Computer-Assisted Interpretation of Mass Spectra
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Under Defense Advanced Research Projects Agency sponsorship, APL is
developing a miniature time-of-flight (TOF) mass spectrometer for early warning
against exposure to chemical/biological agents. Intended for operation by a wide range
of military and civilian personnel, the instrument must be able to detect and identify
pathological agents within minutes. Key to this mission is the spectrometer operator’s
interpretation of the data. Typically, interpretation of mass spectra has been the realm
of professional chemists and biochemists. Other operators must rely on computer
classification of the TOF mass spectrometer’s output. We describe algorithms that can
be used to interpret mass spectra and that have been successful on a limited data set.
These algorithms handle precisely known, and partially unknown, signatures. For
precisely known signatures, a vector space problem can be formulated to estimate the
optimum approximation of the measured spectrum with a combination of stored library
signatures of threat agents. For partially unknown signatures, a Bayesian probabilistic
approach has been taken to relate the potentially variable signature of a bacterial threat
to likelihoods of chemical composition of bacterial lipids. (Keywords: Computer
classification, MALDI, Mass spectrum.)

INTRODUCTION

The goal of the APL Miniature Time-of-Flight
(TOF) Mass Spectrometer Program is to produce
a field-portable device (see McLoughlin et al., this
issue). This instrument is intended to be used by
military or emergency civilian personnel to detect the
presence of chemical and biological warfare (CBW)
agents while there is still time to minimize their effects.
The ability to rapidly detect and classify chemical or
biological threats is critical to the safety and effective-
ness of military forces and civilian populations.

Key to this mission is computer-assisted interpreta-
tion of the large quantity of data produced by the mass
spectrometer. The complex output must be made acces-
sible to operators who have no background in mass
spectrometry. The software being designed to accom-
plish this part of the mission is designated the Threat
Identification System (TIDS). Challenges to the
development of an automated threat identifier are:

e Possibility of highly noisy and cluttered background
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e Complexity of agent molecules (hence, complexity of
mass spectral signatures), combined with similarity of
their basic bio-organic chemistry

e Variability of bacterial molecular signatures as a result
of growth conditions and incompletely understood
ionization physics

e Need for the identification algorithm to perform at
high probability of detection with low probability of
false alarm, while being able to analyze low concen-
trations of agents or agent mixtures

The TOF mass spectrometer may be deployed when
the exact signature masses of the pathological agents
are well characterized (e.g., from intelligence collection
of weaponized agents) or when they are only approx-
imately characterized. With detailed prior knowledge,
the agent can be identified by pattern matching to a
preconstructed library. With only approximate prior
knowledge, a broader approach may be required; for
example, the processor may apply a set of bio-organic
molecular consistency rules for agent identification.
We report here on progress toward accomplishing the
goal of computer-assisted spectrum interpretation.

MASS SPECTROMETER OPERATION
AND SIGNATURES OF SELECTED
ORGANIC COMPOUNDS

Figure 1 shows a simplified diagram of a TOF mass
spectrometer. The sample is introduced in the inlet,
which is under vacuum. Matrix-assisted laser desorp-
tion/ionization (MALDI) is used to ionize the sample,
typically resulting in a net single charge on the mol-
ecule. lonized sample molecules, or ionized molecule
fragments, are then accelerated by a potential differ-
ence into the analyzer section. Because the fragments
have equal kinetic energies, their velocities differ in
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proportion to the square root of their mass ratios. Frag-
ments traveling at their respective speeds will arrive at
different times at the detector. Voltage output from the
detector will increase with increasing number of frag-
ments arriving simultaneously, thereby indicating the
abundance of fragments of each mass.! (Fragments of
the same mass but multiply charged will not arrive
simultaneously; this, however, can be accounted for in
the abundance calculation.)

Example spectra of CBW agents are shown in
2. Note the characteristic pattern of the relative inten-
sities along the mass axis for each agent. For testing
purposes, simulants for CBW agents are used as sam-

ples. Exa tra for simulants prepared at APL are
shown in|Fig. 3.|Ongoing signature characterization
studies will determine the variability of these signatures

as a function of growth and environmental conditions,
sample preparation, and mass spectrometer configura-
tion and operating parameters.

METHODS FOR AGENT
IDENTIFICATION

We have designed two mass spectrum signal process-
ing algorithms, corresponding to the two identification
scenarios mentioned earlier. One is a multivariate lin-
ear least-squares regression of the unknown spectrum to
a spectra library, and the second is a belief network
capable of classifying organic substances on the basis of
their chemical (i.e., phospholipid) content.

Multivariate Least-Squares Regression

In the first identification scenario, the field operator
has measured a sample and must determine whether the
mass spectrum matches one threat signature or a com-
bination of threat signatures stored in a library.
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Figure 1. Miniature time-of-flight mass spectrometer biodetector system (MALDI = matrix-assisted laser desorption/ionization).
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Figure 2. Preliminary mass spectrum signatures of ricin (toxin made from castor beans)

and Yersinia pestis (gram-negative organism that causes plague).

The mass spectrum can be specified by a multirow,
two-column table. The first column is “m/z” (mass
divided by charge, where charge is typically 1). The
second column is “intensity,” i.e., the magnitude of the
voltage induced by the ions on the multichannel ion
detector plate in the TOF mass spectrometer. When the
mass value sequence is the same for a group of spectra,
they may be represented by their intensity columns
alone, i.e., they can be represented as “intensity vec-
tors.” In this section we assume that the exact masses
of the predominant fragments of the threat agents are
known, unique, and stored in a library as intensity
vectors.

Previous work on this problem has demonstrated
that mass spectra of mixtures of substances (mixtures
of “analytes”) result in combinations of their respective
mass spectra. Following the results of Platt et al.,* we
cast the threat identification problem as a vector space
optimization problem.

absolute intensities of the library
signature relative to a newly col-
lected signature.) The approxima-
tion is written as

150,000

BiL; +BLy +...BNLN = U, (1)

where L, is the abundance vector for library element
k, N is the number of elements (i.e., threat agents) in
the library, and U is the abundance vector for
the unknown. Non-zero values of B indicate that at
least one signature line of library member L, is present
in the sample, assuming a noiseless, interference-less
background.

Actual mass spectra intensity vectors are the result
of noisy measurements, with possible interference from
other substances in the environment. Noise impacts
the library elements, the unknown spectrum, and the
approach to identifying the optimum mixture coeffi-
cients (3.

Assuming that in Eq. 1 the model for the relation-
ship between unknown and library elements is U = LB
+ & (with & being the noise in the measurement of U),
then the solution for the minimum variance, unbiased
estimator B is given by the Gauss-
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Figure 3. Preliminary mass spectrum signatures of four threat agent simulants used for
testing purposes: Erwinia herbicola, a simulant for a vegetative bacterium such as plague;
Bacillus globigii, a spore-forming bacterium similar to anthrax; ovalbumin, a chicken egg
protein developed as a simulant for toxins such as botulinium; and MS-2, a simulant for

pathogenic viruses. The bottom two panels show peaks only.

are the variances of the individual
components By, and indicate the
uncertainty in the estimated
weights of each library vector
caused by the measurement noise.
The weights B for the various
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library elements, together with the
number of signature lines in each
library element that appear in
the unknown (relative to total
number of lines in the respective
library element), are presented to
the operator.

These computations for TOF
mass spectrometer multivariate re-
gression were implemented in
TIDS Version 1 software. The soft-
ware has been run on a 166-MHz
PC desktop and a PC laptop, both
running Windows 95. Preliminary
tests with the available data (the
four simulants Bacillus globigii,
Erwinia herbicola, MS-2, and oval-
bumin in a noiseless, interference-
less environment) showed that
each simulant could be readily
identified.

As an example, Fig. 4a shows an
“unknown” mass spectrum (B. glo-
bigii spectrum taken with a commer-
cial mass spectrometer, the Kratos
MALDI 3) that is to be classified by
the processor. Previously stored in
the processor’s “threat” library were
signature lines from seven substanc-
es derived from a training set of
spectra collected on an earlier date.
Three lines in the unknown spec-
trum correspond to the previously
identified B. globigii signature and
are clearly visible in the range
around 1100 m/z. Figure 4b shows
the detected lines overlaid on the
thresholded spectrum. The proba-
bility of false alarms (P;,) for the
threshold process was set to 107, or
1 in 10,000. Also shown in Fig. 4b,
within the box labeled “Relative
Threat Weights and Threshold
Crossings,” are the results of pro-
cessing the detected peaks with the
identification algorithms. As the
figure illustrates, all three substance
lines were detected and correctly
classified as belonging to B. globigii.

Refinement of this approach will require additional
data to characterize the signature intensity and noise
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Figure 4. (a) Mass spectrum of an “unknown” (actually the simulant B. globigii) presented
to the operator by the APL TOF mass spectrometer TIDS after data collection and prior to
signature classification processing. The red "Substance Lines" shown here are for the
reader’s benefit and would not be available to the operator. (b) Correct classification of the
unknown in Fig. 4a by multivariate regression to a library of stored mass spectra signatures
derived from a separate training data set.

distributions. We can then invoke a match confidence

measure we have derived* to inform the operator of the
likelihood that the B, values presented are a result of
a true match of the library with the unknown or of
coincidence given the noise environment.

Probabilistic Graphical Modeling
for Phospholipid Identification

In the second identification scenario, the field op-
erator has measured a sample and must determine
whether the mass spectrum just measured matches one
threat agent or a combination of threat agents based on
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models of the chemical composition of the threat
agent. To demonstrate graphical modeling techniques,
we are developing models for phospholipid analysis of
MALDI-TOF spectra. Membrane lipids are important
biomarkers that have been used to classify bacterial
species. In particular, desorption mass spectra obtained
from lysed bacteria have been used to distinguish both
Gram’s stain and species.”®

The most common phospholipids are composed of
a glycerol phosphate core, two fatty acids, and a polar
head group (Fig. 5). The composition of the polar head
group determines the phospholipid class. Classifying
bacterial species by phospholipid analysis is challenging
because the phospholipid content of a given species can
be quite variable. For example, the distribution of fatty
acids in a given species depends on factors such as
culture temperature and the growth phase during which
the culture is harvested. The distribution of polar head
groups is much less sensitive to growth conditions and
has been used by itself to differentiate species.”
Nevertheless, it is far from clear whether phospholipid
content alone constitutes sufficient statistics for bacte-
rial classification. Thus, we are constraining our efforts
to the characterization of phospholipids in mass spec-
tra, and we defer to a later time the question of whether
phospholipid characterization provides sufficient statis-
tics for bacterial classification.

Our approach is based on probabilistic graphical
models. This approach is well established in applica-
tion areas with difficult data-analysis tasks such as
speech processing and multisensor fusion. Some well-
known examples of graphical models are hidden Mark-
ov models, influence diagrams, and Bayesian belief

networks.” To illustrate the approach, conside
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Figure 5. A typical phospholipid consists of four groups. The glycerol group and the
phosphate group are always the same. The variable parts are the fatty acid group and the
polar head group. The particular phospholipid shown is PE C(34:1). This notation indicates
that the polar head group is phosphatidyl-ethanolamine (PE) and that there are 34 carbons

and 1 double bond in the fatty acid chains.

Polar head group (PE)

COMPUTER-ASSISTED INTERPRETATION OF MASS SPECTRA

This graph represents a joint distribution of random
variables as the product of conditional distributions.
Each vertex is associated with a conditional distribu-
tion wherein the random variable associated with each
node is conditioned on the random variables leading
to it via directed arcs. In particular, the simple four-
layer graph in Fig. 6 represents the joint distribution
function

P(lipid, H, E),

where lipid is the random variable that represents the
presence or absence of the phospholipid in the spec-
trum, E is the set of instantiated variables (variables at
the bottom the graph), and H is the set of so-called
hidden variables (all other variables). The variables in
the topmost layer are hidden variables that capture
prior knowledge concerning the likelihood that a given
polar head group (say, PE) and a given fatty acid group
(say, C34:1) are found in the sample. The topmost layer
is where we account for expert knowledge about growth
conditions and polar head group distributions. The sec-
ond layer contains the random variable lipid. This is the
query variable whose posterior conditional probability,
P(lipid | E), we ultimately seek to evaluate. The vari-
ables in the third layer are hidden variables that rep-
resent the detectable species that could be formed from
the fragments and adducts of the phospholipid. Figure
6 models simple biochemical and detection processes.
In particular, it models just one fragmentation pathway
(wherein the polar head group detaches from the fatty
acid group) and three adduct pathways (wherein a
sodium, potassium, or calcium ion bonds to the polar
head group). In a more realistic model, one would have
to account for all the likely fragments and adducts. The
variables in the bottommost layer
are the evidence variables, which
represent features extracted from a
mass spectrum.

There are two classes of features
in our simple model. The first are
“detection” features, which depend
on one detectable species each.
They are set to the value “true” if
a line is detected in the spectrum at
the predicted mass. If no line is
found, the random variable is set to
the value “false.” Second are “rela-
tive intensity” features, which de-
pend on two detectable species and
are set to the value “true” if the two
amplitudes of the detected lines are
within acceptable ranges of each
other. If the relative amplitudes are
outside the acceptable ranges, the
corresponding relative intensity
feature is set to the value “false.” If

2
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Figure 6. A graphical model representing the joint distribution associated with the
phospholipid in Fig. 5, PE (C34:1). The joint distribution depends on 16 binary random
variables. The topmost two variables correspond to the prior probabilities associated with
the occurrence of the PE polar head group and the C34:1 fatty acid chain. The single node
in the second layer is the one whose posterior probability we wish to calculate. The five
nodes in the third layer are used to represent the conditional probabilities of forming
hydrogen (M + H), sodium (M + Na), or potassium (M + K) adducts, or of losing the polar
head group (M — phg), or losing the polar head group and picking up a hydrogen (M — phg
+ H). The bottom layer consists of variables that represent the events of detecting lines at
the appropriate masses (Det) and variables that represent amplitude relationships be-

tween detected lines (<).

only one of the detectable species is detected, a relative
intensity feature cannot be calculated and, consequent-
ly, the corresponding random variable cannot be set to
any value and must be treated as a hidden variable.
Hidden variables are the mechanism used by probabi-
listic models for dealing with missing data.

Once the belief network is defined, we can use it to
solve the fundamental problem of data analysis, which
is to determine the likelihood of a conclusion given the
evidence. In this case, the conclusion is whether the
phospholipid in question is present (lipid = true) or
absent (lipid = false). Bayes’ rule tells us to evaluate
P(lipid | E) in the following way:

5 P(lipid,H, E)

o __H
P(IlpldIE)—m' (2)
H fipid

| ows the architecture of a prototype system

we have developed to perform these calculations. We
use the bucket-elimination variant of the junction tree
algorithm,'® which is related to the forward-backward
algorithm commonly used in hidden Markov models.
Figure 8 shows the interface presented to the user by the
prototype system. The data in the file selected by the
user are plotted in the window at the upper right. The

posterior probability P(lipid | E) is
computed for several hundred
phosopholipids and displayed in
order of decreasing probability, in
the lower right-hand window. A
trained analyst may step through
each of the candidate phospholip-
ids and examine the detailed evi-
dence used to calculate the cor-
responding posterior probability. A
graphical representation of some of
the evidence is overlai the
displayed spectrum in| Fig. 8.

The system we have developed
is a prototype intended to explore
the feasibility of applying graphical
models to phospholipid analysis.
We have completed the framework
for the system and are currently
improving both the preprocessing
algorithms and the graphical mod-
el. To do the latter we are working
with chemists to characterize the
expected pathways for fragmenta-
tion and adduct formation. Initial
results suggest that probabilistic
calculations based on graphical
methods are tractable and robust.
As our understanding of the chem-
istry and measurement processes becomes more sophis-
ticated, it is inevitable that our graphical models will
become more complex. It is likely that the models will
prove intractable for the junction tree algorithm. To
handle intractable graphs, APL has used internal inde-
pendent research and development resources to devel-
op a powerful algorithm for approximate inference on
highly connected graphs.!!

SUMMARY

The goal of computer-assisted identification of mass
spectra has been approached in the relatively low mass
chemical compound arena as demonstrated by commer-
cially available programs such as the National Institute
for Standards and Technology (NIST) Mass Spectrom-
eter Search Program!? and the Probability-Based
Matching Program.”” However, the high masses and
complexity of CBW agent molecules relevant to the
APL TOF Mass Spectrometer Program, the different
ionization technique (MALDI) used in the instrument
to emphasize the molecules’ unique signatures, and
the lack of the equivalent of the NIST/Wiley libraries
require new approaches. Working with colleagues
at APL, the Army Medical Research Institute of
Infectious Diseases, the University of Maryland, Col-
lege Park, and The Johns Hopkins University School
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Figure 7. Architecture of "pTool," the application that demonstrates the concepts described in the text. pTool has three major components.
The first is the preprocessing component, which extracts a list of peaks from a raw spectrum. The second is the graphical modeling
component. Graphical models are described in a special-purpose modeling language that is implemented as an embedded language in
"C." Finally, graphical models are evaluated by the inference engines, which use either exact (bucket elimination) or approximate (Gibbs
sampling) algorithms. We will shortly implement an approximate algorithm based on mean field theory (MFT). FFT = fast Fourier transform;

GUI = graphical user interface.

of Medicine, we have developed two techniques for
handling either consistent or variable toxin and CBW
agent signatures. As more findings regarding the agents’
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Figure 8. This screen capture shows the graphical user interface presented tothe user. The
box at the top left allows the user to select a data file containing a spectrum (displayed at
the top right). Arrows mark the predicted positions of lines corresponding to specific
phospholipids. In this case, the five lines correspond to the phospholipid PE (C34:1). The
list of phospholipids at the lower left also gives the posterior probability that a given
phospholipid is actually present in the spectrum. The scatter plot at the bottom has one
point per phospholipid and provides a quick look for comparing the posterior probabilities
with a heuristic measure of relative abundance.

signatures become available, their implications for
computer-assisted spectrum identification will be fac-
tored into algorithm development.
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