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he engineering of complex systems or a “system of systems” has become

increasingly problematic in recent years, yet effective “architecting” approaches that
enable cost/performance trades are still immature. This article describes a systematic
approach to allocating top-level system-of-systems requirements to component systems,
which has been demonstrated on a naval mine countermeasures system-of-systems
representation. This integrated analysis produces system effectiveness as a function of
cost, corresponding subsystem requirements allocations, and a corresponding force
structure or inputs to an overarching force-level cost/performance analysis. Variants of
this approach are now being applied to support cost/performance analyses for the Navy
Theater Wide Program and to focus future science and technology investments for mine
countermeasures. (Keywords: Cost-effectiveness analysis, Nonlinear programming,

Requirements allocation, Stochastic optimization, Systems engineering.)

BACKGROUND

The engineering of complex “systems of systems” has
been receiving increased attention recently. System-of-
systems terminology is now widely used to describe how
the successful, combined operation of many platforms,
weapon systems, and communication systems is neces-
sary to achieve an overall warfare objective, especially
in Joint operations. This increased level of complexity
has become a concern at the highest levels of command,
as General John Sheehan, former Commander in Chief
of U.S. Atlantic Forces, has observed: “Victory will
depend on the ability to master the ‘system of systems’
composed of multiservice hard- and soft-kill capabilities
linked by advanced information technologies.”!

These systems of systems have arisen not by design,
but in response to the vision of users who recognize the
tremendous potential of systems working together to-
ward broad, common objectives, as expressed by Ad-
miral William Owens,? Vice Chairman of the Joint

Chiefs of Staff:

We have cultivated a planning programming and budgeting
system that tends to handle programs as discrete
entities. . . .Yet, the interactions and synergisms of these
systems constitute something new and very important. What
is happening is driven in part by broad conceptual architec-
tures—and in part by serendipity: It is the creation of a new
system of systems.
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Although the characteristics and systems engineering
challenges associated with systems of systems are becom-
ing well understood, effective “architecting” approaches
are still immature.>* Until successful methodologies
have been demonstrated, there will be little justification
for the services to move away from the current acqui-
sition focus on single systems procurements.

This article addresses how best to upgrade a complex
system of systems. A quantitative methodology for
requirements allocation to formulate an optimal up-
grade suite under cost and technology constraints is
demonstrated. The methodology uses a multidisci-
plinary approach including operations analysis, cost
modeling, nonlinear optimization, and stochastic mod-
eling and simulation (M&S). Appropriate sensitivity
analyses on technology constraints can help guide an
effective technology investment strategy.

SYSTEMS-OF-SYSTEMS DEFINITIONS
AND CONCEPTS

A complex system of systems generally has the fol-
lowing characteristics’:

e [t comprises several independently acquired systems,
each under a nominal systems engineering process.
e Time phasing between each system’s development is
arbitrary and not contractually related.
System couplings are interdependent.
Individual systems are generally unifunctional.
Optimization of each system does not guarantee
overall system-of-systems optimization.
e Combined operation of the sys-
tems represents satisfaction of an

design most likely did not develop in response to con-
cerns over the complete system-of-systems objectives.

System-of-Systems Engineering

A framework for conducting systems engineering at
the system-of-systems level has been developed® but has
not been widely accepted. The elements of system-of-
systems engineering are listed below. Those aspects that
require a quantitative analysis of alternatives when a
system of systems is upgraded are in bold. Table 1 pre-
sents the quantitative analysis tasks required for each
of these aspects. The methodology discussed in this
article has been developed to support those analyses.

Integration engineering
Requirements
Interfaces
Interoperability
Impacts
Testing
Software verification and validation
Architecture development
Integration management
Scheduling
Budgeting/costing
Configuration management
Documentation
Transition engineering
Transition planning
Operations assurance
Logistics planning
Preplanned product improvement

Table 1. System-of-systems elements requiring quantitative analysis of

Quantitative analysis task

overall mission or objective.
Although the definition of sys- )
. . alternatives.

tem of systems is somewhat arbi-
trary, it is ggnerally Ylewed as a Element
coherent entity, considering that
overall management control over Impacts
the autonomously managed sys-
tems has become mandatory. Un-
fortunately, large, complex systems Architecture
of systems are not developed under

) . ; development
a single architecture resulting from
a strategic development decision.
Component systems are developed
individually, and the full system of
systems can evolve over decades as Transition
various leaders develop enhanced planning
visions of how systems can be used
together to achieve larger objec-

. Preplanned
tives. Although each system may T
have been justified and designed on product tm- .
the basis of sound systems engineer- provement (P°1)
ing principles, its requirements and

Compare system performance vs. requirements
Assess effects of proposed upgrades
Utilize M&S to predict performance

Define top-level functional capability
Assure intersystem performance

Verify system of systems is truly an integrated architec-
ture vs. random collection of systems

Attempt to optimize overall system performance

Develop transition alternatives and strategy
Assess and select

Document

Review all component system P’I plans
Identify key areas from system-of-systems perspective

Feed results and priorities back to system activities

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 21, NUMBER 3 (2000) 409



R. R. LUMAN

Recurrent Management Issues

Often a program executive officer will be responsible
for a collection of system acquisition programs, each of
which belongs to a larger system of systems. However,
this collection may not necessarily fully constitute that
system of systems. Rather than architecting an entirely
new system of systems, the program executive must
often decide how best to upgrade within an existing
system of systems. This generally means either begin-
ning a new acquisition program to add a new system
to the overall system of systems (additional function-
ality) or inserting advanced technology into an existing
system via an upgrade or modification process.’

Significant constraints are placed on these execu-
tives, including budgets, politics, ill-defined and com-
peting mission objectives, and the technology itself.
Many new initiatives have begun under the umbrella
of acquisition reform to encourage acceleration of sys-
tems development time, delivery of affordable systems,
and risk mitigation through the adoption of commercial
off-the-shelf (COTS) components or technologies and
industrial best practices. These attempts at reducing the
usual acquisition cycle include such innovative and
complementary measures as Advanced Technology
Demonstrations and Advanced Capability Technology
Demonstrations, often described, respectively, as “tech-
nology pushes” and “military need pulls.”®

Although these initiatives promote the quick field-
ing of new, militarily useful technologies, they do not
represent a disciplined approach to considering how
best to upgrade specific, complex systems of systems
under the constraints already noted. The development
of such an approach is the objective of this research
effort.

In summary, management issues are focused on
upgrading versus systems-of-systems design because:

e All proposed systems and upgrades must fit into an
existing system of systems.

¢ Opportunities rarely exist to architect a major system
of systems from scratch.

e Requirements usually evolve in relation to legacy
systems’ capabilities and management.

¢ We can often take advantage of available models and
simulations that can be adapted for decision support.

OBJECTIVES AND APPROACH

Upgrade Decisions

The decision maker is generally trying to solve one
of two problems: (1) maximize the system-of-systems’
performance subject to a cost constraint or (2) minimize
additional cost under performance constraints. Al-
though the former is clearly applicable to upgrading or
architecting a system of systems, the latter arises in the

operations and maintenance phase of a system life cycle.
That is, we may wish to maintain a proven capability
while reducing legacy infrastructure activities.

Although cost-reduction approaches have included
“design to cost,” recent DoD acquisition reform initi-
atives have softened hard budget allocations in favor of
an approach known as cost as the independent variable
(CAIV). The application of the CAIV approach re-
quires a quantitative understanding of the relationship
between cost and performance for major system
elements. The representation of a system element’s
performance as a function of cost is referred to as a
performance-based cost model (PBCM). Whereas the
CAIV terminology has come to represent a specific
government approach to acquisition at the individual
system level, it is used here simply to indicate that
system-of-systems performance will be displayed and
understood as a function of the independent variable,
cost.

System-of-systems upgrade decisions are reviewed
annually for all warfare or program areas as part of DoD
strategic planning and budgeting processes. There are
four forms of upgrade options, depending on which
conditions are most pressing:

1. Adding a new type of system (i.e., additional func-
tionality) to the system of systems

2. Procuring additional numbers of existing component
systems (enlarging the scope and capability of the
system of systems and offering an opportunity to insert
advanced technology)

3. Replacing aging or obsolescent component systems
(also offering an opportunity to enhance the system-
of-systems’ performance and functionality through
advanced technology insertion)

4. Upgrading existing component systems because of
requirements pressure or availability of advanced
technology

Legacy Decision Support

In assessing whether to proceed with the develop-
ment of a new system or a major upgrade, DoD usually
conducts an analysis of alternatives to determine
whether the proposed system is the most cost-effective
alternative to meeting a certified military need.” A
typical analysis approach is to use M&S to estimate the
marginal utility of proposed system point designs to a
larger warfare or campaign mission objective. The sys-
tem performance is represented by a set of measures of
performance (MOPs), and its contribution to the mis-
sion is referred to as a measure of effectiveness (MOE).

The simulation is run on a carefully selected set of
applicable scenarios, with and without the system al-
ternatives, to characterize the hypothesized system al-
ternatives’ value-added. A multi-objective metric that
combines costs and multiple MOEs into a single scalar
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metric may be used to compare alternatives. This
metric may also attempt to reflect expert opinion as to
the military value of the alternatives that are not cap-
tured by quantitative analyses owing to limitations of
fidelity, scope, or tractability. A primary shortcoming of
the analysis-of-alternatives process from a system-of-
systems perspective is that just one component system
is considered at a time, in a “stovepipe” fashion. In a
cost-constrained environment, this approach will not
normally generate the best alternative from the system-
of-systems perspective.

The DoD acquisition community strongly prefers
quantitative engineering analysis over qualitative deci-
sion support methods such as the Analytic Hierarchy
Process. This is true perhaps because the community is
dominated by engineers and scientists who recognize
the difficulties in converting opinion and judgments
into meaningful metrics, hence, the heavy emphasis on
M&S as the basis for decision making. The reliance on
M&S seems to be a widespread preference throughout
the technical and scientific community.!® This article
attempts to provide objective, quantitative information
to decision makers at the system-of-systems level,
thereby minimizing the introduction of subjective judg-
ments at the single-system level.

Proposed Approach

The challenge is to develop a quantitative process or
methodology to support system-of-systems upgrade de-
cisions to determine where the limited upgrade resourc-
es should be applied. The methodology should also help
determine the optimal requirements allocation as a
function of overall cost given a system-of-systems archi-
tecture. “Architecture” here implies that the system-of-
systems functional requirements are well understood
and are embodied in the definition of the system-of-
systems scope. Whereas the architecture will specify
what functions must be accomplished, the CAIV re-
quirements allocation process must address how well
each function must be performed by which component
system and how many of each system are required.

The process should enable a domain-expert systems
architect or engineering team to generate an optimal
allocation of design requirements in accordance with a
specified MOE for a particular system of systems. Here
we formulate the general problem and apply it to a real-
world, contemporary system of systems in sufficient
detail to demonstrate the feasibility of the approach—
a practical proof-of-principle demonstration. The dem-
onstration goes beyond applying closed-form represen-
tations of system performance by using simulation to
represent system effectiveness. Substantial investments
have been made in system-of-systems simulations, and
their use avoids the unnecessary simplification of sys-
tem abstraction resulting from closed-form expressions

INTEGRATING COST/PERFORMANCE MODELS

of typical, complex system-of-systems behavior. Model
fidelity and execution time must be balanced because
of the intense computational burden of many contem-
porary warfare simulations. These considerations will
drive the selection of the system-of-systems’ MOE/
MOP and PBCM structure.

There are seven key steps to the proposed system-
of-systems CAIV optimization process (Fig. 1):

1. Define the overall system of systems, its components
and functionality, and its missions or scenarios of
interest.

2. Define critical MOPs and MOEs.

3. Specify initial boundary conditions for the system of
systems, as necessary.

4. Formulate PBCMs for each component system by
parameterizing each subsystem’s cost as a function of
one key MOP.

5. If possible, formulate an appropriate closed-form
model that will capture the mapping from compon-
ent system MOPs to system MOEs and eventually the
overarching MOE. Alternatively, select an appropri-
ate M&S implementation that evaluates the desired
objective function and MOE constraints as a function
of component systems’ MOPs. (Constructing closed-
form expressions that model the system-of-systems’
top-level performance is important for initial problem
understanding, but will probably not be sufficient to
adequately capture system interactions and perfor-
mance drivers. It will be necessary to use high-fidelity
M&S to represent the complexity needed to provide
credible analyses to support decisions regarding com-
plex, high-value systems.)

6. Solve the resulting constrained nonlinear (stochas-
tic) performance optimization problem repeatedly,
gradually relaxing the overall cost constraint. A
solution to a specific constrained problem formula-
tion yields an optimal set of MOP values that repre-
sents one system-of-systems requirements allocation
corresponding to the most effective system-of-
systems design and force structure. The set of solu-
tions will provide insight as to performance and
design as a function of CAIV.

7. Effectively communicate results of the process to the
decision maker(s). The solution will still require
further evaluation to determine design implications
for each system. Sensitivity studies should be con-
ducted on secondary MOE constraints and MOP
technology constraints to generate operational and
technology investmentstrategy insights, respectively.
In this way, the process supports the decision process
rather than makes it.

COST/PERFORMANCE MODEL

Consider n types of systems S; that comprise a system
of systems S with the following characteristics and
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1
Define
system of systems

Components/functionality
Mission(s)
Scenarios

Define
MOE/MOP

Overarching MOE

e Each system’s MOPs are con-
strained by low-performance
threshold specification values,
p;, and realistic technology limi-
tations at the high-performance
end, resulting in the following
upper- and lower-bound con-
straints: piL <p; Spg or pb <
pij < p}‘Ji, for all j. Note that for
some parameters, such as naviga-
tion accuracy, small values are

Secondary MOEs
Component systems MOPs better than large values, hence
p; isnotsimply the lower bound,
l l p;. In the most general case,
3 ot boun 4 Formulate 5 Develop/adopt these MOP constraints could
pegé%/ o tci)cl:r?s ary performance-based systems performance be functions of program schedule
cost models models/simulations as well, in anticipation of re-
Component cost constraints Cost = h(MOP) MOE = G(MOPs) quirements creep and advancing
Technology constraints

Force structure constraints technology. , . .
Secondary MOE thresholds e Each system's unit cost 1s a non-
linear function of performance,
expressed in terms of its critical

6 Solve

system-of-systems
optimization problem
(deterministic or

Adjust overall simulation-based)
cost constraint

System-of-systems
parameters/performance
as a function of cost
(MOE/MOP estimates)

40 T T T

= 7
= Mine countermeasures
o 351 system-of-systems MOE
a as a function of cost
E
@ 30 1
()
E.
S 251 b
o
2
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£
[
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Figure 1. System-of-systems CAIV optimization process (h = hours;
insert labeled Nomenclature).

constraints (see the Nomenclature insert for a complete
list of terms and their definitions):

e S={S,,...,S,}.
e There are m; systems of type i, and the total number of
systemsism:m = {m;, ..., m}tand m=3" m, The

minimum number of each system type required for
the system of systems is designated m".
e Each system type has a set of r, MOPs: p, =

{bi1»- - iy} Thus, each p; has dimension r; and

=T

MOPs:c((p) = hip),e =1{c;, . . ., i}
Wedenote ¢! =h,(p;) asthe cost
associated with the threshold sys-
tem. This PBCM is generated by
considering each critical MOP as
a cost driver of a particular sub-
system, whose cost can be param-
eterized on that MOP. The total
system-of-systems cost is then
C(p) = mc'(p).

e The system of systems has one
overarching MOE, E, a function
of each system’s set of MOPs and
the number of systems: E = G(m,

P - - - »pn)-

It is clear from the last assump-

tion that each system type has its

Gis definedinthe  own overall MOE, say E,. From the
single-system perspective, each sys-

tem’s overarching MOE, E,, would

only be considered as a function of

its own MOPs, p,. But if any E;

depends on not just p; but some elements of p;, where
i #j, then we say that the system of systems is interde-
pendent, and we would have to express the individual

systems’ MOEs as E; = f(m, p;, . . ., pn)- Therefore, in
general, E will be a complicated function of the full set
of component systems’ MOPs, E = G(m, py, . . ., pn),

and the single-system MOEs become uninteresting from
the system-of-systems perspective.

When describing a system of systems comprising
relatively simple component systems or using simplified
models of complex systems, we could express E as a
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NOMENCLATURE

A Reconnaissance system area coverage rate during
detection pass (nmi*/day)

C(p) Total cost for S: C = ch(p)

C*(p") Cost to produce the threshold system

Cs Number of nonmines falsely classified as
minelike

CE Upper bound for cost constraint:
Cy = costfactor,C (p")

Cn Number of mines correctly classified as
minelikeT

ci(py) hi(p)= 2 hi]-(pi), cost for system S;

c Cost fo% s;llstem S; with threshold MOPs, p;

¢k ¢V Lower and upper bound for c(p)

c(p) {ci(p1), - - -5 culpp)}

Dg, Number of mine false alarms

Dg Number of false targets detected

Dy, Number of detected mines

diine Average distance between mines (yd)

E Overarching MOE for S

E; MOE for system S;: E; = fi(m, py, - - -, pn)

Fo Number of false targets contained in the MCM
area Sminefield

G Overarching MOE objective function E =
G(m, | T pn)

h;, i(pi ;) Performance-based cost model for MOP p; ;

Mo Number of mines originally laid in the MCM

area Sminefield n

m Total number of systems, m= Y, m;

m fmy, . ..,my} o=

m", mY Lower and upper bound for m

P. Probability of correctly classifying a detection
as minelike or nonminelike at range R,

Py Detection probability at range Ry

Pg, Detection false alarm rate (false alarms/nmi?)

Pip Probability of correct mine identification
following detection and classification

PL Localization (or reacquisition) probability

P, Probability that the MCM area will be cleared
to the desired minefield clearance rate a

p Mine clearance probability, i.e., the probability
that a mine in the MCM area will be cleared

pi MOPs vector for system S;: p; = {p;1, - - - i}

Note: All vectors are row vectors, hence ¢! denotes transpose.

closed-form function of the MOPs. The simplified
(but realistic) naval mine countermeasures (MCM) ex-
ample developed here has a closed-form, nonlinear
expression for E, which is intuitive and quite useful.
However, MOPs are themselves typically sensitive
to scenarios, concepts of operations (CONOPS), and

INTEGRATING COST/PERFORMANCE MODELS

p; Low-performance threshold specification values
for p;

Dij jth MOP for system S;

p{f, plU Lower and upper bound for p;

qr Threshold value for mine clearance rate
(quality threshold)

q(x) Mine clearance rate, g(m, py, - . . , pp)

R, Minelike object classification range (yd)

Ry Target detection range (yd)

R, Range at which S; has an 80% chance of
reacquiring Sy’s detections

i Total number of MOPs for S: 7= ZLI'}

7 Dimension of pj; number of MOPs for S;

S System of systems, comprising n types of

systems: S ={S,...,S,}
Suincfield Area to be searched (nmi?), referred to as the

MCM area

T. Time required to classify a mine (min)

T4 Time required to classify a nonmine (min)

T elass Time required to classify all detections within
the search area Sy ineficig (h)

Tgeteer  Time required to complete a detection pass
through the search area Sy ipeficig (h)

T, Time spent neutralizing (prosecuting) a
classified mine (min)

Tt Time spent unsuccessfully attempting to
reaquire a detection (min)

transit  Reconnaissance system transit time

Vlass Reconnaissance system speed during classifica-
tion operations (kt)

Viansic  Reconnaissance system speed during detection
and transit (kt)

x r-dimensional MOP vector for S:
x={p1,---,Pn

y Noise-corrupted objective function measurement

« Desired MCM area clearance rate

B Confidence level associated with MCM area
clearance rate «

N Minefield density (mines/nmi’)

Nt False target (nonmine minelike object) density
(objects/nmi®)

o Standard deviation of minelike object localiza-
tion error (yd)

® Simulation-induced noise on objective function G

environments. So to obtain representative, robust, full-
fidelity results, it will generally be necessary to use a
simulation to evaluate G.

In addition to the constraints on MOPs given in the
preceding list, several other constraints can occur and

should be considered:
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e Force structure constraints. There is generally a practi-
cal operational or programmatic limitation as to how
many systems of each type can comprise the system of
systems, known as force structure constraints: m- <
m<mYor m-<m,<ml, foralli.

e Svystem effectiveness constraints. Similar to the MOP
constraints, a minimum threshold could exist for
each system’s MOE. Although such a constraint may
have been generated by a technical performance
analysis, this threshold may simply be associated with
the existing component system whose current perfor-
mance must be met or exceeded. Therefore, the
threshold MOE for each system, S, is Ej = f(m",
piy - - py) SE;foralli. When trying to minimize
cost subject to performance constraints, there should
be a minimum overall system-of-systems MOE con-
straint as well: E* < E. Without loss of generality, the
single-system effectiveness constraint will not be
addressed further because it would only be applied in
practice to ensure that minimal system performance
is achieved separately from the system of systems
under consideration.

e Cost constraints. When applicable, cost constraints
can apply to both individual systems and the full
system of systems: ¢ < c¢” and C(p) < C(p)Y, respec-
tively. Implicitly, c is also bounded below because of
the presence of minimum performance thresholds.
Hence, we have ¢* < ¢ < c¢V. Without loss of general-
ity, we will take the system-of-systems viewpoint and
consider only the cost constraint at the macro level,
C(p) <C(p)".

e Secondary MOE constraints. As will be illustrated by
the MCM example, there may be one or more second-
ary MOEs that must be achieved to some minimum
level to achieve mission objectives. This can also be
necessary in the case where the system-of-systems
effectiveness is not fully expressed by one MOE.
Without loss of generality, we will consider just one
secondary MOE as a quality constraint: g(m,

pl)‘“»pn)ZqT'

When addressing the system-of-systems upgrade
from the CAIV perspective, we would optimize a se-
quence of nonlinear programs formed by discretely pa-
rameterizing the system-of-systems cost constraint.
This is accomplished by defining a sequence of upper
cost bounds, C,EJ = costfactor,C"(p"), where C'(p”) is
the cost to produce the threshold system of systems
defined by the parameter set {m' p?, R pz}‘
The resulting nonlinear programming problem (with
only one MOE constraint) is then to maximize
S={S,,...,S,} system-of-systems performance subject
to force level, technology, cost, and performance
threshold constraints as shown below.

Max E = G(m, py, . . ., p,)

subject to

m' <m<m"
L u
P SP;Sp;
Clp) < C} = costfactor, C'(p')

q(m, py,...,p,)24r -

MCM SYSTEM-OF-SYSTEMS COST/
PERFORMANCE MODEL

A simplified but realistic model of naval MCM
operations and systems has been developed as a proof-
of-principle demonstration. This limited system of sys-
tems consists of a minefield reconnaissance system and
a mine neutralization system. The reconnaissance sys-
tem first surveys the entire suspected minefield area,
attempting to detect, classify, and localize minelike
objects. These contacts are then passed to the neutral-
ization system, which must reacquire the contacts and
neutralize each minelike object, if necessary (that is, if
it is identified as an actual mine). System descriptions,
functionality, MOEs, MOPs, and PBCM are provided
in sufficient detail to support system-of-system upgrade
decisions and trade-off analyses (see MCM analysis ter-
minology in Nomenclature insert).

The overarching MOE, E, for this MCM system of
systems S is the time required to achieve a specified
MCM area clearance rate a with specified confidence
level B. Knowing the form of E guides our performance
model formulation for the component systems S; and
S,. For this analysis, we assume there is only one system
of each type, therefore n =2 and m = {1,1}.

Following the process described earlier, the mission
scenario and minefield to be cleared must be specified.
The mission is to search a mine danger area of 20 nmi?,
seeded with 100 mines, corresponding to Sinefield = 20
and M, = 100. The mines are laid out in four rows of
25 each, with a 400-yd separation between mines with-
in each row, and 800 yd between the rows. Hence,
dpines = 600 yd. Figure 2 illustrates a minefield layout
with these characteristics, although this “ground truth”
information is unknown to the system of systems.

S:: MCM Reconnaissance System

This system is used to survey a suspected minefield
area, performing the typical MCM minehunting func-
tions of detection, classification, and localization. The
CONORPS is that the area is completely covered with
a detection pass followed by a second pass for classifi-
cation. Detection and classification must be done at a
reduced standoff range from each detected object, ne-
cessitated by the much higher frequency sensor gener-
ally required for this more precise function. Localization
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2 nmi

MCM area

Figure 2. Minefield layout and area to be searched and cleared (not to scale).

is done concurrently with detection and classification,
and therefore takes no additional time. In consider-
ation of the overarching system-of-systems MOE, the
MOE for S, is E; = time (h) to complete reconnaissance
of area S.efelq given N, N, and M, where
Mo = ASinefield and Fo = NS inefiels- T he time to com-
plete the detection pass over the area in hours is simply

— 24Smineﬁeld — 2AHVIO

T, =
detect A A’A

Following the detection pass over the MCM area,
the reconnaissance system will revisit its localized con-
tacts and attempt to classify each one as either minelike
or nonminelike. (Later, the neutralization system will
attempt to reacquire and neutralize all declared mine-
like objects.) To calculate the time to complete clas-
sification, we must know the number and type of de-
tections expected to be made:

D,, = PsM, = number of detected mines
Dy, = P, Spinefield = number of mine false alarms

Dy, = P4Fy = number of false targets detected

To generate expressions for time to classify a real
mine as well as false alarms and targets, we must assume
a specific classification CONOPS. If we assume that S,
takes the shortest route between contact locations and
then executes a semicircle of radius R, about the con-
tact location, then an approximate expression for the
time to classify (in minutes, assuming 2000 yards per
nautical mile) is

Tc — 6Odmine
2000V,

transit

60(wR.)
+
2000

class

What about time spent attempting to classify a tar-
get that is a false alarm? Let’s assume that the CONOPS
would be to execute a full circle about the contact
location in the event that the first classification pass
was unsuccessful during the first half-circle maneuver.
The time required to travel to the contact and execute
the full circle in minutes is then

1 __00dy,. . 60QmR)
o ZOOOVtransit ZOOOVCI‘ﬂSS
=2TC _ 6Odmine .
2000

transit

This formulation for T, keeps it independent of cost
drivers for the classification sonar performance, which
reduces the number of MOPs necessary in the optimi-
zation problem, since the terms d,;, and V., will be
considered as fixed for the scenario. The time (h) re-
quired to classify all detections is then

Totn = 6_10[PCT°Dm + (1= P)T«D,, + T (Dg, + Dy )]
PcTcPdMO
B T 3 p S SV |
60 Zooovtransit
tfor —Gmine  p s .
| c ZOOOVtransit fa“minefield 4o |

and we can now formulate the system MOE as the sum
of Tdctcct and Tclass:

24M PcTcPdMO
1
E = x—»f |t (1-P)TP,M,
+ ch(PfaSminefield + PdFO)

Under the assumptions stated above, we can now list
the minimum set of MOPs that are necessary to formu-
late an expression for E; as well as describe performance
parameters that will affect the performance of the sec-
ond system, S,. There will be five MOPs, hence

p1={b11 - P15

1. Area coverage rate: py; = A = 2RV ansi/2000. This
expression represents a two-sided detection sonar. A
typical approximation is that for a particular sonar/
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target/environment set, R is determined by fixing P,
and vtransit'

2. Probability of classification: p; ; = P. For this analysis,
the sidescan sonar’s P. is determined at fixed classifi-
cation range.

3. False alarm rate: p; 5 = P,
4. Time required to classify a mine: py 4 = T..
5. Minelike object localization error standard deviation:

p15 = 0. The localization accuracy is a critical param-
eter for reacquisition, a major function of S,. As a
simplification, we have chosen to neglect its effect
on S’s reacquisition during the classification pass,
because the reacquisition would be done with the
identical sensor suite that performed the initial
detections.

After some manipulation,!' the final form of the

MOE for §; as a function of the MOP vector is

Ny 201 4Py)
24 + 1

A v @p =T b
plyl 60 ( p1,4 tran51t)

y (1= pi )P\
+ P13+ Pakg )|

El(pl) = Sminefield

where

T _ dmine
transit ZOOOV .

transit

Note that this MOE does not reflect the quality of
the reconnaissance, only its duration. If we were con-
sidering the effectiveness of the stand-alone reconnais-
sance system, then we would want E; to reflect other
mission MOEs as well to effect a measure of minefield
characterization. Reconnaissance survey quality will be
automatically reflected in E, via expressions that utilize
all the elements of p; that affect initialization of the
neutralization function provided by S,. Additionally, a
minimum threshold-quality MOE constraint at the sys-
tem-of-systems level will also be imposed.

S,: MCM Neutralization System

The MCM neutralization system attempts to relo-
cate, identify, and neutralize all minelike objects de-
tected and classified as such by the reconnaissance
system. For this analysis, the probabilities of identifica-
tion and subsequent neutralization are assumed to be
one, and we will focus on uncertainty related to the
reacquisition of all minelike objects passed to S, from

S| as contacts. In consideration of the overarching
system-of-systems MOE, the MOE for S, is E, = time
(h) to complete neutralization and neutralization at-
tempts on all contacts and objects classified as minelike
by the reconnaissance system S;.

Clearly, E, will depend on the number and types of
objects detected and subsequently classified as minelike
by S,. Since the neutralization system will attempt to
neutralize all declared minelike objects, it is important
to know how many such objects are expected. Expres-
sions for the number of mines correctly classified as
minelike, C,,, and the number of nonmines incorrectly
classified as minelike, Cy, are as follows:

Cm ZDmPCZPdPCMO

and

C¢=(Dy, +Dg)(1-P,)
= (PfaSminefield + PdFO)(I - Pc) y

respectively. E; can now be formulated using three

MOPs: p; = {p21, P22, P23}

1. Contactreacquisition range: p, ; = R,. This is the stand-
off distance from the localized target, which yields an
80% probability of reacquisition.

2. Failed reacquisition time: p, ; = T . The average time
(min) spent in a failed attempt to reacquire a target
handed off from §,.

3. Neutralization time: p, 3 = T,.. The average time (min)
required to neutralize a correctly classified mine.

The contact reacquisition range is used to calculate
the probability of reacquisition or localization as

-0 —bis

48IR, _ 4481
PL=e44 C =t

This yields P; = 0.80 when R, = ¢. This model assumes
an exponential decay depending on the localization
accuracy and reacquisition capability of the neutraliza-
tion system, S; and S; MOPs, respectively. The depen-
dence of P; on R, and o is illustrated in Fig. 3. It is this
localization error quantity from S; that has the most
direct effect on the performance of S,.

Therefore, the MOE for S, can be expressed as the
sum of (1) time to successfully reacquire and neutralize
minelike objects, (2) time spent in unsuccessful at-
tempts to reacquire minelike objects, and (3) time
spent prosecuting nonminelike objects classified incor-
rectly. After some manipulation,' the final form of the
MOE for S, as a function of the MOP vector is
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Figure 3. Probability of localization as a function of reacquisition
range.

_ 1

E
2760

[PLC,T, + (=P )C, Ty +CiTy)l
[ —bis5 ]
4.481p,;

Pypy 2b; 3Ne
—bi5

Smine ie 448102y
= ﬁ e D (PdPLsz,z)‘)

+ [(1 = D12y 3 + Pk )Pz,z]

S: MCM Clearance System of Systems

For the full system of systems, the overarching MOE
is then simply the total time to complete clearance
operations: E = G(m, p;, p;) = E; + E;. However, an
overall performance or quality constraint must be im-
posed on the clearance operations, otherwise the op-
timization will result in a very fast yet ineffective system
of systems. Specifically, this constraint specifies an
MCM area clearance rate a with an associated confi-
dence level B. This should actually be considered as a
secondary-quality MOE that has a threshold require-
ment. Recall that p is the probability that a particular
mine will be cleared, which is the product of the se-
quential operations’ probability of success:

—bis
4.481p,,
p=PyP.P, =Pypy e

The expected number of mines successfully cleared is

then pMo.

INTEGRATING COST/PERFORMANCE MODELS

The selection of a = 0.80, My = 100, and B = 0.90
will yield a constraint that p > 0.846.!! Therefore, with
100 mines present, we will be at least 90% confident
that at least 80 mines will be cleared. In summary, the
performance quality constraint is then

q(py,p;)=p=PyP.P
—Pi5
=Pypy et >0.846.

PBCMs and Parameter Bounds

The reconnaissance system performance ranges and
cost modeling are derived from design considerations
for an unmanned undersea vehicle. The neutralization
system performance ranges and cost models are based
on a combination of factors, certain operational MCM
systems, and COTS information regarding marine nav-
igation systems.

MOPs developed earlier in this article are grouped
by the major subsystem for which they act as major
cost drivers. The PBCM provides an approximation of
subsystem cost as a function of those same primary
subsystem MOPs. This synchronization of cost and
performance model parameters is crucial and should
become a fundamental feature of the systems engineer-
ing process.

Since this type of MCM system would be produced
in very small numbers, only developmental costs are
considered, neglecting the full system life-cycle costs.
COTS or nondevelopmental item technologies are also
assumed so that developmental costs approximate re-
search and development and production costs com-
bined. Note that since the PBCMs can include nonlin-
ear expressions, a full life-cycle model for each PBCM
can be accommodated with no change in the approach.
The subsystem and associated MOPs are illustrated in
Fig. 4.

To illustrate the concept of PBCMs, only area cov-
erage rate will be discussed here; the other seven re-
quired models are developed in Luman.'! There are
two sonars in the sensor subsystem: detection and
classification. Critical performance parameters affect-
ing area coverage rate are probability of detection,
range, and maximum vehicle speed at which the so-
nars can remain effective in the presence of flow noise.
They are, of course, sensitive to many environmental
parameters as well as assumed target characteristics.
The approach here is to assume one environment, a
fixed P4, and a fixed vehicle speed, and then utilize
modeled results to derive the PBCM for the search
sonar MOP, area coverage rate, A. Table 2 represents
the data used to generate the PBCM. (Note that
sensitivity studies are advised to understand depen-
dence upon these assumptions.)
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S: Mine clearance system of systems
E = E, + E, = time to clear minefield

I

|

|

S,: Reconnaissance system S,: Clearance system
E, = time to complete reconnaissance E, = time to complete neutralization
Software A Sensors
Sensors _ = target reacquisition
P, = false alarm rate g range
Vehicle

Detection sonar
[ A=area of coverage

Vehicle
T, = time to classify

T, = time to prosecute
false target

Classification sonar
L P, = probability of
classification

|

Navigation
o = localization
accuracy

|

Neutralization
T, = time to neutralize

which is a multiplier on the thresh-
old system costs indicating the
maximum amount the decision
maker is willing to spend. In this
way, we will consider a series of
optimization problems that will

provide insight from the CAIV

perspective.

RESULTS

Phase I: Closed-Form

Objective Function

This section presents the results
of optimizing the closed-form rep-
resentation of the MCM system-
of-systems model. For ease of refer-

Figure 4. Mine clearance system-of-systems MOE/MOP structure.

A third-order polynomial was fit to the data in
Table 2. Together with the upper and lower bounds for
A, this constitutes the PBCM. The resulting model is
therefore

hy1(pry)=(4.5034x107)p;,
—0.0053861p;, +0.21593p; | +1.3342,

with constraints as plLy1 =10, p}fl =100, and pil =10.
Figure 5 illustrates the cost/performance relationship
for A.

The complete closed-form MCM system-of-systems
model is shown in the boxed insert, which incorporates
PBCM s for all eight system-of-systems MOPs. The cost

constraint indicated is parameterized by costfactory,

Table 2. Data used to generate
the PBCM for the search sonar
MOP for area coverage rate.

Area coverage

rate, A Cost
(nmiz/day) ($ millions)

10 3.000

57 4.483

82 7.655

94 11.445

ence, the MCM system-of-systems
MOP definitions are repeated with
the correspondence to the optimi-
zation vector X.

x(1) = p;; = A = system S; area coverage rate during
detection pass (nmi*/day)

P. = probability of correctly classifying a

detection as minelike or nonmine-

like at range R,

detection false alarm rate (false

alarms/nmi?)

x(4) = p;4 =T, = timerequired to classify amine (min)

x(5) = p; 5= 0 = standard deviation of minelike ob-

ject localization error (yd)

x(2) = p12

X(3) = P1,3 =Pfa=

16 I I I I I I I I

Cost ($ millions)

2 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100
Area coverage rate (nmi2/day)

Figure 5. PBCM for area coverage rates. Circled points are rates
from Table 2.
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SUMMARY OF MCM SYSTEM-OF-SYSTEMS OPTIMIZATION PROBLEM

Maximize S = {Sy, S;} system-of-systems performance (minimize time) subject to technology, cost, and perfor-

mance threshold constraints:
Minimize

E(py, p2) = Ei(p1) + Ex (1, P2)
S
60 b1

—bis

g 24-60
= &ﬁeld{‘*— +Mp12b1,4Pa) + P14 — Transi) [(L = 1) (Pyh + py 3 + Pd)\ft)]}

—bi5

— Smincfeld PdP1,2Pz,3)\€4‘481P2'] +[ 1 48P Pap12b2 N + (1= p12)(py 3 + Pyhg)pr 2

60

subject to

(3.0, 0.9, 0.25, 3.0, 42.0)T < p; < (100.0, 0.98, 2.0, 9.17, 90.0)T,

(75.0, 1.0, 3.0)T < p, <(700.0 7.0, 10.0)T,

C(py1, p2) < C;EJ = costfactor;C*(p*),
and

a(p1, p2) = gt = 0.846,

where

Clpy, py) =(4.5034 x 107)p | —0.0053861pf | +0.21593p; | +1.3342
+283.4646p] , — 507.63784p, , +227.4598
—2.0484p7 3 +9.9873pf 5 —17.9420p, 5 +20.3220
+0.11597pf 4 — 2.1757p; 4 +15.2040
+(2.0618 x 1074)pf 5 — 0.0376p; 5 +1.7778
+(1.5049 x 107)p3 | —(1.5782 x 1074)p3 | +0.055167p, | — 1.8133
—0.28504p3 , +3.8462p3 ; — 17.2640p, 5 +33.3440
+0.21024p5 5 — 4.1096p, 3 +25.3970,

C'(p") = $28.066 million,

and

—bi5
. 4.481p, ;

q(py, p1) =p=DPylB + Pypyy

x(6) = p,; = R, = contract localization error standoff
which yields an 80% probability of
reacquisition

x(7) = p,, =T,¢ = time spent prosecuting a nonmine
classified as a mine or unsuccessfully
attempting to reacquire a correctly
classified mine (min)

x(8) = p,3 =T, = time spent neutralizing (prosecut-
ing) a classified mine (min)

The system-of-systems constrained MOE optimiza-
tion has been solved for an increasing sequence of
multipliers (costfactor,) on the cost of the threshold
system, denoted by C*(p*), which happens to be
$28.066 million (see the boxed insert). This provides
the decision maker with information to apply the
CAIV approach to system upgrade or initial design.
Plots are provided so that one can visualize the top-
level MOE improvement and corresponding MOP
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requirements as the system-of-sys-  (a)

tems cost upper bound is allowed 40 —
to increase.

The baseline results are ob-
tained by using MATLAB’s con-
strained sequential quadratic pro-
gramming (SQP) algorithm to
solve the fully general nonlinear
programming problem in which
both objective and constraint
functions can be nonlinear.!? The
particular routine is called CON-
STR and is contained in the opti-
mization toolbox. Basically, the . L

N w w
(4] o a1
T T T

Time to complete mission (h)

n
o
T

|

Time to complete mission (h)

1 1 1 1 1 1 1 1 1

method formulates a sequence of Ao 14 16

15
18 20 22 24 26 35 40 45 50 55 60 65 70

quadratic programming subprob- Multiplier on threshold system cost Cost ($ millions)
(costfactor,)

lems based on a quadratic approx-
imation of the Lagrangian func- 10

tion and linearizing the nonlinear
constraints about the current iter-
ate. The simpler quadratic pro-
gramming subproblem (quadratic
function with linear constraints) is
solved by using an active set pro-
jection method. The original non-
linear function and constraint sets
are then approximated about the
new iterate, and the sequence is
repeated until convergence criteria
are satisfied.

o o
> o

o
o

MOPs 1-4 (% of technology threshold)

|

o
©
T
|

o
o
T
x
2
|

o
S
T
|

o
)
T
|

MOPs 5-8 (% of technology threshold)

| 1 1 0 1 1 1 1 1 1

Figure 6 summarizes these results, 0
. . . 12 14 16
which constitute an allocation of
MOE requirements to the lower-lev-

1.8 20 22 24 26 12 14 16 18 20 22 24 26

Multiplier on threshold system cost Multiplier on threshold system cost

(costfactor, ) (costfactor, )

el MOPs as a function of overall Figure 6. Constrained sequential quadratic programming optimization results for a sys-
cost. Figures 6a and 6b present the tem of systems. The top-level MOE as a function of increasing cost multiplier is shown in

top-level MOE (E = time to com-

(a) and MOE as a function of dollar cost upper bounds is shown in (b). Corresponding
optimal MOPs x(1)—x(4) and x(5)—x(8), (c) and (d), respectively, are presented as a

plete minefield clearance) as a function of increasing cost multiplier.

function of increasing cost factor

and dollar cost upper bounds. Fig-

ures 6¢c and 6d present the corre-

sponding optimal MOPs as a function of increasing cost
factor. The MOPs are normalized to their upper and
lower bounds, with O corresponding to their threshold
system values and 1 corresponding to their technology
limitations. Several significant insights can be obtained
from examination of Fig. 6:

e The system-of-systems MOE improves steadily to an
asymptotic lower bound as the cost limit increases.
Because of the imposed technology constraints, after
a certain point, no amount of money will enhance
system performance.

o At the other extreme, if at least 1.25 C*(p*) is not
spent, a feasible solution that satisfies the quality
constraint cannot be found. That is, even a very slow
system cannot achieve the clearance rate constraint.

® A subjective “knee of the curve” can be observed to

occur somewhere around 1.8-2.0 times the thresh-
old system cost (about $50-56 million), after
which the rate of MOE improvement significantly
decreases.

® The component systems’ MOP requirements can be

determined from these plots as a function of cost
factor. One can see which MOPs become stressed
(i.e., move away from their threshold system values)
and approach their technology constraint limits as
the cost constraint is relaxed. Of course, this behavior
depends on the PBCM function developed for each
MOP, as well as its significance relative to the objec-
tive function and quality constraint. Specifically,
initial performance is gained by improving x(4)
(speed) and x(5) (location accuracy). Additional
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performance gains are most effectively achieved by
improving x(1) (coverage rate), x(3) (false alarm
rate), and x(8) (neutralization time).

e The hump in the MOE curve near costfactor;, = 2.15
corresponds to a local objective function minimum
caused by a prolonged flat area in the PBCM for
x(7).” This effect is common in generating realistic
PBCMs wherein there may be only a few discrete
technology solutions widely separated in performance
and cost. Depending on the situation, a discrete
optimization method may be more appropriate.

These results can be used to design a specific cost-
constrained upgrade to the threshold system of systems.
For example, if the allowable cost constraint is twice
that of the threshold system, then selecting p; = {85.3,
0.961, 0.555, 3.0, 42.0} and p, = {423.2, 7.0, 3.0} yields
E=17.768 h, with clearance rate q=0.846 at
cost C*(p*) = $56.132 million. This is a substantial en-
hancement to the threshold system represented by
p; = {10.0,0.9,2.0,9.17,90.0} and p, = {75.0, 6.6, 10.0}
that results in an overarching MOE of E = 93.33 h with
clearance rate of only q=0.620 at cost C*(p*) =
$28.066 million. Since CONSTR would not converge
for cost factors less than 1.25, the analysis indicates that
a system that satisfies the stringent requirement for
84.6% clearance will cost at least 25% more than a
system of systems composed of the threshold compo-
nent systems, but would take 38.38 h to complete the
clearance mission with a single pass from each system.

Critical to any cost/performance trade analysis is the
concept of sensitivity analyses. Three specific types of
sensitivity analyses are especially appropriate for this
class of problems:

1. Sensitivity to mission or scenario. This is achieved by
varying the parameters that define the threat, envi-
ronment, mission objective, and systems CONOPS.

2. Sensitivity to secondary MOE constraints. Since these
constraints were arbitrarily set, the optimization
should be parameterized for excursions about the
nominal value to produce families of CAIV curves.

3. Sensitivity to PBCMs. Examination of sensitivities to
subsystem cost models and especially technology-
driven limitations on MOPs can vyield significant
insights needed to focus a supporting warfare area
technology investment strategy.

Moreover, it can be shown that optimizing each
system separately is suboptimal to optimizing the system
of systems as a whole.!! In quantifying the suboptimal-
ity of single-system optimization relative to simulta-
neously optimizing the entire system of systems, several
significant insights were obtained and verified by ex-
amining some reasonable assumptions that might be
held by component systems’ management concerning
the concurrent systems engineering processes of other

INTEGRATING COST/PERFORMANCE MODELS

systems. For example, if one systems team assumes that
the other component systems are being developed for
high performance, they will “under-engineer” their
own system with respect to interfacing parameters and
will tend to allocate resources to enhance the single-
system MOE. Conversely, if they assume that the other
systems are not performance driven, the result is to
over-engineer their own system at the interface. In this
case, since resources are constrained, this over-engi-
neering forces degradation in the single-system MOE.
In both cases, the overall system of systems is subop-
timal, because all systems engineers are making the
same erroneous assumptions.

These effects are accentuated with restrictive cost
constraints but become insignificant as overall cost
constraints are relaxed to the point where the most
advanced technology is affordable for all system com-
ponents—an intuitive result. In other words, if we are
not resource constrained, then the correct course of
action is simply to optimize each component system for
performance without regard to cost. But as the cost
constraint is tightened, it becomes increasingly impor-
tant to consider the full impact of design decisions on
the whole to get the most performance per unit dollar.
The results in this regard vividly illustrate the maxim,
“We are short of money, therefore we must think.”

Phase I1: Simulation Objective Function

As mentioned previously, obtaining a closed-form,
deterministic expression for the system-of-systems’
MOE objective function is not always feasible or would
introduce unacceptable simplifying assumptions. A
growing number of application areas rely on stochastic
M&S to predict system-of-systems performance under
certain conditions of interest. Therefore, future prac-
tical implementations of this approach for warfare area
systems of systems will include the use of simulation to
evaluate the objective function—an extension that
will put a premium on minimizing the search algo-
rithm’s function evaluations.

Simulation will generally be of the Monte Carlo
type, hence, there will be process noise associated with
the function evaluation. The simulation produces a
stochastic realization of the objective function of the
form

y(plv e )pn) =G(p1) e )pn)("))

where @ = simulation noise.

This stochastic nature of the objective function and
quality constraint functions means that we have a sto-
chastic optimization problem to which classical opti-
mization methods are not directly applicable. Since G
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will be evaluated by the simulation, the gradient of vy
will not be available explicitly. Many stochastic optimi-
zation methods, like classical methods, require approx-
imations of gradients, but they become extremely costly
to compute in this domain since each function evalu-
ation represents a simulation run. Until recently, finite-
difference—based gradient-search stochastic approxima-
tion procedures that are adaptations of deterministic
algorithms have been most widely used for this type of
optimization. A major drawback of these methods is that
the number of function evaluations required at each step
is linear in the dimension of the search parameter vector
for first-order methods and quadratic for second-order
methods."” Since we envision eventually using large-
scale system-of-systems simulations with tens of parame-
ters, a much more efficient method is desirable.

The Simultaneous Perturbation Stochastic Approx-
imation (SPSA) method'*" is the most efficient esti-
mator in this domain with respect to function evalu-
ations per iteration, and its first- and second-order
versions have been adapted here to solve the MCM
system-of-systems problem. The first-order SPSA
method is a type of gradient search that requires only
two-function evaluations per iteration, independent of
the number of parameters to be estimated. The current
solution estimate is perturbed in all
elements simultaneously in a sort of
central difference fashion rather
than one component at a time,

scope of this article to discuss the details of the penalty
function approach, but they are covered in Luman'! and
generalized and extended by Wang and Spall.'®

Simulation Description

To examine stochastic optimization feasibility, the
MCM system-of-systems model was implemented as a
simulation, patterned directly after the parameter de-
pendency diagram shown in Fig. 7. The simulation was
implemented as a MATLAB function that produces
one Monte Carlo realization of E and g with each
function call. It randomly generates the specified
events in accordance with the MOPs. For example,
looking at block 4 in Fig. 7, if there are 100 mines in
the minefield (i.e., My = 100) and Py = 0.90, then the
number of detected mines (D,,) is generated simply as
100 Bernoulli success/failure trials with probability of
success equal to 0.90. The randomly generated D,, is
then passed to block 7, which in tumn similarly gener-
ates the number of correctly classified mines, and so on.
Eventually the MOEs for that realization are produced
and the resulting penalty function evaluation is re-
turned by the simulation function MCMSIM after
calculating the resultant system cost.

S,: Reconnaissance
system

which is generally done to estimate
the partial derivatives that com-

Tdetect

prise the gradient vector.

Although SPSA per se is an un-

constrained (global) optimization
algorithm, a penalty function ap-
proach was developed!! to adapt it

P
fa
Srinefield | 2

T. T
cof cass S: Clearance
Pe system of systems

to the class of nonlinearly con-

strained problems represented by At

PBCMs E

11

Dy S,: Neutralization

this system-of-systems optimization

process. However, owing to the large

range of numerical values of the Mo
MCM system parameters, the first- Py 4
order SPSA (1SPSA) algorithm ex-

system

hibited poor convergence. There-
fore, a second-order version, or
2SPSA,'®!" which emulates the
convergence acceleration and scal-
ing invariant properties of determin-
istic Newton—Raphson algorithms,
was also adapted to the constrained
nature of this class of problems.
Because of the need to estimate the
Hessian matrix, 2SPSA requires

Quality constraint
g on S

12

five-function evaluations per itera-

tion, but produced much better re-

sults than 1SPSA. It is beyond the

Figure 7. MCM simulation block diagram (refer to Nomenclature).
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Second-Order Constrained SPSA Optimization

Figure 8 compares several 2SPSA simulation MOE
results to the closed-form analytic model results, which
represent the best possible cost/performance for this
application. Note that 2000 iterations are required to
approach the analytic results. Certain postprocessing
methods, common in stochastic optimization practical
applications, were applied to achieve the final results,
generated by interpolating MOP estimates across the
CAIV continuum.!! These interpolated simulation re-
sults are very smooth, approximating the baseline re-
sults curve.

However, the overall MOE domain does not reflect
the entire situation, and we must examine the degree
to which the secondary MOE and cost constraints are
satisfied. These comparisons are displayed in Figs. 9
and 10, respectively, and show acceptable levels, con-
sidering the variability induced by the simulation.
Actually, the interpolated MOP values result in un-
derspending the cost constraint by as much as $4
million (about 6%) at the higher levels of the cost
constraint, implying that a bit more performance
could be extracted.

An interesting aspect of stochastic optimization is
that the optimization process is itself a stochastic pro-
cess in addition to the system under analysis. There-
fore, the issue arises as to how to express the “final”
answer in both the MOP and MOE domains. For
example, what are the values for the MOEs E and q
that are associated with the solution vector x (MOPs)?
Since MCMSIM produces a random realization of the
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Figure 8. 2SPSA simulation versus analytic model results. (Bars
show standard deviations about mean simulation results.)
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Figure 10. 2SPSA simulation cost results.

objective function, it must be called many times and
results averaged to generate expected values for E
and g. The results in Fig. 8 display the standard de-
viation bars of 100 such function evaluations about
the mean simulation results.

In the baseline analytic results at a representative
costfactor;, constraint value of 2.0, CONSTR produced
p1 =185.3, 0.961, 0.55, 3.0, 42.0} and p, = {423.2, 7.0,
3.0}, yielding E = 17.8 h, with clearance rate q = 0.846
at cost C*(p*) = $56.1 million. The final results of the
nonlinear, constrained, stochastic optimization imple-
mentation produced p; = {74.3, 0.965, 1.1, 3.2, 55.8}
and p, ={495.6, 4.4, 3.3}, yielding E = 18.7 h, with
clearance rate g = 0.841 at cost C*(p*) = $54.0 million.
The overall MOE is about 5% worse for $2 million less

cost and a very slight decrease in clearance rate of
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0.005. As expected, this is suboptimal to the analytic
formulation owing to the complexity introduced by
simulation variability or “noise.”

SUMMARY

A systematic, disciplined, quantitative approach to
developing system-of-systems requirements allocations
has been demonstrated for upgrading complex systems
of systems. The process treats cost as the independent
variable and seeks to find the “best” point design for
upgrading a particular system of systems, subject to
cost, operational, and technology constraints, relative
to an overarching MOE. The design requirements
generated represent an improved system of systems that
may involve upgrading all component systems simul-
taneously, not just one at a time. Although final sys-
tems requirements decisions must subjectively balance
multiple factors, this method objectively integrates
cost and performance factors at the initial stage of
analysis.

The process has been demonstrated on a naval MCM
system-of-systems representation of sufficient complex-
ity and detail to demonstrate its feasibility. This proof-
of-principle demonstration features a constrained,
nonlinear optimization algorithm adapted to both
closed-form representation of the objective function
(i.e., MOEs) and simulation-based objective function.
Owing to the mnature of complex system-of-
systems interactions, the latter approach will be neces-
sary to address full warfare areas or problems of national
interest. Their complexity requires the simulation to
represent the mapping of system MOPs to single-system
MOEs and on to the overarching system-of-systems
MOQOE. Various optimization methods have been dem-
onstrated and differences quantified, including the sub-
optimality of considering just one system at a time.!!
The application of the system-of-systems approach can
result in more effective and comprehensive systems
acquisition and technology investment strategies, with
the secondary benefit that the process can be used as
a framework to determine how to utilize campaign-level
simulation to support acquisition decisions.

Variants of the process are now being applied to
support CAIV analyses for the Navy Theater-Wide
Program and to focus future science and technology
investments for MCM. These applications at the
warfare area system-of-systems level will enable acqui-
sition executives to move from our legacy single-system
acquisition approach’ to a comprehensive warfare area
architecting process (Fig. 11) with a scope spanning
new acquisition starts, technology insertion upgrades,
force structure, and technology investment strategy.'’

Understanding

of current
Warfighter warfare area
mission architecture
needs and capability

l i

Warfare area

Initial system-of-systems
budget —— CAIV I CAIV
allocations optimization and principles

trade-off analyses

Revised
budget
allocations

System-of-systems
requirements

Feedback to

science and
technology
investment
strategies

—>

Consider initiation
of multiple systems
acquisition and/or
upgrade programs

l l

New System upgrade/
acquisition modifications
program programs
approvals initiation

Figure 11. System-of-systems architecting can support an ac-
quisition paradigm shift.
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