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s part of the Defense Advanced Research Projects Agency’s Advanced

Simulation Technology Thrust, the Multiresolution Interaction Validity (MIV) Project
at APL is investigating methodologies to employ environmental effects models more
effectively and efficiently, to aid the development of synthetic force models, and to
ensure internal consistency among multiple environmental effects models. The use of
cluster analysis has proven to be a powerful tool in identifying important sensitivities
of environmental effects models such as ASTRAL, a Navy model for the propagation
of underwater sound. Applications of this work will be found in future simulations for
both training and analysis. This article describes recent accomplishments as well as an
overview of the MIV Project. (Keywords: Acoustics, Cluster analysis, Environment,

Interoperability, Modeling, Propagation, Simulation.)

INTRODUCTION

In advanced distributed simulations, the synthetic
natural environment (SNE) provides the “playing
field” on which synthetic forces will operate. SNEs
locate those forces with respect to each other and
mediate their interactions (e.g., terrain and atmospher-
ic influences on intervisibility). The SNE encompasses
all physical aspects of the natural environment, includ-
ing the land, sea, atmosphere, and space.

Modeling the complex effects of the natural envi-
ronment on warfighters and systems, however, requires
prioritizations and trade-offs that can result in incon-
sistent or reduced-fidelity representations across net-
worked simulations. Inconsistent representations can
occur for several reasons: use of different models that

are not entirely consistent with each other to represent
the same environmental effects in different interacting
simulations; use of different implementations of the
same environmental effects model; and use of incon-
sistent environmental data in the environmental ef-
fects models.

Reduced-fidelity representations can result from
suboptimal employment of environmental effects mod-
els. These models often involve complex algorithms to
represent effects of the environment on some process
such as the propagation of signal energy through the
atmosphere or the ocean or the passage of a military
platform over heavy seas or a muddy field. In situations
where environmental effects models must be updated
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frequently to keep pace with simulation dynamics (e.g.,
movement of sources and sensors), the computational
complexity of the models can require a disproportion-
ately large share of the computer resources available to
the simulation. To reduce the number of required cal-
culations and improve the model’s cost-effectiveness,
estimates of model output may be employed to reduce
actual model calculations.

Recognizing these problems, the Defense Advanced
Research Projects Agency decided to include a task
area on the natural environment in their Advanced
Simulation Technology Thrust. The Multiresolution
Interaction Validity (MIV) Project is part of this thrust,
and was begun in mid-FY97. The project is developing
prototype methodology as well as prototype guidance
products to support the enhanced representation of
environmental effects in networked computer simula-
tions. The three main goals of the project are (1)
development of use strategies for improving computa-
tional efficiency, (2) abstractions of a given model’s
response to environmental features that can guide
developers of synthetic force models, and (3) consisten-
cy analysis for evaluating correlation of environmental
effects across networked simulations.

MIV PROJECT OVERVIEW

Figure 1 is a conceptual model of the MIV Project.
Ultimately, this methodology will be applied to multi-
ple environmental domains, but initially it will be

developed in the ocean acoustic domain. The approach
begins with the selection of a specific real-world littoral
environment that will be the basis for environmental
inputs to an environmental effects model. The selected
real-world environment is examined for critical envi-
ronmental factors (e.g., fronts, eddies, surface mixed
layers, seamounts, etc.) that significantly impact the
environmental effects model output. This environment
is then simplified into various reduced-complexity
forms. The most basic is a baseline environment, which
is the simplest acceptable representation of the area
under study. Next, simple intermediate SNEs (ISNEs)
are constructed, each consisting of a single environ-
mental feature added to the baseline environment.
Finally, progressively more complex ISNEs consisting of
different assortments of multiple environmental fea-
tures are considered, converging to the real-world
environment.

Each of these environments becomes a case study for
the environmental effects model. Other model inputs
represent operational factors such as source and sensor
locations and source frequency. The resulting sets of
model output (or model response) are then analyzed in
several exploratory ways. Cluster analysis is the main
analysis method described here, although others have
been investigated as well.! The results of these analyses
form the basis for development of the MIV products.

The three MIV products are model use strategy,
model-dependent environmental abstractions, and
consistency analyses. The goal of model use strategy is
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Figure 1. Conceptual model of the Multiresolution Interaction Validity (MIV) Project (SVP = sound velocity profile, SNE = synthetic natural

environment).
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the development of more computationally efficient rep-
resentations of environmental models. A model use
strategy is defined as the conditions for which an en-
vironmental effects model calculation will be per-
formed or the conditions for which one or more
methods will be exercised to estimate that model’s
output response.

Model abstractions developed for use by synthetic-
force model developers have come to be called model-
dependent environmental abstractions. They are
model-dependent descriptions of the effects of a spec-
ified environmental feature on the output response of
a given environmental effects model. Synthetic forces
are automated models used to represent system and/or
human resources in large simulations, and must be
sufficiently realistic to satisfy the objectives of the
simulation.

Consistency analysis assists the intercomparison of
environmental effects model outputs from different
models, different implementations of the same model,
or the same model receiving different environmental
inputs describing the same environment (e.g., varying
grid sizes, feature descriptions). Model consistency
within an advanced simulation is essential to the use
of advanced simulations for training and analysis, yet
is problematic when many participants bring their own
models to the simulation.

The substrate on which these products are con-
structed is the representation of the SNE, including
both models and data. Thus the approach to this prob-
lem begins there.

SNE REPRESENTATION

Area Selection

Areas of potential military interest were identified
using guidance provided by the Program Executive
Officer/Undersea Warfare Advanced Systems and
Technology Office for another project,? as well as a
knowledge base of APL’s past and current work in
support of the Navy and other government sponsors.
The area best suited for this study was the Sea of Japan
(SQJ). Types of bathymetric features found in the SOJ
include a continental shelf, continental slope, abyssal
plain, spreading ridge, and seamounts. Primary water
column features are fronts and surface mixed layers.
The SQOJ study area and a typical trackline are shown
in Fig. 2.

Ocean Model Selection

Princeton Ocean Model (POM) data sets for the
SO]J were available from the Naval Research Labora-
tory, Stennis Space Center, Mississippi (personal com-
munication, M. Carnes, May 1997). The POM is a

ENHANCED ENVIRONMENTAL EFFECTS REPRESENTATIONS
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Figure 2. Sea of Japan study area, showing a typical intermediate
synthetic natural environment (ISNE) trackline.

free-surface, primitive-equation ocean model that in-
cludes a turbulence submodel and has depth scaling
that is proportional to local water depth. It was devel-
oped in the late 1970s by Blumberg and Mellor,” with
subsequent contributions from others. The model has
been used for modeling of estuaries, coastal regions, and
open oceans, and currently has hundreds of registered
users from many different countries. The particular
POM data set used in this investigation was designed
to capture mesoscale features (=40 km), which, though
lacking the smallest scale features, nonetheless captures
enough of the natural variability for the present study.

Underwater Acoustic Propagation Model

The ASTRAL Underwater Acoustic Propagation
Model (Version 4.2) was selected to calculate the
acoustic transmission losses (TLs) in this analysis. Re-
quirements for the acoustic model were that it be a
Navy standard model and commonly used in Navy
simulations. ASTRAL is a Navy standard model and
is available in the Navy’s Ocean and Atmospheric
Master Library.* ASTRAL is widely used in real-time
simulations because it runs 10 to 1000 times faster than
the more accurate parabolic equation models. It is a
range-dependent, adiabatic, range-smoothed, mode-
theory model with additional algorithms to model
important acoustic features such as convergence zones
and surface ducts that are not appropriately scaled for
the primary algorithm.

ISNE Plan

Identification of Features

A comprehensive review of the SOJ was conducted
to identify all the oceanographic and bathymetric
features and to assess their acoustic significance. The
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results of this analysis are reported in Ref. 5. The in-
dividual features are listed in Fig. 3.

The baseline environment consists of a range-inde-
pendent sound velocity profile that was taken from the
Navy’s General Digitized Environmental Model and is
representative of summer SOJ sound velocity profile
structures and a range-independent abyssal plain bot-
tom. Using full-resolution POM data, we constructed
single-feature ISNEs for each feature shown in Fig. 3,
and multiple-feature ISNEs for the sequence shown in
red lines. All single-feature ISNEs are built up as mod-
ifications or additions to the baseline environment.

Selected Tracklines

The POM data were reviewed to locate specific
examples of the features expected in the SOJ. Once the
features were found, a trackline through them was de-
fined for the ISNE. These tracklines were the basis for
propagation runs using ASTRAL. The ISNEs analyzed
to date were chosen with the expectation that using
simple environments would simplify the initial analysis.

The Data Set

Twenty-six standard frequencies ranging from 20 Hz
to 10 kHz in an approximately logarithmic scale were
selected, as shown ir{ Table 1. [n addition, 17 standard
depths were used for both the source and receiver,
covering a range from 50 to 1500 ft. Thus, for each
ISNE, TLs were calculated for each combination of
frequency, source depth, and receiver depth shown in
Table 1, resulting in 7514 TL curves per trackline.
ASTRAL output consists of TL as a function of range
of the receiver from the source. Range increments of
0.25 nmi were used for these calculations.

Surface
mixed layer

I

On a Pentium Pro 200-MHz system, the run time for
a single geometry was 0.25 s. Combining multiple fre-
quencies and source depths into a single run eliminated
redundant setup calculations and optimized disk access,
reducing the run time to 0.03 s per geometry. The
resulting run time for an entire ISNE was approximate-
ly 5 min.

The ASTRAL output generated for a single ISNE
comprises a 10-MB, four-dimensional array (range, fre-
quency, source depth, and receiver depth), containing
3,005,600 TL values. TL data sets of this size and di-
mensionality are not commonly analyzed, even by
experts, making this data set a unique resource within
the community.

ANALYSIS OF PROPAGATION MODEL
DATA

Several analysis methods including gradient analy-
sis, interpolation, and Markov estimation methods
have been examined and reported in the MIV Project.!
The most promising method developed so far, cluster
analysis, is described in the following subsection.

Cluster Analysis

Development of use strategy, model-dependent en-
vironmental abstractions, and consistency analysis re-
quires detailed knowledge of model sensitivity to the
input parameters. All three of these products depend
on the observation that there are often broad regions
in the multidimensional input parameter space (source
depth, receiver depth, and frequency) where the model
output is relatively insensitive to small variations in
some or all of the input parameter values. Within these
domains, we should be able to achieve good represen-
tation of the model response with-
out having to repeat the full set of
model calculations at each point.
Hence, we seek to identify and map

Real-world
environment
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Figure 3. Sea of Japan ISNE plan (POM = Princeton Ocean Model).

divisive cluster technique based on
the method devised by Macnaugh-
ton-Smith et al® The method is
illustrated in |Fig. 4.|First, all ob-
jects are in a single cluster and then
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Table 1. Standard values selected for the ISNE data set.
Source Receiver
Frequencies depths depths
(Hz) (ft) (ft)

20 50 50

32 100 100

40 150 150

50 200 200

64 250 250

80 300 300

100 350 350

160 400 400

200 450 450

250 500 500

320 600 600

400 700 700

500 800 800

640 900 900

800 1,000 1,000

1,000 1,250 1,250

1,250 1,500 1,500
1,600
2,000
2,500
3,200
4,000
5,000
6,400
8,000
10,000

the data set is systematically split into smaller clusters.
This process would ultimately result in each object
belonging to a separate cluster, but in practice it is
terminated when sufficient clustering is achieved. Ex-
amination of how clusters are split assists in determin-
ing the appropriate number of clusters to characterize
the structure in a data set.

After all objects are placed in a single cluster to be
divided into two smaller ones, the divisive algorithm
proceeds by examining the average dissimilarity for
each object in a cluster. The dissimilarity between two
objects is simply the Euclidean distance between them,
i.e., the geometric distance d,, between any two vectors
r and s, defined as

1
b= £ S (g =x ),
TS m, (xn X-Sl) (1)

IM =

where x,; is the value of the ith element in the vector
r, X is the value of the ith element in the vector s, and
m is the dimension of the vectors r and s. A small
distance indicates that the objects are similar, whereas

ENHANCED ENVIRONMENTAL EFFECTS REPRESENTATIONS
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Figure 4. Diagram of the divisive hierarchy algorithm.

a large distance indicates dissimilarity. The average dis-
similarity of an object is then just the ensemble average
of the dissimilarity of that object from each of the other
objects in the cluster. The diameter of a cluster is simply
the maximum dissimilarity between any two objects in
the cluster.

The object with the largest average dissimilarity is
removed from the original cluster and placed into a new
cluster as a starter object. The average dissimilarity is
then recomputed for each of the objects remaining in
the original cluster. These are rank-ordered by their
average dissimilarity, and the object with the largest
average dissimilarity is considered next. The average
dissimilarity of this object to the current object(s) in
the new cluster is also computed. If this object is “clos-
er” to the new cluster than to the original cluster (i.e.,
smaller average dissimilarity relative to the new cluster
than to the original cluster), then it is placed in the new
cluster. The process is repeated iteratively until no
further objects are “attracted” to the new cluster. Once
this process is complete, the cluster with the largest
diameter is selected for division next.

When the clustering is complete, representative
objects are identified for each cluster. The representa-
tive object for a given cluster is the object with the
smallest average dissimilarity in that cluster; note that
it is an actual object from a cluster, rather than a cal-
culated value or average of some number of objects.

Application to Use Strategy Development

The plan, then, is to use a single representative
object where possible, instead of the multitude of actual
objects. That this works is a major result of the project.
Recall that we seek to find input parameter intervals
within which the model output may be reliably estimat-
ed without calculating the actual TL. To this end, the
divisive cluster analysis algorithm was applied to the TL
calculated by ASTRAL in the baseline environment.
The goal was to see if the clusters would form regions
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in the parameter space that would enable a use strategy
to be defined. As part of this process, three input pa-
rameters were examined: frequency, source depth, and
receiver depth. Each individual TL-versus-range calcu-
lation (for a given frequency, source depth, and receiver
depth combination) was considered to be a single
object.

The total number of TL curves to be clustered for
the baseline environment was 7514. Since the full
clustering calculation takes several days on a PC, a
sampling approach was taken here. For an initial test,
a random sample of 100 TL curves was chosen from the
full set of 7514, and this sample was then clustered.
Representative TL curves were selected from each clus-
ter. The full clusters were then approximated by asso-
ciating each unsampled curve from the full set with the
nearest cluster, i.e., the cluster with the smallest Euclid-
ean distance between its representative curve and the
unsampled curve.

The TLs analyzed included all the source depths,
receiver depths, and frequencies shown in Table 1. The
entire data set was reduced to 20 clusters in order to
determine if the clustering would yield continuous,
connected volumes in the three-dimensional source
depth-receiver depth-frequency space. If so, the meth-
od would hold promise. But if the clusters were to
consist of the union of many small, isolated regions in
input space, it would not. The clusters were indeed
found to represent continuous, connected volumes in
the three-dimensional space, and did not consist of
disconnected points. Two of the clusters are shown in
Fig. 5a, and the corresponding regions in input param-
eter space are shown in Fig. 5b. We concluded
from these studies that cluster analysis can find
volumes in the three-dimensional (source depth, re-
ceiver depth, frequency) space that exhibit similar TL
characteristics.

Cluster Analysis Toolbox

To help reduce the amount of required analysis of the
TL calculations, a graphical user interface (GUI) was
developed using Matlab 5.2. The GUI implements the
cluster algorithm and displays the results in a user-
friendly format. It enables the user to display the actual
TL in a variety of ways as an aid in analysis. A typical
display from the toolbox is shown in The rep-
resentative TL curves for the 20-cluster case are shown
in Fig. 6a. The size of each cluster (i.e., the number of
TL curves per cluster) is shown in Fig. 6b. One can see
that the number of TL curves in each cluster varies
considerably, implying that a large part of the input
parameter space can be represented by a small number
of TL curves.

The cluster analysis toolbox enables a user to quickly
examine precalculated TLs for a large range of source
depths, receiver depths, and frequencies. It aids in

identifying areas in the parameter space that have sim-
ilar TL characteristics and in finding representative TL
curves for those areas. The toolbox can also provide
information on the appropriate number of clusters,
based on the amount of within-cluster variation that is
acceptable. Although presently configured for TL anal-
ysis, the toolbox is easily reconfigurable and extendible
to other parameter spaces. This toolbox is now avail-
able for use by others.

THEORETICAL INVESTIGATIONS
OF USE STRATEGIES

A parallel effort is also under way on developing an
analytical basis for the efficient use of models so that
run time may be dramatically reduced. Essentially, we
must rapidly produce an output that closely matches
the physics-based model output as the input variables
change. Such speedups will be required to run many
models effectively in real time, e.g., in a simulation of
acoustic propagation for submarine training exercises.
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Figure 5. Plots of clusters representing continuous, connected
volumes in three-dimensional space: (a) transmission loss for 2 (of
20) clusters, and (b) location in input space of the 2 clusters.
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Figure 6. Example display from the APL cluster analysis toolbox showing (a) transmission loss for two clusters and (b) size of the clusters.

This task will entail intelligent use of a relatively small
number of full physics-based model runs. Two of the
many issues regarding these runs are how small a “seed-
ling” set of model runs will suffice and how to disperse
them throughout the parameter space. Although we are
using ASTRAL as a motivating example, the basic
ideas would apply to any physics-based model, includ-
ing models relevant to land- and air-based combat
settings.

Overview of Analytical Approach

The means to accomplish this task is the use of
selected runs of the physics-based code to build an
efficient interpolator. The near-term aim of this project
is to develop means by which the ASTRAL code can
be interpolated with respect to the underlying input
variable space of relevant terms (likely to be 10 or more
variables, including the relative spatial coordinates of
the submarine and signal source, water salinity, ocean-
bottom shape, sound-speed profile, etc.) as these rele-
vant terms are changing. Hence, in a training exercise,
for example, a relatively small number of runs of
ASTRAL would be made at strategically chosen points
in the multivariate input variable space, with interpo-
lation used to “fill in” the remaining space and provide

the real-time output. This interpolator will run much
faster than actual ASTRAL runs, and hence can be
used to provide good real-time acoustic transmission
estimates.

The existing literature on multivariate interpolation
methods provides little guidance on feasible methods
for picking the evaluation points in a dynamic setting.
The lack of guidance in this area presents a challenge
to developing an overall interpolation approach.

We are currently looking at analytical ways to effi-
ciently and effectively determine these “strategically
chosen” points using advanced optimization tech-
niques. A naive choice of evaluation points for building
the interpolator will be hopeless except in the smallest
problems. A complication for the optimization process
of finding an intelligent grid of points for interpolation
is that no loss-function gradients will be available
because the code is much too complex to differentiate
analytically or even numerically. Hence, the optimiza-
tion method must rely entirely on simulation inputs
and outputs.

Our approach is based on the well-known informa-
tion matrix from estimation theory. The information
matrix plays a central role in the practice and theory
of statistical estimation. It provides a summary measure
of the amount of information in the data relative to the
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parameters that are being investigated. Some of its ap-
plications are confidence-region calculations for pa-
rameter estimates, determination of inputs in experi-
mental design, estimation of performance bounds in
adaptive systems (such as a control system), and uncer-
tainty bounds on predictions (such as with a neural
network). However, calculation of the information
matrix is often a difficult and lengthy task, especially
with nonlinear models like neural networks.

A fast approximation to the information matrix is
being developed in this project. This will aid in deter-
mining where the evaluation points should be placed
to produce an accurate interpolation.

Calculation of the Information Matrix

Our work on this problem’ consists of a resampling-
based method for computing the information matrix.
This method applies in problems of any level of com-
plexity and is relatively easy to implement. Analytical-
ly, the matrix is defined as

2 O
Fn(G):—l Dl?logL |9

n 100007 (2)

where the scalar L is the statistical likelihood function
(the probability density function of the output values
expressed as a function of the input vector 6), n is the
number of data points, and E(-) represents a statistical
expected value with respect to all the randomness in
the problem. In practice, it is common that neither the
indicated second derivative matrix (i.e., the Hessian
matrix) nor the expectation can be computed, or at
least not easily. This is especially the case with nonlin-
ear models such as those likely to be used as
interpolators.

The essence of our method is to produce efficient,
“almost unbiased” estimates of the Hessian matrix of
log L at a large number of pseudo data vectors and then
average these to obtain an approximation to F,(0). This
approach is directly motivated by the definition of
F,(0) as the mean value of the Hessian matrix of the
function log L. The pseudo data are generated accord-
ing to a bootstrap resampling scheme treating the
chosen 0 as “truth.” That is, each pseudo data set rep-
resents a sample of size n from the assumed distribution
of data based on the unknown parameters taking on the
chosen value of 0. The critical part of this conceptually
simple scheme is efficient estimation of the Hessian
matrix.

This method is surprisingly simple and is based on
ideas from simultaneous perturbation stochastic ap-
proximation.® Because the simultaneous perturbation
Hessian estimate is easy to compute and because the
information matrix estimate is a simple average of the

Hessian estimates, the approach provides a power-
ful and easy-to-implement means for calculating the
information matrix in arbitrarily complex models or
interpolators.

Two applications of the information matrix estimate
having special relevance to the use-strategy part of the
MIV Project are picking the input values for use in
building the interpolator and producing error bounds
on the prediction errors for the interpolator. Although
the general approach is reasonably clear and consistent
with previous work in experimental design, our work
is continuing on the details of the information matrix
estimate in specific cases.

PRODUCT DEVELOPMENT

Use Strategy

The previous discussion of cluster analysis suggested
that alternative approximate representations of specific
model responses are indeed feasible. Therefore, our first
prototype use strategy will be developed for the SO]J
baseline environment, based on the cluster analysis
results. This strategy consists of selecting one of the
representative TL calculations that describes a cluster,
based on the input parameter values of the desired
situation, in lieu of actually performing a specific
ASTRAL calculation. The number of clusters required
for a particular simulation is determined by the fidelity
requirements of the simulation. A larger number of
clusters produces a higher-fidelity representation of the
acoustic environment than a smaller number of clusters
by reducing the within-cluster variation. The degree of
variability within each cluster is shown in Fig. 7 as a
function of the total number of clusters. When the
entire TL data set is separated into two clusters, the
mean Euclidean distance between the representative
TL curves and all other curves in its cluster is over 7 dB.
As the number of clusters increases to 20, the mean
Euclidean distance decreases to approximately 3 dB.

Mean Euclidean distance (dB)
a1
T

0 5 10 15 20 25 30 35 40 45 50
Number of clusters

Figure 7. Accuracy curve for prototype use strategy.
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Another use strategy being investigated is interpo-
lation. The cluster analysis showed that there were
large parts of the input parameter space in which the
variability of TL was not great. A simple experiment
was conducted to assess the feasibility of interpolation.
Transmission loss curves for a constant source depth
(200 ft) and for all frequencies were calculated for
receiver depths every 10 ft. These model-calculated TL
curves were then compared with interpolated TL
curves. Transmission loss was interpolated from four
receiver depths. Initially, these were approximately
evenly spaced at 50, 500, 1000, and 1500 ft. The in-
terpolated TL curves were then compared to the AS-
TRAL-calculated TL curves. This comparison is shown
in Fig. 8a. At receiver depths greater than 500 ft and
frequencies less than 6400 Hz, the interpolation errors
were less than 1 dB. At depths less than 500 ft, the
errors increased to over 20 dB. At frequencies higher
than 6400 Hz, there were bands of low and high inter-
polation errors.
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Figure 8. Accuracy contour plots for proposed interpolation use
strategy at (a) receiver depths of 50, 500, 1000, and 1500 ft, and
(b) adjusted receiver depths of 60, 120, 400, and 1000 ft (rms =root
mean square).
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The size of the individual clusters varied consider-
ably, indicating that the interpolation could be im-
proved by varying the depths from which to interpolate.
Cluster analysis showed that the TL varied more quick-
ly at shallow receiver depths than at deeper receiver
depths. Therefore, receiver depths of 60, 120, 400, and
1000 ft were chosen to interpolate from. The differenc-
es between the interpolated and the model-calculated
TL are shown in Fig. 8b. The interpolation errors at the
depths shallower than 500 ft have been reduced from
over 20 to 4 dB. The interpolation error for receiver
depths deeper than 1300 ft have increased only slightly.
This potential use strategy increased the fidelity of the
TL without increasing the computational load on the
simulation.

One distinct advantage of such a strategy is the
order-of-magnitude decrease in storage capacity re-
quired to save the representative cluster TL sets versus
storing 7514 individual TL files. In addition, the selec-
tion of a representative TL set in place of an actual
calculation is based on a more nearly optimal choice
than selection from a conventionally precomputed
table.

Model-Dependent Environmental Abstractions

In developing model-dependent environmental ab-
stractions, a model is exercised for a variety of prese-
lected environmental conditions and sensor parameter
inputs. The results of the model runs are then examined
to determine (1) if the model response is appropriate
for the inputs provided, and (2) how the model re-
sponse can be characterized for the conditions present-
ed. Initially, single-feature ISNEs were used in this
study to increase the likelihood of correlating the
model response to an identifiable environmental ele-
ment. As our capability matured, the model was sub-
jected to increasingly more complex ISNEs to examine
the model response to multiple features. The goal is to
provide compact representations of propagation that
can be easily incorporated in the (relatively) simple
models characteristic of synthetic forces.

The first environment investigated was the baseline
environment, in which the sound speed profile was
simplified to a nearly bilinear profile, and the bottom
was taken to be flat and horizontal. Propagation is well
understood in this environment, and we were able to
provide good descriptors. Next we examined single-
feature ISNEs, where we were also able to establish
some simple propagation descriptors. The challenge
was describing the effects of two or more environmental
features, and we have succeeded in developing a cor-
responding ASTRAL model-dependent environmental
abstraction that would provide a concise description of
propagation behavior for these ISNEs over the entire
operational parameter space.
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Figure 9 depicts the range of characteristic TL be-
haviors along the trackline shown in Fig. 2. This track-
line was dubbed the “front/rise/slope” ISNE since it
crosses an oceanographic front, then a bathymetric rise,
and finally terminates on a continental slope. The
mechanisms giving rise to the front/rise/slope TL be-
haviors in Fig. 9 are understood,! and the four charac-
teristic types of TL behavior shown there could provide
a preliminary characterization of acoustic propagation
in the SOJ baseline environment for synthetic force
acoustic sensor models. (The black curve shown oc-
curred in the analysis and was found to be due to a high-
frequency anomaly in ASTRAL rather than to any real
environmental conditions.)

Consistency Analysis

In simulations, different participants may employ
diverse propagation models of varying degrees of com-
plexity and fidelity. To avoid legislating the universal
use of some single model—an undesirable approach
to distributed simulation—we must develop methods
by which two or more propagation models, indepen-
dently using environmental information (which may
or may not be identical in resolution or format), can
be compared with relatively little effort. The objective
of consistency analysis is to help ensure that the dif-
ferent propagation or other environmental effects
models used in the simulation are providing sufficiently
consistent results to satisfy the objectives of the sim-
ulation exercise.

Two acoustic TL models were considered in this
context: ASTRAL, the model chosen for the overall
MIV effort, and the parabolic equation (PE) model,
another Navy standard TL prediction model. The latter
is a fully coherent wave-theoretic solution to the acous-
tic wave equation. Although sufficiently accurate to
serve as a “benchmark” for other TL models, the PE
model can be computationally intensive, particularly at
higher acoustic frequencies (> 500 Hz). A hypothetical
question was considered: Could the PE model and
ASTRAL be used consistently in the same simulation?

The slope/rise/front ISNE was chosen, and identical
environmental information and tracklines were used in
both models. Because of the high computational bur-
den required by the PE model at higher frequencies, we
limited this analysis to frequencies of 1 kHz and less,
noting that the methodology would generalize to high-
er frequencies as well.

We decided to use the ASTRAL output cluster
analysis to determine the system parameter values
(source depth, receiver depth, and frequency) associat-
ed with each representative TL curve, and then to
exercise the PE model for those system parameter val-
ues and environmental inputs. This produced a set
of TL curves representing the range of ASTRAL TL
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Figure 9. General TL curves that characterize the front/rise/slope
ISNE. The black curveisan ASTRAL anomaly and is notdue to any
environmental conditions.

behaviors, and by assumption (vice by cluster analysis),
a set of TL curves representing the range of PE TL
behaviors.

An overplot of the 20 representative curves from the
ASTRAL data set is shown in Fig. 10a, and the PE
results from the same conditions are overplotted in Fig.
10b. (The PE results were range-averaged to be com-
parable with the naturally averaged ASTRAL results.)

ows encouraging similarities in TL char-
acter between the two models, although such similar-
ities are not to be taken as proof. The difference
between each pair of corresponding ASTRAL and PE
curves was computed, as were the mean and standard
deviation of the absolute value of those differenil
results are plotted against cluster number in|Fig. 11.
The clusters have been rank-ordered according to in-
creasing level of overall TL of each representative TL
curve.

Fifteen of the mean differences (75% of the clusters)
are between 2 and 3 dB, and all are less than 6 dB. Some
of the poorer results coincide with either high-frequen-
cy (1000 Hz: clusters 16 and 18) or shallow source or
receiver depth (50 ft: clusters 17-20). The shallow
source/receiver depths in this environment typically
resulted in significantly higher TL, particularly on the
slope (at the far end of the track), as the acoustic energy
is stripped away by the lossy interaction with the shal-
lowing bathymetry.

The small mean differences between the sets of
ASTRAL and PE curves are very encouraging from the
perspective of establishing consistency between the two
models. A variety of TL types are included in the clus-
ters, suggesting that this comparison method might be
robust enough to serve as a quantitative measure of
consistency. Of course, other factors within the simu-
lation of interest may dictate the accuracy required, but
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inspection of the pairwise AS-
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Figure 10. Overplot of (a) ASTRAL representative TL curves for all 20 clusters, and (b)
20 parabolic equation model TL curves generated using the same system parameter

values.

this type of analysis would clearly support determina-
tion as to whether that accuracy condition could be
met. Also, as suggested by the increasing differences for
high cluster numbers (higher overall TL) in Fig. 11,
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Figure 11. Mean and standard deviation (red and blue curves,
respectively) of the absolute value of differences between ASTRAL TL
curves and the corresponding parabolic equation model TL curves.

dependent environmental abstrac-
tions is promising, and we are
continuing our investigations on
this topic.
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