP	 64/112	 37/64	 37/73	 43/76	 44/80
Diver	 Scan	 246/206	 180/136	 175/154	 172/132	 167/129
Diver	 HP	 48/73	 36/45	 36/56	 36/44	 34/41
1-g turn	 HP	 85/36	 100/63	 86/39	 85/47	 81/36
5.6-g turn	 Scan	 968/323	 445/179	 432/188	 444/174 	 391/120
5.6-g turn	 HP	 107/105	 77/60 	 78/84	 76/67	 65/38
5.6-g turn (post maneuver)	 HP	 70/25	 70/67	 66/32	 63/32	 66/53
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Figure 2.  The filtered RMS velocity errors for the weaving target 
plotted as a function of time for each of the five filtering methods. 
Note that the weave maneuver begins at 60 s.

Figure 3.  The average model probabilities for the CV-CA-TURN 
IMM on the weaving target. The model probabilities are averaged 
over 100 Monte Carlo realizations.
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the average model probabilities for the CV-CA-TURN 
IMM on the weaving target. The CV model is domi-
nant during the nonmaneuvering period, but the IMM 
algorithm is not able to find a single preferred model 
during the target weave.

The fourth row of Table 3 shows the peak RMS errors 
for the 10-g linear speed acceleration. This target maneu-
ver should be well matched to the CA filter model. How-
ever, the results indicate that the single CA is only 	
marginally better than the CV-CV IMM filter model. In 
addition, it appears that the CV-CV filter is better than 
the more complex CV-CA and CV-CA-TURN filter 
models. This is a deceptive result because the peak of the 
filter error is in the initial maneuver transition period. 
Figure 4 shows the RMS velocity errors as a function of 
time. This plot shows that although the errors at the start 
of the maneuver are similar, the CA, CV-CA, and CV-
CA-TURN filters are much better in steady state. The 
plot also shows that the CA filter is slow to recover non-
maneuvering error levels after the maneuver ends. Thus, 	
the additional filter models in the more complex fil-
tering methods allow for a quicker recovery from the 	
initial lag.

The fifth and sixth rows of Table 3 show the peak 
RMS errors for the high-altitude diving target using each 
sensor model. The results show a marginal improvement 
in the filter errors as the model complexity increases. 
Figure 5 shows the RMS velocity errors as a function of 
time for the diving target using the HP sensor model. 
This plot shows the peak errors at the start of the 
maneuver with the CV-CA-TURN IMM as best in 
steady state. This demonstrates that the TURN model 
implemented for this comparison study works well for 
maneuvers in three dimensions.

The seventh row of Table 3 shows the peak RMS 
errors for the 1-g constant-speed turn maneuver. All 
filter methods yield similar errors, with the exception 
of the single CA model, which had the worst overall 	
performance. The lag errors produced from a small 
maneuver do not require the dynamic filter adaptabil-
ity of a complex IMM. The errors did increase from the 
nonmaneuvering steady-state values, indicating that the 
IMM did detect the maneuver and adapt.

The eighth and ninth rows of Table 3 show the peak 
RMS errors for the 5.6-g constant-speed turn maneuver 
using each sensor model. The errors for these cases show 
a significant improvement as filter model complexity 
increases. This is expected since the TURN model is 
matched to the target maneuver. This is also true when 
either sensor was used to provide measurements to the 
filter models. Figure 6 shows the RMS velocity errors as 
a function of time for the 5.6-g turn using the HP sensor 
model. This plot confirms the error reduction achieved 
in the maneuver steady state using the CV-CA-TURN 
filter model. Note from Figure 6 the improvement from 
the CV-CV filter to the CV-CA filter model. This plot 
shows the short-duration increase in errors following 
the target maneuver for the CA and CV-CA-TURN 
models. The peaks of these errors are reflected in row 
10 of Table 3. Shown in Figure 7 are the average model 
probabilities for the CV-CA-TURN IMM on the 5.6-g 
constant-speed turning target. These model probabili-
ties reflect the correct selection of each filter model for 
the target duration that yielded the best overall error 
performance.

In general, the filter performance improved, with 
respect to RMS errors, as the complexity of the filter 
models increased. The CV filter model could not achieve 
the same variance reduction on nonmaneuvering tracks 
as the IMM filters because its q value was selected high 
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Figure 4.  The filtered RMS velocity errors for the 10-g linear-
speed accelerating target plotted as a function of time for each 
of the five filtering methods. Note that the maneuver occurs from  
60 to 70 s.

Figure 5.  The filtered RMS velocity errors for the high-altitude 
diving target plotted as a function of time for each of the five filter-
ing methods. Note that the dive starts at 110 s.
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to limit lags on target maneuvers. However, this model 
also proved to have the largest errors during most of the 
target maneuvers. The CA model performed well with 
the target maneuvers but had the worst performance on 
the nonmaneuvering tracks.

All of the IMM models were equally effective on 
nonmaneuvering tracks. The key to the IMM filter 
model performance during target maneuvers is a match 
of the filter state models to the target dynamics. The 
CV-CV IMM does not try to model target maneuvers 
but instead limits lags by increasing filter gains. Thus 	
this model had the largest errors of the IMM models 
during target maneuvers. The CV-CA IMM out-per-
formed the CV-CV IMM on most target maneuvers 
because of the acceleration estimates in the filter model. 
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Figure 7.  The average model probabilities for the CV-CA-TURN 
IMM on the 5.6-g constant-speed turning target. The model prob-
abilities are averaged over 100 Monte Carlo realizations.

The CV-CA-TURN yielded the best overall perfor-
mance on the turning targets while providing a compa-
rable performance on all other targets.

PARAMETER SELECTION FOR THE 
IMM FILTER

Design parameters for the IMM filters are selected to 
control filter operating characteristics such as gain and 
response to maneuvers. The required design parameters 
for the filtering methods defined in the performance 
comparison are the IMM state switching matrix () 
and the filter model q values.

State Switching Matrix
The state switching matrix is selected as part of the 

IMM algorithm to govern the underlying mode switch-
ing probabilities. This matrix defines the probability 
that a target will make the transition from one filter 
model state to another state. An example of a typical 
state switching matrix, for an IMM with two models, is 
given here:

	 � =












=










p p
p p

11 12

21 22

0 95 0 05
0 12 0 88

. .

. .
. 	

The first filter model within an IMM is typically 
selected to handle the nonmaneuvering periods of a 
target trajectory. Under most conditions, this is best rep-
resented by a constant-velocity filter model with small 
process noise. As a general guideline, the first model 
is selected to have the highest probability. The second 
model, representing a target maneuver, is selected to be 
less probable than the first model. This is done to repre-
sent the behavior of typical airborne tracks.

Figure 8 shows the RMS velocity errors using the 
CV-CA IMM filter with three different state switching 
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Figure 8.  The filtered RMS velocity errors using a CV-CA IMM 
filter model with three different switching matrices plotted as a 
function of time using the 5.6-g constant-speed turning target.
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Figure 6.  The filtered RMS velocity errors for the 5.6-g constant-
speed turning target plotted as a function of time for each of the 
five filtering methods. Note that the turn maneuver occurs from 60 
to 110 s.
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matrices. The red curve represents the state switching 
matrix selected for the filter performance comparison 
study. A comparison of the plots of Figs. 6 and 8 shows 
that the selection of the filter models has a larger effect 
on state errors than subtle variations in the switching 
matrix. The black and blue curves in Fig. 8 show that 
moderate changes to the state switching matrix will 
effect small changes to the filter performance. The larg-
est effects are seen during the nonmaneuvering periods 
when the total error is dominated by state noise. In gen-
eral, the performance of the IMM appears to be rela-
tively insensitive to the selection of the state switching 
matrix.

Process Noise Selection
The filter models defined for the filter performance 

comparison use process noise as a selected filter input 
to control the steady-state gains. The process noise is 
defined by a single selectable parameter specified as the 	
q value. The relationship between the q value and 
steady-state Kalman filter gains is known. Reference 9 
provides closed form expressions for the CV process 
noise model. Small q values yield small gains that pro-
vide good measurement noise reduction but lead to large 
lags during maneuvers. Large gains provide little noise 
reduction but give a better lag response during maneu-
vers. Conceptually, a multiple model filter algorithm 
could use two filters, one at each extreme of the gain 
spectrum, and the algorithm would select the proper 
balance between the two filters. This is not true for the 
IMM because selection of process noise needs to con-
sider the interaction between filter models.

Mixing filter model states and covariances in the 
IMM algorithm allows for a prompt reaction to chang-
ing target modes. However, this mixing will also affect 
the individual filter model gains. An example of this 
effect is shown in the plots of Figs. 9 and 10. Figure 9 
shows the bearing position gain as a function of time 
on a nonmaneuvering target for a single CV filter. Four 
curves are shown, representing different levels of input 
process noise. This plot shows reduction of the filter 
gain as q values are decreased. The plot in Fig. 10 shows 
the same curves taken from the first filter of a CV-CV 
IMM where the process noise of the second filter was 
kept constant. In contrast to the plot in Fig. 9, the gains 
in this plot are shown to reach a practical floor as the 
process noise is decreased. This floor varies with the 	
q values of the second filter, indicating an inherent limi-
tation in the realizable dynamic range of gains in a two-
model IMM.

The IMM model probability calculations are affected 
by the process noise selection for each filter. The selec-
tion of process noise parameters for filters within the 
IMM requires a balance between the high and low 
models to achieve the best model interaction. When 
the difference between process noise in the two models 
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Figure 9.  Single CV Kalman filter bearing position gains as a 
function of time on a nonmaneuvering target. The four curves rep-
resent different levels of input process noise.

q = 0.01B
ea

rin
g 

ga
in

0.1

0
0 20 40 60 80 100 120 140 160

Time (s)

0.2

0.3

0.4

0.5

0.6

q = 0.1
q = 1

q = 10

Figure 10.  The bearing position gains for the first filter model from 
a CV-CV IMM plotted as a function of time on a nonmaneuvering 
target. The four curves represent different levels of input process 
noise on the first filter model. The q value for the second filter 
model was kept fixed at 15,000 m2/s3.

is too large, the probability of the maneuver model will 
be low during target maneuvers. The effect of this is 
a degraded performance on maneuvering targets when 
a filter with a higher process noise is used. Figure 11 
shows RMS velocity errors from a CV-CV IMM filter 
model with three sets of q values. The plot represented 
by the red curve has the worst lag error during the target 
maneuver even though the process noise for the maneu-
vering model is the largest. Of note, the blue curve in 
Fig. 11 uses the same parameters from the filter compari-
son also plotted in Fig. 6. Similar to the state switch-	
ing matrix, selection of the filter models has a larger 
impact on model performance than the selection of 
filter process noise.
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Figure 11.  The filtered RMS velocity errors using a CV-CV IMM 
filter model with three different sets of input process noise plotted 
as a function of time for the 5.6-g constant-speed turning target.

CONCLUSIONS
The comparative results for five filter models on a 

variety of maneuvering targets show that methods that 
use the IMM algorithm provide the best overall results 
with respect to filtered position and rate errors. The per-
formance improvement of the IMM is dependent on 
having filter models that are well matched to the target 
behavior. The filter model that is best matched to the 
target dynamics will provide the best state estimates 
and will have the highest probability. Results presented 
here also show that behavior of the IMM algorithm 
is robust when none of the filter models matches the 
target dynamics. The overall IMM performance will at 

all times be similar to the best individual filter model 
within the IMM.

The performance of the IMM algorithm has been 
shown to be relatively insensitive to state switching 
matrix and filter process noise parameter selection. 
Results indicate that variations in the model parameters 
will effect small changes in the performance of the filter 
algorithm. Parameter selection needs to be considered 
to optimize the performance of an IMM given the com-
ponent filter models. Selection of the component filter 
models should be the primary consideration for design of 
an IMM since the best overall performance is achieved 
when a filter model is matched to the target kinematics.
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