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PARAMETRIC MULTISPECTRAL IR BULK FILTERING

A

Parametric Multispectral Infrared Bulk Filtering for  
Theater Ballistic Missile Defense

Kenneth V. Kitzman

fundamental challenge of Theater Ballistic Missile Defense (TBMD) design is to 
provide the weapon system with the capability of identifying the lethal object, usually a 
reentry vehicle (RV), from within the complex of objects associated with a ballistic mis-
sile flight. The threat complex can contain several individual large objects in addition to 
the RV. These might include a spent booster, an attitude control device, or both. If the 
threat has a solid-fuel rocket motor, numerous pieces of hot fuel debris may also be present. 
The potential number of such fragments is high enough to warrant concern about both 
the processing resources and the time required to sort through the debris. Thus, use of an 
efficient means to cull fuel debris measurements is desirable. An algorithm performing this 
function would reside in the signal processing chain prior to the target selection logic. 
Its goal would be to pare down the number of candidate lethal objects, thereby reducing 
the target selection task. Irradiance observations provided by an onboard infrared seeker 
operating simultaneously in two distinct wavelength regimes can be utilized to efficiently 
perform this function.

INTRODUCTION
A critical function of a Theater Ballistic Missile 

Defense (TBMD) system involves identifying the lethal 
object, usually a reentry vehicle (RV), from within the 
complex of objects associated with a Theater Ballistic 
Missile (TBM) flight. Because of the hit-to-kill require-
ment of TBMD engagements, the RV must be dis-
criminated from other classes of objects with a high 
degree of reliability. Since radar cannot see every 
object in the threat complex, an infrared (IR) sensor 
onboard the defending missile must perform this  
job. Owing to the nature of TBMD kinematics, the 

allowable window of time for performing this task is 
several seconds at most. 

The threat complex can contain individual princi-
pal objects, such as a spent booster tank or an attitude 
control device. In addition, if a threat uses a solid-fuel 
rocket motor, hot fuel debris may be present. The poten-
tial number of such debris pieces is high enough to war-
rant concern that they could overload discrimination/
classification capabilities.

This concern motivates the development of an effi-
cient means of identifying observed hot fuel debris. 
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Such an algorithm would reside in the signal processing 
chain prior to the final target selection logic; its goal 
would be to identify fuel debris fragments so that they 
could be eliminated from further consideration as tar-
gets. Effectively prioritizing threat complex objects will 
mitigate the ultimate target selection task, leaving fewer 
credible candidate lethal objects for final consideration. 
While the primary goal of the algorithm is to recognize 
debris fragments, from the point of view of the weapon 
system it is even more important to retain any observa-
tion associated with the RV. A crucial aspect of algo-
rithm design is to minimize the possibility of misidenti-
fying the lethal object as debris, because such a situation 
would result in a failed engagement.

Existing seekers designed for TBMD applications 
operate in a single IR waveband. Such devices record 
the IR intensities and angular locations of the objects 
within the seeker field of view. To achieve quick results 
with minimal resource expenditure, it is advantageous 
to perform debris identification in “bulk” mode; that 
is, to utilize directly observed IR measurements rather 
than features that must be derived by processing accu-
mulated data. Derived features consist of quantities such 
as mean intensity, standard deviation, and frequency, 
all of which must be computed from a time series accu-
mulation of data. Directly observed features, in contrast, 
are restricted to instantaneous observations of angle 
location and IR intensity. 

In terms of thermal properties—temperature and the 
product of emissivity and area (called emissive area)—an 
RV is relatively large and cool, whereas a fuel debris 
fragment tends to be small and hot. In a single IR wave-
band, their intensity measurements may not be distinct, 
since both size and temperature contribute to the IR 
signal. This overlap between small/hot and large/cool 
observations does not occur simultaneously in multiple 
IR wavebands, however. For this reason, a so-called 
“two-color” IR device can distinguish between observa-
tions that would overlap when viewed in a single wave-
band. This capability makes two-color IR a likely can-
didate for debris culling.

A threat complex prioritization scheme can use a 
Bayesian hypothesis test to distinguish between hot fuel 
debris on the one hand and larger, cooler principal 
objects on the other. Such an algorithm relies on 
statistical characterizations of observations likely to 
be recorded in the presence of various objects of a 
threat complex. Two-color IR observations depend on a 
number of different parameter values, including sensor 
waveband and noise characteristics, engagement geom-
etry and range, and object thermal property values. Sta-
tistical models of these quantities can be folded into a 
computation of measured irradiance values likely to be 
observed in the presence of a particular object. These 
statistical irradiance descriptions, called class-dependent 
feature distributions (CDFDs), can form the basis for 

identifying objects that belong to the hot fuel debris 
object class. CDFDs can be broadly categorized as either 
parametric or nonparametric.

A parametric CDFD is constructed by matching a 
distribution of known form to an ensemble of measure-
ments associated with a given object class. A common 
form of parametric CDFD is derived by computing a 
Gaussian distribution based on the sample statistics of 
a given ensemble. Nonparametric CDFDs are typically 
constructed numerically, either as histograms or through 
some process of numeric integration. Nonparametric 
CDFDs can provide more fidelity and precision in defin-
ing decision boundaries, but often at the expense of 
algorithm robustness. 

A prioritization algorithm based on the use of non-
parametric CDFDs was discussed in Ref. 1. The current 
article describes a parametric implementation of a simi-
lar algorithm. The following sections detail the compu-
tation of Gaussian CDFDs and describe their use as like-
lihood functions in the context of a binary hypothesis 
test designed to identify fuel debris objects. Operation of 
the filter is then illustrated with example calculations, 
the results of which are presented and discussed.

CLASS-DEPENDENT FEATURE  
DISTRIBUTIONS

We denote by 


  the vector of signature-based  
features that will form the basis for making decisions 
about the identity of objects under observation. For 
an IR system, the features decided upon might be  
estimates of temperature T and emissive area A, in 
which case
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Alternatively, a radar system might be designed to 
measure mean radar cross-section , detect a peak cross-
section  over some interval of time, and compute a 
scintillation statistic . In this case, the feature vector 
would be 
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In a discussion of CDFDs, it is useful to speak of the 
various components of a threat complex as belonging 
to object classes. Statistical descriptions of relevant prop-
erty values associated with the various object classes can 
then be viewed as reflecting in-class (as well as tem-
poral) variations. Individual pieces of solid-fuel debris, 
for example, can be expected to exhibit some range of 
temperatures. This variability will appear as uncertainty 
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in a statistical model of temperature for the fuel debris 
object class. Let the notation  represent the set of N 
possible object class distinctions. Objects that make up 
a TBM threat complex then fall into a small number of 
categories, including 

•	 The reentry vehicle (RV) object class
•	 The fuel tank (FT) object class
•	 The attitude control module (ACM) object class
•	 The hot fuel debris (HF) object class

As understanding of the threat increases and as the 
threat itself evolves to exhibit additional capability, 
more classes could be added (for example, a coun-
termeasures class). Next, we denote individual object 
classes within this set by j ∈  for j = 1, 2, . . . , N. 

With these definitions established, the ability of an 
attending sensor to extract the feature vector 



  on an 
object that falls into class j is given by the conditional 
probability density function

	 p j( ).
v 	 (3)

This CDFD takes into account the statistics of the 
object features, the sensor noise and sensitivity model, 
and the collection geometry. Once constructed, CDFDs 
corresponding to various object classes can be used to 
evaluate a particular feature realization in such a way 
as to allow inferences regarding the object class from 
which the realization originated. Gaussian CDFDs asso-
ciated with a two-color IR sensor are discussed and 
mathematically derived in the following section.

Two-Color IR CDFDs
Consider the feature vector e  associated with a two-

color IR sensor; it comprises E1 and E2, the irradiance 
values directly measured in the two seeker wavebands. 
In such a case, 
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Reference 2 derived expressions for nonparametric 
CDFDs on e  calculated via numerical integration of 
an expression involving several conditionally indepen-
dent statistical distributions. Later in this section, the  
construction of Gaussian CDFDs is outlined. Although 
a less numerically intensive task, this nonetheless still 
requires the specification of several parameters related 
to IR feature observation. 

Measured irradiance is a function of viewing geom-
etry, object thermal properties, and seeker noise and 
wavelength parameters. Object thermal properties—
temperature and emissive area—can be modeled as 
dependent on the class to which the object belongs. 

Table 1 lists the complete set of parameters involved in 
this discussion.

CDFD Parameter Values
Parameters that will be known during an engage-

ment can be fixed at discrete values, while others must 
be varied to produce a representative dispersion of mea-
surements. It is useful to model these variable param-
eters using probability distributions. 

The boundaries of the two sensor spectral bands 
are fixed wavelength  values. The sensor modeled in 
this study operates simultaneously in two long-wave IR 
bands (B1 and B2 of Table 1), chosen to exhibit sensitiv-
ity to the cool temperatures likely to accompany an exo-
atmospheric RV.

Seeker operational range is allowed to vary uni-
formly over a 20-km span centered about a representa-
tive TBMD detection range. Object thermal properties 
are also allowed to vary: temperature variability is mod-
eled using a Gaussian distribution, while emissive area 
is varied uniformly. This choice implies a relatively 
high degree of uncertainty about emissive area, which 
reflects the contributions of variations in surface emis-
sivity, aspect, and solid-body motion. Mean and vari-
ance values of the temperature distribution are specified 
according to object class. Extrema of the uniform emis-
sive area distribution are similarly class-specific. The cur-
rent study encompasses the four object classes defined 
previously. Their temperature and emissive area param-
eter values are specified in Table 2. These representative 
values were chosen for illustration; they are not associ-
ated with a particular threat.

Random draws from the distributions given in Table 2 
facilitate radiometric calculations. The spectral intensity 
of an object is computed first by integrating the Planck 
function corresponding to the object temperature over 
the spectral band of interest and then multiplying the 
resulting value by the object emissive area. This quantity 

Table 1.  Two-color IR measurement parameters.

Parameter	 Description
B1	 First contiguous IR  band  [11, 12]
B2	 Second contiguous IR band [21, 22]
1	 Band 1 noise model
2	 Band 2 noise model
E1	 Measured irradiance in band 1
E2 	 Measured irradiance in band 2
A	 Object emissive area 
T	 Object temperature
R	 Line-of-sight range
j	 jth object class
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is then divided by the square of the line-of-sight range to 
the object to compute irradiance arriving at the seeker. 
Application of a seeker noise model converts this pre-
sented irradiance value to the corresponding measured 
quantity. Following a model derived in Ref. 3, sensor 
noise behavior in the current investigation is character-
ized using additive and multiplicative components.

Additive noise, which corresponds to noise-equivalent 
irradiance (NEI), is the aggregate result of such phe-
nomena as detector thermal noise, self-emission of the 
seeker optics, and post-detector electronics noise. A 
random effect that is added to the presented irradiance 
value, NEI tends to dominate detection performance. 
It is often listed in units of femtowatts (fW) per square 
centimeter (1 fW = 10–15 W). A multiplicative noise 
component is used to model the spatial nonuniformity 
of electro-optical gain terms on a detector array; this 
nonuniformity is caused by the inherent imprecision in 
the array manufacturing process. Because its effect is 
proportional to signal strength, gain nonuniformity is 
modeled using a multiplicative noise term. This term 
typically dominates the NEI noise component as the 
target signature grows after detection has taken place, 
e.g., during the discrimination phase. In the present 
analysis, additive and multiplicative noise terms are 
identical in bands 1 and 2; however, noise variability 
between bands is easily accommodated by the model. 
Both contributors are described as zero-mean Gaussian 
noise, with standard deviations as follows: 

	 Additive noise: 	 a =	20 fW/cm2 	 (5)

	 Multiplicative noise:	 m =	5%.

Total noise figures in each band are then given by
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Gaussian CDFD Construction
The statistical models and parameter values described 

in the preceding section can now be used to generate 

sample data from which model CDFDs can be derived. 
Figure 1 displays 1000 observations from each of the 
four object classes whose thermal properties are given 
in Table 2. The observations are computed according 
to the models of range, object thermal properties, and 
detector noise just described.

In Fig. 1, observations of FT class objects span a 
significantly larger portion of the measurement space 
than do observations from the remaining object classes. 
The thermal property parameters associated with the 
FT class cause a relatively wide dispersal of individual 
feature realizations. To show feature-space relationships 
among the other three object classes, Fig. 2 depicts the 
same data in a magnified form. 

Model feature distributions can now be constructed 
using class-dependent observations. Sample statistics 
(mean vector   and covariance matrix ) associated 
with each class become the parameters that define the 
corresponding distribution according to the bivariate 
Gaussian expression

Table 2.  Class-dependent distribution parameters for temperature and emissive area. 

	 Temperature, T (K)	 Emissive area, A (m2)
Object class	 Mean, T	 Standard deviation, T	 Minimum, Amin	 Maximum, Amax

RV	 350	 10	 0.960	 1.040
HF	 1200	 300	 0.002	 0.018
ACM	 350	 14	 1.200	 1.800
FT	 450	 45	 2.500	 7.500

Note: Temperature is modeled as a Gaussian random variable, T ~ N(T, T), while emissive area is modeled with a 
uniform distribution, A ~ U[Amin, Amax]. 
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Figure 1.  Sample observations from the four object classes.  
Most of the depicted measurement space is occupied by FT  
observations. 
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Recall that e  is a vector comprising irradiance values in 
the two sensor spectral bands,
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The variable argument of the exponential in Eq. 7, 

	 ( ) ( ),v v v ve eT− −−1 	 (9)

defines a concave surface above the E1–E2 plane, the 
isocontours of which are ellipses. For example, 

	 ( ) ( )v v v ve e nT− − =−1 	 (10)

defines an ellipse centered at (1, 2) with ellipticity 
and orientation specified by the elements of covariance 
matrix . The boundary of this ellipse encompasses the 
central n- portion of the corresponding Gaussian dis-
tribution. Figure 3 displays new 100-element sample 
observations, from which CDFDs will subsequently be 
constructed, for the three object classes contained in 
the restricted measurement space of Fig. 2. Also dis-
played are 1- ellipses derived according to Eq. 10 from 
respective sample statistics. 

Comparing Figs. 2 and 3 reveals an example of the 
reduced fidelity associated with Gaussian modeling. 
Most of the fuel debris feature realizations in Fig. 2 are 

concentrated near the origin of the plot, with the fre-
quency of observations trailing off as irradiance values 
increase. The symmetrical ellipse rendered according to 
the sample statistics of the fuel debris observations in 
Fig. 3 does not capture this skewness. Figure 4 depicts 
the joint probability distributions derived from the 
sample data in Fig. 3.

BINARY HYPOTHESIS TESTING
To quickly identify solid-fuel debris objects, a binary 

hypothesis test (Ref. 4) can be used. In general terms, 
such a test is designed to process measured data and 
apply a decision rule to each observation to arrive at 
one of two mutually exclusive conclusions (hypothe-
ses). The first, denoted H0, is called the null hypoth-
esis; it usually corresponds to the absence of whatever 
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Figure 2.  Magnified view of the sample observations in Fig. 1 with 
the measurement space restricted so that most observations are 
from the RV, HF, and ACM object classes.

Figure 3.  1-σ ellipses computed from observations associated 
with three object classes.
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Figure 4.  Bivariate Gaussian probability distributions based on 
sample data from Fig. 3.
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signal, object, or condition is sought by the test. The 
second, H1, is called the alternate hypothesis; it is asso-
ciated with the presence of the particular condition 
under evaluation. Null and alternate hypotheses in the 
present context pertain to the identity of a given object 
under observation:

•	 H0 indicates that the object does not belong to the 
HF object class.

•	 H1 indicates that the object belongs to the HF  
object class.

The CDFDs described in the preceding section pro-
vide a means of processing the two-color IR measure-
ment vector e  of Eq. 8 in such a way as to select a 
hypothesis. For example, inserting HF object class mean 
and covariance values into the probability distribution 
given by Eq. 7 allows a computation of 

	 p e ,( HF)v

or, in binary hypothesis notation, 

	 p e H .( )1
v

	 (11)

This quantity represents the likelihood of observing a 
particular feature vector realization (falling anywhere on 
the measurement space over which the CDFD is defined), 
given that the object under observation belongs to the 
HF object class. A complementary likelihood,

	 p e ~( HF)v 	

or

	 p e H ,( )v
0 	 (12)

conditioned this time on the null hypothesis, may be 
computed in similar fashion. The null hypothesis cat-
egory of objects may be represented by either a single 
non-HF CDFD or some combination of such distribu-
tions. The point is to partition the total number of object 
classes into two categories, HF and non-HF (denoted 
~HF), which correspond to the mutually exclusive ele-
ments of a binary hypothesis test.

The two likelihood functions defined over a measure-
ment space region may be combined to form a likelihood 
ratio �( )ve  given by

	 �( )
( )

( )
.v

v

ve
p e H

p e H
= 1

0

	 (13)

As stated earlier, the numerator of the likelihood ratio 
represents the likelihood of observing a particular mea-
surement realization e , given that hypothesis H1 is 
true, while the denominator provides the corresponding 
probability under hypothesis H0. A likelihood ratio test 
is then performed by comparing the computed value of  

�( )ve  to some threshold.
Associated with the two hypotheses are a priori prob-

abilities 0 and 1, which represent an observer’s infor-
mation regarding which hypothesis is true before the 
test is conducted. Decision theory states that, on aver-
age, the probability of choosing the wrong hypothesis is 
minimized by employing a Bayesian decision criterion.4 
A Bayesian decision threshold is given by the ratio of 
a priori probabilities, weighted by the ratio of assigned 
costs for the two possible types of error, false alarm and 
miss. Error costs and a priori probability values must be 
chosen carefully to reflect the operating conditions of 
the algorithm. The decision threshold will vary accord-
ing to changes in these values, with resulting impact 
on filter performance. Performance effects of various 
threshold values are illustrated in a discussion of receiver 
operating characteristics later in this article. For the 
present purpose of illustrating filter construction, the fol-
lowing results are derived based on equal error penalties 
and equally likely hypotheses (reflected in equal prior 
probabilities). In such a case, the threshold becomes 
unity. The test is then given by

	 �( ) .ve
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H

1
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<

	 (14)

Because the natural logarithm is a monotonic function 
and both sides of Eq. 14 are positive, an equivalent test 
may be constructed using the log-likelihood ratio:

	 ln ( ) .�
ve

H

H

1

0

0
>
<

	 (15)

The threshold value of a likelihood ratio test trans-
lates into a static boundary in feature space. An obser-
vation that falls on one side of this decision boundary 
results in selection of the null hypothesis; an observa-
tion on the other side results in selection of the alter-
nate hypothesis. The shape of this boundary depends  
on the probability density functions that make up 
the likelihood ratio, because the likelihood ratio (or 
log-likelihood ratio) forms a surface above the two- 
dimensional feature space over which the constituent 
distributions are defined. The selected threshold value 
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then corresponds to a plane above 
the feature space, and its intersec-
tion with the decision surface forms 
the decision boundary.5

The ~HF object likelihood func-
tion (corresponding to the null 
hypothesis) can consist of either 
a single non-HF distribution or 
some weighted combination of such  
distributions. An important aspect 
of processor design involves judi-
cious representation of the ~HF 
object category. In the current 
implementation, this category is 
represented by the RV object class. 
This designation is based on the 
crucial importance of not misiden-
tifying RV observations as belong-
ing to the HF class. The CDFD 
in Fig. 4 corresponding to the RV 
object class is thus used to compute 
the conditional probability in the 
denominator of the likelihood ratio 
of Eq. 13. 

In Fig. 2, all observations from 
the HF and RV classes are con-
tained within the space bounded 
by 6  10–13 W/cm2 in the first 
irradiance dimension and 3  10–13 
W/cm2 in the second. A filter 
designed to identify observations 
from the HF class thus need only 
be concerned with this restricted 
region of measurement space, and 
any observation that falls outside 

these bounds can be rejected out of hand, i.e., classified as not belonging to 
the HF object class. Figure 5 depicts HF and ~HF CDFDs defined over this 
region of measurement space. 

The associated log-likelihood decision surface can now be computed 
according to Eq. 16:

	 ln ( ) ln ( HF ) ln ( ~HF) .�
v v ve p e p e= − 	 (16)

Because the two likelihood functions are given by joint Gaussian probability 
density functions, Eq. 15 becomes
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where the subscripts 0 and 1 indicate RV and HF parameter values, respec-
tively. A log-likelihood ratio decision surface is now given by the left 
side of Eq. 17. Note that this decision surface computes the difference 
between RV and HF elliptical surfaces, which are defined according to  
Eq. 9. The constant terms in the Gaussian likelihood functions are then com-
bined on the right side of Eq. 17. The resulting surface appears in Fig. 6.  
The contour along the surface indicates intersection with the plane whose 
amplitude is given by the right side of Eq. 17.

DECISION RULE IMPLEMENTATION
As filter inputs, a new set of 1000 observations associated with each 

object class was generated. Observations that fell within the prescribed 
boundaries, 0 to 6  1013 W/cm2 in the first irradiance dimension and  
0 to 3  1013 W/cm2 in the second, appear in Fig. 7. The decision boundary 
associated with the specified threshold value is also displayed, clearly sepa-
rating the majority of HF-class observations from those of the other classes. 
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Figure 5.  Joint Gaussian probability distributions computed for 
the HF and RV object classes. The RV distribution is centered 
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Figure 8 displays the same observations in decision 
space. Computed for each measurement is its decision 
surface value, given by the left side of Eq. 17. This value 
appears in Fig. 8 as an amplitude in the third dimen-
sion of the plot. The decision boundary is also plotted in  
Fig. 8. This boundary was derived in Fig. 6 as the isocon-
tour of the decision surface at an amplitude given by 
the right side of Eq. 17. Each observation whose deci-
sion surface amplitude lies below the threshold value 
causes the hypothesis test to conclude H0, that the asso-
ciated object belongs to the ~HF object category. Con-
versely, an observation that lies above this threshold 
on the decision surface results in an H1 decision, and is 
regarded as originating from an HF-class object.

Figures 7 and 8 display observations used as inputs to 
the object prioritization processor. Figure 9 graphically 

depicts filter results. The z dimension amplitude of each 
plotted point indicates the hypothesis selected for that 
observation. The x and y  coordinates indicate in-band 
irradiance values. Results are given in Table 3 as clas-
sification percentages.

RECEIVER OPERATING  
CHARACTERISTICS AND EQUAL 
ERROR RATES

Table 3 indicates the performance levels of a par-
ticular implementation of a likelihood ratio hypothesis 
test in the presence of each of four different classes of 
threat complex objects. Such a processor is characterized 
by two components. The first is the log-likelihood ratio  
decision surface, depicted in Fig. 6. The second is the 
threshold value. The decision surface contains all of the 
available information regarding the measurement-space 
variability of class-dependent data. Threshold computa-
tion is considerably more arbitrary, as a priori probability  

Figure 7.  Processor inputs plotted in measurement space region 
restricted to contain only RV- and HF-class observations. Also plot-
ted is the boundary resulting from a log-likelihood ratio threshold of  
T = 2 1 0

1 2ln(| | /| |) ./ 
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Figure 8.  The data of Fig. 7 plotted in decision space. The deci-
sion surface value associated with each observation is plotted on 
the z axis.
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Figure 9.  Processed data showing results of hypothesis testing. A 
value of 0 indicates that the null hypothesis was selected, i.e., that 
the observation is classified as having originated from the ~HF 
object classes. A value of 1 indicates the opposite, i.e., that an 
observation is regarded as originating from the HF object class.

Table 3.  Likelihood ratio hypoth- 
esis test results. 

Object class	 Percent correct
RV	 96.0
HF	 98.5
ACM	 99.6
FT	 100
Note: Percentages based on sample 
sizes of 1000. The notion of “cor-
rectness” corresponds to whether an  
observation was properly identified as 
belonging to the HF object class or 
as not belonging to this class (~HF).	
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and cost values are often merely educated guesses. The  
log-likelihood ratio function and resulting decision sur-
face do not depend on these values, however. This 
invariance permits the design of a processor with a 
floating threshold value that can accommodate subse-
quent revisions.

Filter performance is often described using two param-
eters: probability of detection and probability of false alarm. 
In the present context of a processor designed to iden-
tify solid-fuel debris objects, a false alarm occurs when 
a non-HF-class observation results in a selection of the 
alternate hypothesis. In decision space, this condition 
translates to a likelihood ratio computed for a non-HF 
observation that lies above the decision threshold. Con-
versely, filter probability of detection corresponds to 
the rate at which observations originating from the 
HF object class cause the filter to choose the alternate 
hypothesis. This occurs when the likelihood ratio asso-
ciated with an HF-class observation lies above the deci-
sion threshold. Probability of detection corresponds to 
the numerical complement of the probability of miss. 

Recall that the filter just described was implemented 
utilizing a Bayesian threshold, i.e., a threshold value sys-
tematically computed based on error costs and a priori 
probabilities of each hypothesis. The probabilities of false 
alarm and detection associated with this threshold can 
be approximated by averaging the number of times the 
respective conditions occur. Such a process is tantamount 
to Monte Carlo integration. For instance, out of 1000 
HF-class observations in the test sample, 985 resulted in 
log-likelihood ratios whose values were greater than zero. 
Table 3 thus reports the rate of correct classification for 
the HF object class, i.e., the probability of detection, 
as 98.5%. The corresponding false alarm rate is com-
puted by adding the number of incorrect decisions within 
the three non-HF object classes and dividing by the 
total number of non-HF observations. From Table 3, the 
number of incorrect classifications for the RV class is 
4% of 1000, or 40. For the ACM class, this number is 
0.4% of 1000, or 4. None of the FT class observations 
was wrongly identified. Therefore, the probability of false 
alarm is 44/3000 or 1.47%.

These probabilities are associated with a single thresh-
old value. Alternate filter implementations, employing 
the same decision surface but with different threshold 
values, will vary the level of performance. If the thresh-
old is lowered, for instance, the probability of detection 
will rise, but most likely at the cost of an increased 
false alarm rate. Alternatively, the threshold could be 
raised to reduce the number of false alarms, with a cor-
responding decrease in detection performance. A means 
of summarizing the relationship between the two prob-
abilities across the range of possible threshold values is 
the receiver operating characteristic (ROC). The ROC is 
a plot of filter probability of detection versus probability 
of false alarm for all possible threshold values. 

Figure 10.  ROCs that display performance degradation with 
increasing NEI levels. CDFDs corresponding to various levels of 
additive noise were used to construct decision surfaces. One- 
thousand–element samples from the four object classes were 
then projected onto each surface and their amplitudes used to 
derive the curves. Each point on a given curve represents a false 
alarm and detection probability pair (PFA, PDet) associated with a 
particular threshold level.

Figure 10 displays ROCs associated with various levels 
of detector NEI. The curve labeled 20 fW/cm2 is derived 
from the decision surface displayed in Fig. 6 and shows 
the relationship between probability of detection PDet 
and probability of false alarm PFA at all possible threshold 
values on that decision surface. As such, the curve passes 
through the (PFA, PDet) values (0.0147, 0.985), called the 
Bayes point of the ROC. This point consists of the false 
alarm and detection probability coordinates, derived in 
the preceding paragraphs, which correspond to the Bayes 
threshold. Multiple ROCs facilitate the comparison of 
filters derived from different decision surfaces, and thus 
represent a means of conducting a variety of sensitivity 
analyses. Additional curves in Fig. 10 display the effects 
on filter performance of varying the level of additive 
sensor noise. Better filter performance, resulting in a 
sharper ROC curve, is realized at lower NEI levels. Sim-
ilar studies could be conducted to examine the perfor-
mance impact of variations in sensor bands, multiplica-
tive noise, range uncertainty, or any other parameter that 
affects likelihood ratio calculation.

The ROC is a concise graphical way to view filter 
performance across various threshold values. The curve 
can be further reduced to scalar form by employing the 
notion of equal error rate.5 The equal error rate of a 
filter is found by locating the threshold value TEER for 
which the probabilities of false alarm and miss are equal.  
This common probability is the equal error rate. A low 
value of equal error rate corresponds to good processor 
performance; higher rates indicate decreasing function-
ality. The equal error rate of a likelihood ratio test  
corresponds to the intersection of the line 1  PDet = PFA 
with the appropriate ROC. Equal error rates for the 
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Table 4.  Equal error rates for 
the likelihood ratio tests depicted 
in Fig. 10.

	 NEI 
	(fW/cm2)	 Equal error rate
	 10	 0.0010
	 20	 0.0220
	 30	 0.0618
	 40	 0.1103
	 50	 0.1595

tests that correspond to various noise levels are given in 
Table 4.

CONCLUSIONS
Identification of hot fuel debris fragments can play 

an important role in discriminating the RV from the 
remaining TBM threat complex objects. Because of the 
short time available to perform the discrimination func-
tion, it is crucial to carry out this prioritization task 
quickly and efficiently. Two-color IR observations have 
two properties that suit them to this task: they can distin-
guish between small/hot objects and large/cool objects, 
and they are directly observable by a dual-band sensor.

Multiple sources of uncertainty exist in TBMD sens-
ing. Such sources include measurement noise from the 
attendant sensor, variability in the thermal property 
values of the objects under observation, and uncertainty 
in line-of-sight ranges at which these observations will be 
made. The construction of Gaussian class-dependent fea-
ture distributions provides a systematic way to reflect (in 
measurement space) probabilistic information regarding 
the values of these parameters. Such feature distributions 
corresponding to various object classes can then serve as 

components in a likelihood ratio hypothesis test designed 
to efficiently identify hot fuel debris fragments.

It should be reemphasized that the current algorithm 
is intended to function as a single component in the 
overall process of discrimination. By efficiently elimi-
nating hot fuel debris observations from further consid-
eration, an effective prioritization scheme can reduce 
the number of credible candidate threat objects from 
which the RV must ultimately be discriminated. Such 
a process must be carried out with two objectives in 
view: (1) quick and efficient identification of hot fuel 
objects and (2) retention of RV observations. Probabil-
ity of error analysis facilitates evaluation of filter perfor-
mance with respect to these two goals. The algorithm 
employed in this study achieves both objectives, given 
adequate signal-to-noise ratios.
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