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embrane-Introduction Mass Spectrometry (MIMS) has evolved into a power-

ful technique for the selective detection of volatile organic compounds in aqueous
matrices. Contaminants in water samples have been analyzed at the parts-per-trillion
level using hydrophobic silicone membranes. Recent advances in new membrane
materials will permit the examination of polar analytes such as chemical agents. In
combination with a small time-of-flight mass spectrometer, it will be possible to
construct a portable detector for treaty verification, counterproliferation, and infrastruc-
ture protection. Other developments include deconvolution algorithms for complex
analyte mixtures, improved understanding of analyte—water reactions, and thermal
desorption of analytes from the membrane into the vacuum. (Keywords: Chemical,

Mass spectrometry, Membrane, Weapons.)

INTRODUCTION

[t is critically important to rapidly detect and iden-
tify chemicals during Chemical Weapons Convention
(CWC) inspections. Miniaturized instrumentation
with this capability can also be used to protect person-
nel. Small, transportable, analytical instrumentation
can assist in selecting which sites are of interest for
further analysis using the more definitive, but slower,
analytical techniques required for establishing compli-
ance with the CWC.

Membrane-Introduction Mass Spectrometry (MIMS)
is an emerging development in chemical analysis de-
signed for speed, selectivity, sensitivity, and real-time
monitoring capabilities.! The technique provides an
analyte separation method that can be performed in

real time with minimal sample preparation.” With
MIMS; a liquid sample containing dissolved analyte(s)
is drawn past a membrane material.” The membrane
selectively allows the diffusion of the analyte preferen-
tially over the liquid matrix or other possible interfering
compounds.* This selectivity enhances the sensitivity
of the detection instrument because of the inherent
separation of the analyte from any background. The
MIMS sample introduction device is coupled to a mass
spectrometer for analyte detection and determination.

Mass spectrometry is recognized as the most defin-
itive technique for the identification and quantifica-
tion of chemical compounds in the laboratory. Until
recently, the size, weight, and power demands of mass
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spectrometers, combined with ex-
tensive sample preparation require-
ments, made field measurements of
trace levels of materials difficult.
APL is developing a small, field-por-
table, time-of-flight mass spectrom-

eter (Tiny TOF) with enhanced in-
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strument portability, flexible design,

and broad detection capabilities.’
By integrating the simplicity and
separation capability of the MIMS
sample introduction technique with
the portability and detection range
of the Tiny TOF mass spectrometer,
a powerful new technique will be
available for on-site use. The tech-
nique offers reduced sample prepara-
tion requirements, excellent sensi-
tivityy, and compatibility with
current gas chromatography/mass
spectrometry databases needed for
compound identification.
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MIMS: TECHNICAL BACKGROUND

MIMS has evolved as a successful analytical tech-
nique owing to its simplicity and sensitivity. In direct-
injection MIMS (Fig. 1), water samples are injected
into a silicone capillary membrane located near a mass
spectrometer source. An external heater elevates the
temperature of the water sample, which in turn heats
the membrane. Typical membrane temperatures are
between 50 and 80°C. At higher temperatures, more of
the sample is passed through the membrane and into
the mass spectrometer source. However, more water
diffuses through the membrane at high temperatures,
which can increase the background pressure in the mass
spectrometer and thereby deteriorate performance and
sensitivity.

Analyte crosses the membrane by a three-step pro-
cess called pervaporation* (Fig. 2), in which it

1. Adsorbs onto the surface of the membrane

2. Diffuses through the bulk of the membrane

3. Evaporates from the vacuum-side surface of the mem-
brane into the mass spectrometer source

The most often used membrane material is silicone,
which tends to exclude polar molecules because of its
hydrophobic nature, i.e., polar molecules are not sol-
uble in silicone and therefore do not readily adsorb onto
the membrane surface. Also, higher molecular weight
species tend to stick to the surface of the membrane and
do not evaporate as readily into the vacuum. Nonpolar
compounds with molecular weights under 200 amu,
however, will pervaporate with high efficiency. Thus,
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Figure 1. Direct-injection MIMS inlet with two-step analyte enrichment (closed circles =
water molecules, open circles = analyte molecules). Shown are the required proximity to
the mass spectrometer source, the enrichment due to the membrane’s selectivity over
water, and a second enrichment, sometimes used, which draws excess water from the
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Figure 2. The pervaporation process.

the silicone rubber membrane provides a useful selec-
tivity that can greatly enhance the detection of com-
pounds that cross the membrane. For volatile organic
compounds, for example, detection limits in the
sub—part per billion range can be expected, as seen in
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Table 1. Of course, the sensitivity of (@)

DETECTION OF CHEMICAL AGENTS IN WATER BY MIMS

the mass spectrometer also affects ‘ ‘ ‘
the detection limit. The data in 4,000,0001 1
Table 1 were obtained using an g
HP5973 quadrupole mass spec- g 3,000,000 A
trometer. lon trap mass spectrome- E
ters, which can collect analyte over © 2.000,000- ]
a period of time before spectral E
analysis, can significantly extend & 1000.000k |
the detection limit. T

The mass spectrometer acquires ‘
a continuous set of spectra during a % 2 6 8 10 12 14 16 18 20
MIMS measurement interval. For (b) Time (min)
example, it will scan every mass ‘ ‘ ‘ ‘ ‘
from 40 to 300 amu every few sec- 4,000,000 87 i
onds. Over time, an ion current §
chromatogram is obtained for each $ 3,000,000 a5 l
mass, which can then be extracted é
at the end of the experiment. A 2 2,000,000¢ 1
typical data set is seen in Fig. 3. 3 61 74
Since each compound has a unique £ 1,000,000~ - 100 )
mass spectrum, one can readily ex- 9 11, | . 1 |8 1
tract identification information %60 70 80 90 100 110

from the ion chromatograms by ex-
amining the spectra integrated un-
der each peak. Mixtures, as detailed
in the following discussion, present

a more difficult problem. solvent.

CHEMICAL WEAPONS
DETECTION FOR TREATY
VERIFICATION

A current effort at APL and MIMS Technology, Inc.,
of Palm Bay, Florida, focuses on the application of
MIMS for the detection of chemical weapons. Chem-
ical weapons tend to be polar molecules with weights
of 100 to 200 amu. We used simulant molecules (e.g.,
chemically related compounds, breakdown products,

Table 1. MIMS detection limits for volatile organic
compounds.
Molecular Detection
Analyte weight limit (ppb)
Benzene 78 0.9
Diethyl ether 74 5.0
Nitrobenzene 123 1.0
o-Xylene 106 0.1
Hexachlorobutadiene 258 0.5
Chlorobenzene 112 0.1

Mass-to-charge ratio, m/z

Figure 3. Typical MIMS data showing (a) the total ion chromatogram, which indicates that
the analyte was passing through the membrane and into the mass spectrometer source
during a 6-min interval, and (b) the mass spectrum of the analyte integrated over the
interval from 7.7 to 8.5 min. The spectrum matches 2-butoxyethyl acetate, a common

precursors_of chemical agents) for testing purposes, as
listed 'mhese analytes were chosen for their
chemical similarity to common chemical warfare
agents, in particular the nerve agents.

Nerve agents, which were first developed in Ger-
many in the 1930s and 1940s, work by attacking the
human nervous system. They are all organophosphorus
compounds and are closely related to insecticides,
where the P(=0) is replaced by P(=S), and less reactive
functional groups than fluoride or cyanide are used.
These agents inhibit the ability of the enzyme
cholinesterase to prevent the buildup of excess acetyl-
choline, which transmits nerve impulses.

The agents of German origin are identified by codes
beginning with the letter “G.” The three main G agents
are tabun, sarin, and soman, although GF is also of
note. Nerve agents of later origin include those desig-
nated “V,” which tend to be more chemically stable and
are roughly 10 times more toxic. The most important
of these is VX. Nerve agents are further divided into
volatile and persistent chemical weapon agents, de-
pending on their tendency to evaporate. Sarin is the
most volatile (17,000 mg/m’ at 25°C) and VX the most
persistent (10 mg/m’ at 25°C) of the major nerve
agents. In general, exposure to G agents is by inhalation
of their volatile vapors, and exposure to V agents is
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Table 2. Chemical weapon simulant compounds used in MIMS testing.
Associated chemical Boiling Molecular
Compound weapon agent(s) point (°C)  weight (amu)

Ethyl methylphosphonate (EMPA) G agents 1092 124
Pinacolyl methylphosphonate (PMPA) G agents 96-106 180
Thiodiglycol (TDG) VX 164-166 122
2-Chloroethylethyl sulfide (CES) Sulfur mustard 156-157 124
Dimethyl methylphosphonate (DMMP) G agents 181 124
Triethanolamine Precursor,

Schedule 3B (17) 190-193 149
Methylphosphonic acid (MPA) Sarin, soman, VX 107b 96
Bis(2-chloroethyl)amine hydrochloride Nitrogen mustard 212b 178
#Flash point.
PMelting point.

through skin contact. Thus, G agent-like chemicals are
more easily detected by a MIMS-based technique,
whereas V agents are less so, owing to their lower
volatility.

Both MIMS Technology and APL conducted flow-
injection MIMS studies using standard, 0.28-mm-thick
silicone capillary membranes. At high concentrations
and membrane temperatures, some
of these chemical agents can be

alternative materials as well as thinner silicone mem-
branes. Johnson et al.® introduced liquid membrane
techniques in which low vapor pressure liquids are held
in place on a supporting frit by surface tension. Both
alternative polymer and liquid membranes were used in
this study, each having hydrophilic and hydrophobic
characteristics. Among the alternatives used were

. } ()
detected in aqueous solutions. For
example, Fig. 4 presents a MIMS 35000 - -
Proﬁle and mass spectrum of DMMP 30000 _
in a 200-ppm solution with a mem- 2 25000
brane temperature of 95°C; diagnos- I3 °
tic ions for this compound at mass- = 20000 -
to-charge (m/z) ratios of 79, 94, 109, £ 15000 -
and 124 are shown. These fragments & 10000} _
correspond to the molecular ion at an
. 5000 - -
m/z of 124 and successive methyl- ‘ ‘ ‘ ‘ ‘ ‘ 1 ‘
group or formaldehyde-group losses. O 1 2 3 4 5 6 7 8 9 10 11
At lower membrane temperatures, ) Time (min)
the compound is not observed, pre- 600 — Ty T T T T T T
sumably because of a low diffusion 500l DMMP Unknown |
rate through the silicone membrane 79<—]
. =) 162
and the low rate of evaporation of 2 400 -
. [J]
DMMP into the vacuum system of £
the mass spectrometer. g 300 109 i
Silicone membranes do not readi- S 200 |
ly adsorb polar compounds such as e 57
- 100F ¥ 137 -
the organophosphorus agents, so it is 00 | l | 0 l 185
desirable to substitute other mem- (il o il TR I

brane materials for optimal perfor-
mance. The silicone capillary mem-
brane can be replaced with a flat
membrane geometry, which enables

the examination of a wide range of ~ Technology.
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Figure 4. MIMS profile of DMMP showing (a) an ion chromatogram of the three main
diagnostic ions (m/z = 94, black; m/z =79, green; m/z = 109, red) and (b) an extracted
mass spectrum that matches library data from the National Institute of Standards and
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e GFT Pervap 1170: A composite
membrane consisting of a sili- Table 3. Detection of eight chemical weapon simulants using alternative
cone rubber coating on a membrane materials.
microporous cellulose substrate
e GFT Pervap 1060: Same as 1170, Alternatives
except that silicone coating is Compound GFT 1170  GFT 1060  SSP-M213 Silastic
o l(galﬂlfl'&lge;rt\tle:;kln()eggz A composite EMPA N N N N
- . PMPA Y Y Y Y
membrane consisting of a propri-
. . TDG N N N N
etary, hydrophobic coating on a
microporous substrate CES Y Y Y Y
e Versapor 200H: A microporous DMMP Y Y N N
membrane with hydrophobic Triethanolamine N N N N
coating MPA N N N N
e SSP-M213: A silicone polymer Bis(2-chloroethyl)amine
treated with proprietary, hydro- hydrochloride Y Y Y Y
philic chemicals

e SSP-M100: A proprietary, hydro-
philic membrane similar to Saran
wrap in appearance

e Silastic sheet (Dow Corning): A sheet version of  CES in water (20-ppm solution, 70°C membrane tem-
silicone rubber tubing used in standard flow-injec-  perature) through a GFT Pervap 1060 membrane. Sev-
tion MIMI instruments and serving as a benchmark ~ eral of the compounds were detected using the Silastic

membrane, GFT 1170, GFT 1060, and SSP-M100 as

In initial trials, the more hydrophilic membranes did ~ detailed in Table 3, although it is clear that a broader
allow more analyte through to the mass spectrometer  response is required. The other membrane materials
source, but the higher flux of water masked the signal ~ showed poor response. Initial studies with liquid mem-
and eliminated any signal improvements. For example, ~ branes have also been completed, but further analysis

Fig. 5 shows a typical ion current chromatogram of  to determine the optimum membrane chemistry is
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Figure 5. lon current chromatogram of m/z =75 (blue curve) and 124 (red curve) from
CES (20 ppm) in water using a GFT Pervap 1060 membrane (a) and a MIMS mass
spectrum (b).

needed. In these experiments, lig-
uids such as high vacuum pump oil
were supported on porous polymers,
which presented a tortuous path to
the analyte, thus preventing effi-
cient transport through the mem-
brane. Alternative supports em-
ploying small, straight pores are
currently being tested.

After studies using a quadrupole
mass spectrometer have deter-
mined the optimal membrane sys-
tem to use for detection of chemical
agents, the membrane inlet will be
integrated with the APL-developed
electron-impact Tiny TOF mass
spectrometer. The system, as shown
in Will be based on the
Wiley-McLaren two-stage design
first introduced in 1954. Here, mol-
ecules in the source are ionized
by low-energy electrons (typically
70 eV).

In other Tiny TOF designs de-
veloped at APL, ionization occurs
by a process known as matrix-
assisted laser desorption/ionization
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Figure 6. Block diagram of an electron-impact Tiny TOF mass spectrometer with membrane inlet sampling (LAN = local

area network).

(MALDI). With this technique, a laser pulse desorbs
material from a solid surface that has been co-crystal-
lized with a matrix chemical that ionizes at the wave-
length of the laser pulse. The sample is ionized by
charge exchange with the matrix. Because the laser
pulse occurs at a precise interval, MALDI is well suited
to TOF mass spectrometry.

With an electron-impact source, the task is more
difficult, since an electron pulse will extend in both
space and time. Thus, molecules are ionized at different
times and at different locations within the source re-
gion. This issue is addressed in two ways. First, the
electron pulse is limited in space by magnetic focusing
and gating in time. Thus, a small bunch of electrons
will be introduced into the source in a time interval as
small as 30 ns. Second, the two-stage Wiley-McLaren
source corrects for spatial spreads in ions. In the first
(extraction) stage, a small electric field is applied, so
that ions originating in different locations in the source
are not accelerated to widely different energies. In the
second (acceleration) stage, a much stronger electric
field accelerates the ions into the mass spectrometer

flight tube. With modern electronics providing fast rise
times for the voltage pulses that drive the source elec-
tric fields, the flight tube can be reduced to 13 cm, thus
permitting the construction of a highly mobile, versa-

tile MIMS system.

FUTURE OF MEMBRANE-
INTRODUCTION TECHNOLOGY

The examination of alternative membrane materials
potentially will allow for the detection of other com-
pounds of interest, including those from biological
specimens. Several parallel developments must be pur-
sued to achieve the performance required to extend the
capability of MIMS.

First, thermal desorption of analytes from the vac-
uum side of membranes should permit much greater
sensitivity for detection of high molecular weight, high
boiling point compounds. Many of these compounds
diffuse through silicone membranes, but do not vola-
tilize in wvacuo owing to their low vapor pressure at
typical membrane temperatures. Several methods of
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thermal desorption can be applied, including the use of
a continuous infrared source or laser desorptiorL7
Also, complex mixtures are difficult to completely
analyze using MIMS. In gas chromatography/mass spec-
trometry, mixtures are separated by the gas chromato-
graph before introduction into the mass spectrometer.
In comparison, analytes within mixtures will pervapo-
rate through a membrane with very minimal separation
in time, producing overlapping ion current peaks. To
some extent, mixtures can be analyzed by comparing
the mass spectra of expected components, but this does
not solve the general problem. However, each analyte
should diffuse through a membrane at a slightly differ-
ent rate, so that the ion current chromatogram for each
component in a mixture will reach a maximum at
slightly different times. This does not provide the
quality of separation found in gas chromatography,
since the ion current profiles for different components
will usually overlap significantly. Differing diffusion
rates permit extraction of the components, but only by
careful examination of the time at which each ion
chromatogram in a data set reaches its maximum. By
collecting the ion chromatograms that peak at the same
time, it is possible to reconstruct the original mass
spectrum of a particular chemical in a mixture. Using
this and other techniques, we are developing algo-
rithms to separate complex mixtures in MIMS data sets.
Another priority in this area is the detection of a
wide range of polar chemical agents using novel mem-
brane materials and inlet systems (e.g., trap-and-release
MIMS, liquid membranes, jet separator inlets). Sili-
cone membranes are inherently more sensitive to non-
polar analytes, which adsorb onto the surface of silicone
more readily than polar chemicals. Therefore, past work
in MIMS almost exclusively has involved the analysis
of volatile organic compounds in various matrices,

DETECTION OF CHEMICAL AGENTS IN WATER BY MIMS

usually water. Now, semivolatile analytes, including
biological compounds, can be examined with much
greater sensitivity than previously possible.® For exam-
ple, liquid membranes can be tailored to specific appli-
cations by varying the membrane chemistry. Any vis-
cous, liquid solution can be used as a liquid membrane.
Thus a solution designed to preferentially dissolve or-
ganophosphorus compounds could be used to efficiently
detect the nerve agents. Since liquid membranes will
allow rapid diffusion of higher molecular weight com-
pounds, applications in biomedicine and process mon-
itoring are also gaining interest.”
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