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Parametric Classification Techniques for Theater Ballistic

Missile Defense

Geoffrey L. Silberman

One of the fundamental challenges in theater ballistic missile defense (TBMD)
is ascertaining which element in the threat complex is the lethal object. To classify
the lethal object and other objects in the complex, it is necessary to model how these
objects will appear to TBMD sensors. This article describes a generic parametric
approach to building classifier models. The process is illustrated with an example of
building a classifier for an infrared sensor. The formulas for probability of classification
error are derived. The probability of error for a proposed classification scheme is vital
to assessing its efficacy in system trade studies.
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INTRODUCTION

One of the fundamental challenges in theater bal-
listic missile defense (TBMD) is ascertaining which
element in the threat complex is the lethal object. This
task is known as discrimination. In the Navy Phase 1l
Cost and Operational Effectiveness Analysis (COEA),
an information-theoretic architecture was proposed for
synthesizing the discrimination contributions of the
ensemble of theater sensors. At the heart of each sen-
sor's—or the system’s—ability to discriminate is the
degree to which it is able to distinguish the types of
objects that constitute the ballistic complex. The dif-
ferent object classes may include the lethal object or
reentry vehicle (RV), an attitude control module
(ACM), the spent booster tank, solid fuel fragments,
and separation debris. It is useful to classify not only
the lethal object but other elements of the ballistic
complex as well, in order that inferences about the RV
location can be drawn from the spatial extent of the
complex and from temporal events.

To classify objects, it is necessary to characterize
how each object class will appear to a given sensor as
a function of engagement geometry, object dynamics,

object properties, sensor noise, and observation period.
An ensemble of time series signatures is generated for
each object class by varying the parameters for those
inputs that will be unknown during an engagement,
while fixing those parameters for those inputs that will
be known. From the time series data, summary mea-
sures of data, called “features,” are abstracted that char-
acterize each class and serve to distinguish between
classes. The feature realization for each class is called
a “class-dependent feature distribution.” The set of
class-dependent feature distributions constitutes the
“training set” for the scenario. Good features will be
tightly clustered for a given class (low “intra-class
dispersion™) with relatively large distance between
class clusters (high “inter-class separability”).

The purpose of this article is to provide a brief
overview of the procedure for building a classifier. The
process will be illustrated by an example of an infrared
(IR) seeker classifier built for the Navy Phase Il
COEA. Formulas will be developed for the probability
of error in classifying the RV. The probability of error
for a given sensor is an expression of the confidence
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in the classification decision. The confidence bounds
allow the classification decisions from different sensors
to be synthesized in a system-level discrimination
function.

THE TBMD CLASSIFICATION
PROBLEM

For a given interceptor engagement scenario, the
TBMD system will designate a single object in the
ballistic complex as the RV. There are two reasons for
this: the identified theater ballistic threats possess a
single RV, and the hit-to-kill lethality requirements of
TBMD preclude successful intercept of more than one
object.

The RV will be designated on the basis of where its
feature realization falls with respect to the class-depen-
dent feature distributions for the RV class and each of
the non-RV classes. Typically, objects are classified by
using an m-ary hypothesis test. However, the TBMD
classification problem differs from traditional hypoth-
esis testing in important ways. In hypothesis testing,
each object is considered individually and indepen-
dently. The decision thresholds for each class are es-
tablished a priori based on desired probabilities of
“miss” (calling an RV a non-RV) and “false alarm”
(calling a non-RV an RV). These probabilities are
established by class-dependent feature distributions. In
any given engagement, a hypothesis test could identify
a number of objects within the RV decision region.
However, in TBMD the decisions on targets are not
independent: if one object is designated the RV, the
others cannot be. Thus, it is necessary to select the
object that is most “RV-like” rather than choosing n
RV candidates at the specified confidence level. How
to choose this object, and the probability of error in
doing so, is the subject of the remainder of this article.

BUILDING A CLASSIFIER
There are several steps to building a classifier:

1. Render arange of signatures for each of the classes of
objects in the ballistic complex.

. Abstract features from the data.

. Model the class-dependent feature distributions.

. Develop decision boundaries in the feature space.

. Evaluate the probability of error.

abrwinN

In practice, the last four steps are approached iter-
atively as new features or combinations of features are
tested to improve the expected performance. The first
two steps will be described generically. Steps three and
four will be addressed with the standard methods used
for IR discrimination in the Navy Phase Il COEA. The
fifth step is the objective of this article.

Render Signatures

The class-dependent feature distributions are de-
rived from many signature realizations. These realiza-
tions should capture the variability in all of the object
classes that the TBMD discrimination system is likely
to see. To encompass this variability the following
steps are necessary:

1. Describe the engagement geometries.
2. Describe the threat.
= Characterize any of the static properties (size,
shape, emissivity, mass, inertia) that can be appre-
hended by the sensor.

= Characterize the rotational dynamics (orienta-
tion of the angular momentum vector and initial
aspect angles for post-boost objects).

= Characterize the translational dynamics (magni-
tude and direction of velocity vectors).

= Characterize temporal events (burnout, separa-
tion, deployment) and the type and number of
resulting objects.

3. Describe the environment (Earth’s atmosphere,
gravity, solar and stellar effects, clutter, diurnal
variation).

4. Decide upon the sensor and the sensor noise model.

Parameter Specification

Parameters that will be known during an engage-
ment can be fixed at discrete values; others must be
varied to produce a representative range of signatures.
Thus, it is desirable that all of the above descriptions
be stochastic. Moreover, it is clear that some of the
parameters must be jointly distributed. For example,
the speed of fuel particles ejected during a thrust ter-
mination event will be related to their size under
energy considerations. A number of efforts are under
way in Navy Theater-Wide TBMD to determine dis-
tributions, ranges, or fixed values for the input param-
eters. While parameter characterization is beyond the
scope of this article, it should be clear that the degree
of fidelity required in the parameter modeling should
be driven, in part, by how each given parameter im-
pinges upon the classification process.

The partition of the engagement parameters into
“known” and “unknown” is crucial. The resulting clas-
sifiers will be functions of the known parameters. For
example, time to intercept and aspect angle might be
known during an engagement. Fixing values for the
former at 15, 10, and 5 s and for the latter at 4° and
8° will result in a matrix of 3 X 2 =6 classification
models with six performance levels. Randomizing
these two parameters over their respective ranges of
expected values results in a single classifier with lower
fidelity (and probably poorer performance) than any
of the six more specialized classifiers. However, the

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 19, NUMBER 3 (1998) 323



G. L. SILBERMAN

single classifier would be more robust to changes in the
parameters. The choice of which training set—and
classifier—to use in this instance depends on whether
the time to intercept and/or aspect angle will be known
during the engagement.

Signature Database: Measurement vs. Simulation

Once the parameters are specified, signatures can be
generated. There are ways to populate the signature
database: with actual field test measurements, and with
simulation outputs. There are advantages and draw-
backs to each.

Field test data are believable because they are ob-
served measurements of the specified threat. However,
they may be collected under conditions that cannot be
extrapolated to tactical scenarios. They may be col-
lected with instrumentation that does not characterize
tactical sensors. Finally, they may be sparse with re-
spect to many of the parameter values that could be
observed during a tactical launch. A reliable classifier
requires a large number of signatures on which to train.
As an example, during an intelligence collection ex-
ercise, the test radars (Cobra Judy or any of the Kwa-
jalein radars) will be positioned in viewing locations
optimal with respect to the threat trajectory. They
possess greater sensitivity and resolution than the tac-
tical Aegis/SPY-1 system. Finally, although these ra-
dars collect enormous amounts of data, the data are for
a single threat realization: the same threat could be
launched with different lofts, deployment options,
kinematics, and variations in the number and types
of debris.

Signatures can be simulated for specified parameter
values using kinematic, environmental, and sensor
models. The chief shortcoming of simulation is that
the model fidelity may be insufficient to capture real-
world phenomenology. The advantage is flexibility.
Simulations can span the required input parameters,
extrapolating even to conditions that have not been
observed. Simulations can produce data in sufficient
quantity to build a high-confidence classifier.

The two approaches are typically reconciled by
developing simulation models that are validated
against test data for prescribed cases. The complemen-
tary synthesis enjoys credibility without sacrificing
flexibility.

Example

To illustrate the steps in building a classifier, an
example is drawn from the Navy Phase Il COEA. The
problem was to classify the T7 RV using the Light Exo-
Atmospheric Projectile (LEAP) long-wave IR seeker.
This example will focus on the primary discrimination
problem: that of distinguishing between the RV and

the ACM. For clarity in the presentation, only a few
representative signatures will be shown. In a real
application of the classification methodology, many
sample points are required to realize statistical
confidence.

The parameter specifications for the signature gen-
eration process are the following:

1. Engagement Geometry

Defended area, ship 100 km downrange and 100

km crossrange left of projected impact point
2. Threat

Static Properties. The size, emissivity, mass, and
inertia were specified and/or classified. The shape of
the RV is a conic. The shape of the ACM is a
truncated conic. The geometrical axis of the RV is
misaligned 1° with respect to its fundamental inertia
axis. (This is a nominal manufacturing tolerance.)
The axial symmetry of both objects is useful in
determining the torque-free motion of the bodies
after boost.

Rotational Dynamics. The precession and spin pe-
riods for both objects were specified. The angular
momentum vector for the ACM was randomized
over 41 steradians whereas it was discretely param-
eterized about the trajectory path for the RV.

Translational Dynamics, Temporal Events. The
thrust profile of the unitary threat was known from
intelligence, as were the bounds on the tip-off veloci-
ties for booster and ACM separation events.

3. Environment

A number of environmental effects were modeled.
Variables impacting temperature—and, therefore,
in-band irradiance—were moved in concert to pro-
duce upper and lower bounds on the apparent target
intensity.

4. Sensor

The sensor in thisexample is the LEAP long-wave
IR seeker. Both additive and multiplicative noises
were modeled. Because the efficacy of candidate
featuresis highly dependent upon the noise model, it
is worth detailing the noise assumptions:

i(t) =[L+eg (1) +enuc(n) +ecy 1) +eng ), (D)

where i(t) = the measured intensity,

e« (t) = residual error due to estimation/
extraction (a function of time) =
N(0,0.075%),

enuc(r) = residual error due to nonuniformity or
imperfect knowledge of optical transfer
function (a function of location on the
sensor) =~ N(0,0.0012),
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eca(r) = calibration error as a function of sensor
location = N(0,0.1%), and
enel(t) = noise equivalent irradiance (NEI) due
to shot noise.

The multiplicative noise sources are unitless; the

additive noise is expressed in irradiance (W/cm?).
Figure 1 shows five (of many) representative irra-
diance time-series waveforms received at the seeker.
The irradiance exponents have been obfuscated for
security reasons. For this scenario, the intercept occurs
approximately 340 s after threat launch. The band is
the LEAP long-wave IR band. The environmental
parameters were such that the intensity is at the upper
bound of what would likely be observed during the
scenario. The data are taken at the 20-Hz seeker scan
rate; hence, each waveform comprises 5 X 20 = 100
data points. Figure 2 shows the same waveforms with
seeker noise added. The plots of the RV irradiance
waveforms are on a different scale than the ACM
irradiance waveforms. (Although they possess similar
temperatures and emissivities, the ACM can be bright-
er than the RV due to its larger projected area.) The
plots of each of the five waveforms for each object are
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Figure 1. Noise-free irradiances at infrared seeker: long-wave,

defended area intercept, upper bound temperature. (a) Reentry
vehicle misaligned 1°; (b) nominal attitude control module.
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Figure 2. Irradiances with infrared seeker noise (multiplicative
and additive): long-wave, defended area intercept, upper bound
temperature. (a) Reentry vehicle misaligned 1°; (b) nominal
attitude control module.

spaced out to improve readability; the mean value of
each of the four upper waveforms should be centered
about that of the first to give the correct absolute
irradiance.

All four plots evince a positive trend over the 5-s
interval due to decreasing range. In Fig. 1a, the RV
exhibits two characteristic frequencies: that of the
slower precession and faster spin. The spin is observ-
able due to the axis misalignment. The ACM (Fig. 1b)
shows one characteristic frequency—its tumble or
precession—as it is not spin-stabilized. Neither object
presents a pure sinusoid irradiance waveform to the
seeker because the physical shapes of the objects
modulate the harmonic oscillations of the projected
area.

The effect of noise is manifest in a comparison of
Figs. 1 and 2. The RV signatures are more corrupted
than those of the ACM due to the NEI coupled with
the relative dimness of the RV at this range. The
primary noise contributer on the brighter ACM signa-
tures is the multiplicative noise.
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Abstract Features

The features summarize an epoch of data. They
reduce the time series information down to a number
or vector of numbers in a prescribed way. There is no
pro forma approach to designing features because the
underlying objects, processes, and measurement phe-
nomenology are very complex. However, there are two
general considerations for a good feature: it should
capture the behavior of each class (or at least the class
of greatest interest, the RV class), and it should dis-
tinguish between classes.

A secondary goal is that the feature be efficient;
that is, it should reduce the data as much as possible.
A feature is analogous to a sufficient statistic for data
drawn from a parametric distribution. For example, 1
million data points that can be shown to be plausibly
Gaussian (for example, by the Kolmogorov-Smirnov
test) can be reduced to two numbers: the mean and
variance. Thus, a feature can be viewed as a mapping
of a high-dimensional space (the entire time series of
signature data) to one of smaller dimension.

In choosing the features, it is necessary to under-
stand how the object will appear to a particular sensor.
The time series signatures will be a function of all the
input parameters listed in the previous section entitled
Render Signatures. The signatures will vary both with
time and from signature to signature. The inter-signa-
ture or ensemble variation is due to different input
parameter realizations. The temporal variation is both
explicit (due to dynamics) and implicit (due to the
dependence of the parameters, themselves, upon time).
Both the temporal and the ensemble variation can be
partitioned into effects due to engagement, environ-
mental, object, and measurement parameters. The first
set is somewhat controllable through concept of oper-
ations; the second set may be known during an engage-
ment; the third set must be characterized by intelli-
gence, measurement, simulation, and possibly real-time
threat typing by other theater assets; and the fourth set
is well known and optimized for a given sensor.

The feature should preserve what is unique to the
classes of interest; that is, the classes should be invari-
ant under a feature transformation. Some features may
be better suited to distilling the time-series informa-
tion from certain classes than others.

Example (continued)

The uncorrupted waveforms ofsuggest fea-
tures that may be used to classify the RV and the ACM.
First, the five RV waveforms (Fig. 1a) have a lower
intensity on average than those of the ACM (Fig. 1b).
Second, the excursions in intensity with respect to the
average value tend to be greater for the ACM than for
the RV. Finally, the characteristic frequencies of each

object are different: the RV displays two frequencies
(around 0.5 and 2.5 Hz) whereas the ACM manifests
a fundamental (=1 Hz) modulated by the object shape
and viewing angle. These observations may be reduced
to three respective features: mean intensity, scintilla-
tion or coefficient of variation (standard deviation
divided by the mean), and frequency of maximum
amplitude between 0.1 and 3 Hz (both signals will be
dominated by the mean energy at 0 Hz). Mathemat-
ically,

X1 = E[s(t)], where s(t) is the time domain signal,
X = o[s()]/5(1),
X=X, O,

X (Xll X, X3)'

The feature vector X reduces the 100 data points
of each 5-s epoch to three points. For the noise-free
signals, it is clear that x will vary from signature to
signature. The feature vector will also vary for a given
5-s signature depending on the phasing of the signal.
For longer epochs that include more cycles of the
signals, the intra-class variability due to phasing is
ameliorated. However, to remove all of the signal
variability, a feature would have to incorporate a pre-
cise estimate of the signal model, itself, as a matched
filter. This is clearly impossible in a real-world setting.

For the signals with sensor noise applied, the en-
semble variability will be increased, as will that due to
phasing. Increasing the length of the measurement
epoch will help to “average out” the measurement
noise (or to increase the signal-to-noise ratio). How-
ever, even perfect measurements will exhibit the in-
trinsic signal variability discussed.

The spectral characteristics of the RV signatures are
shown in [Fig. 3a] The absolute amplitude is correct
only for the bottom-most plot; the other graphs are
spaced for readability. The precession frequency is
visible as the fundamental around 0.5 Hz for the five
signals. The transforms also show a spectral peak at the
higher spin frequency of 2.5 Hz, as would be expected
from the time-domain signals.

In pinpointing the location of spectral peaks, a
longer observation period will improve the resolution
because the frequency resolution is the inverse of the
observation period (in this case Af = 1/(55) = 0.2 Hz).
This is especially important for the low-frequency
artifacts: few cycles are observed, and windowing the
signal spreads the energy into sidelobes that bleed over
into the DC signal for shorter data windows. The
obverse is also true: the sidelobes from the DC signal
can obfuscate the low-frequency signals. The shorter
the observation period, the farther out the sidelobes
will spread. Hence, a prosaic but vital first step is
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Figure 3. Spectra of (a) reentry vehicle and (b) nominal attitude
control module time series, without sensor noise.

removing at least the mean and possibly linear trends
before transforming the time-domain signal.

Another method would be to model the spectrum
by estimating the autoregressive coefficients of the
time sequence using robust deconvolution. This tech-
nique provides very sharp resolution at the expense of
spurious peaks for overestimated model order.

The spectrum of the ACM in Fig. 3b shows the
anticipated spectral peak around 1 Hz for all five
waveforms, along with the first harmonic at twice the
frequency for four of the five. The harmonic shows up
because the ACM time signals are not pure sinusoids:
the simple harmonic motion of the body is multiplied
by the envelop function of the body’s projected area.
Multiplication in the time domain is equivalent to
periodic convolution in the frequency domain, hence,
the harmonic.

The spectra of the noisy signals are shown in Fig.
4. The low-frequency fundamental appears to be lost
in two of the five signals in the RV ensemble due to
additive noise. The more intense ACM signals suffer
less degradation, and the fundamental is preserved.
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Figure 4. Spectra of (a) reentry vehicle and (b) nominal attitude
control module time series, with sensor noise.

Model Class-Dependent Feature Distributions

During training with either real or simulated data,
the class to which a given time series of data belongs
is known. It is necessary to characterize what each class
of data “looks like” in the feature space. These class-
dependent feature distributions will determine the
ability of the system to discriminate between objects
of different classes. The distributions will be condi-
tioned upon parameters that will be known during the
engagement as well as upon class. Conditioning on a
known parameter removes the variability due to that
parameter and improves the inter-class separability.
Modifying the notation in Ref. 1, the class-dependent
feature distributions can be written p(x]w;,6), where

X OX = {X,}/L, isthe set of particular features chosen
from the set of all features X,

w; 0Q = {w;}I<, isaparticular class from the set of
all K classes of objects in the complex, and

6 is a set of parameters that are known during the
engagement.
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Parametric vs. Nonparametric Models

Because of the difficulty in obtaining closed-form
expressions, the class-dependent feature distributions
{p(X|w;,0)}, will be obtained empirically from sim-
ulation or test data or a combination thereof. There
is a vast literature to address the problem of choosing
a distribution to summarize the data in an empirical
distribution function (edf). The way in which the
feature distribution is modeled is inextricably interwo-
ven with how the decision boundaries for each class
are constructed (see the section entitled Decision
Boundaries). This is because the classification problem
is observing the features for a number of objects in the
seeker field of view (FOV), then deciding which dis-
tributions (or which class) those features most likely
came from.

Approaches to modeling the class-dependent fea-
ture distributions can be grouped into two broad cat-
egories: parametric and nonparametric.

Parametric models involve fitting the edfs to distri-
butions of a certain functional form. The parameters
of the distribution are estimated subject to certain
criteria; for example, best least squares fit to the data,
or maximum likelihood. By far the most popular para-
metric model is the Gaussian. A Gaussian parametric
assumption fits the scatter of feature points for a given
class with a mean and a covariance. In the M-dimen-
sional feature space, the model will be a hyper-ellip-
tical cluster about the mean.

The approach taken in the Phase Il COEA was to
model each class with a Gaussian in the feature space.
The Gaussian parameters were simply the sample sta-
tistics. This is illustrated for the example by modeling
the edfs in [feature (3,2)]-space in|[Fig. 5¢c|with the
ellipses in[Fig. 6] These are the third and second fea-
tures described previously.

The advantages to parametric models include the
following:

1. Thenotionofdistance—and, hence, inter-class sepa-
rability—is well defined. This is discussed in the
section entitled Measuring Feature Efficacy.

2. The scatter characteristics are concisely summarized
inthe parameters of the distribution. In the same way
that a feature was a sufficient statistic for the distin-
guishing elements of the time series data in the
section entitled Abstract Features, the parameters
are sufficient statistics for the feature realizations.

3. The distributions are mathematically tractable, of-
ten with closed-form expressions or tabulated data
for the cumulative distribution function, which is
useful in ascertaining error probabilities.

The chief drawback to parametric modeling is loss
of fidelity. A single parametric model does not usually

capture the scatter in an edf. (In the example of
Fig. 6,|the ellipses do not reflect the asymmetry of the
scatter.) There are a wealth of techniques for assessing
the goodness of fit for data to given distributions. A
poor fit can be remedied somewhat by introducing a
mixture model to refine the fidelity for a given class.
However, improved fidelity comes at the expense of
computational complexity and storage requirements.
The classification models must be stored in look-up
tables and evaluated in real time by the interceptor’s
onboard processor.

No systematic attempt will be made to describe
nonparametric approaches to building classifier mod-
els. The trade-off between parametric and nonpara-
metric models can be broadly characterized in terms of
robustness versus fidelity. As they are not beholden to
any particular assumptions on the class-dependent
feature edfs, nonparametric models can capture more
of the variability of the given classes in the feature
space. This comes at the expense of perhaps capturing
too much of the variability. With their ability to draw
almost arbitrarily convoluted boundaries between the
classes of objects in the feature space, neural network
and logistic regression models must not be overtrained
on the feature data. Overtraining is said to occur when
the decision boundaries are fit too specifically to the
training set. This makes the classifier performance
susceptible to noise or small perturbations in the train-
ing data. One way to guard against overtraining is a
jackknife training protocol: the classifier is trained
against subsets of the data. A properly trained classifier
should be robust to selection of the subset.

Measuring Feature Efficacy

For specified classes w; (say, the target RV class) and
j (the non-RV or ACM class), and fixed input param-
eters 6, a feature vector x can be used to make a
decision_between classes using the likelihood ratio:
p(Xlw;,0)/ p(X|w;,0). If this value is large for a given
object, the object probably belongs to class wj; if it is
small, it is probably of class ;. Since a monotonic
function will preserve inequality, the decision statistic
between classes w;and w; is often taken to be dij x)=
log[p(X | )/ p(X]w;)], where the input parameters 6
are understood.

For the exponential family of distributions (which
includes the Gaussian), this transformation allows the
distribution of d; to be computed analytically. The
distribution for d;, whether empirical or analytic, in
turn allows for the computation of probability of error
for classification. For independent binary classification
of an object into w; against w;, a hypothesis test is used.
For a set threshold T, the probabilities of false alarm
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(calling a nontarget a target) and miss (calling a target
a nontarget) are given as follows:

Peni(T) =P <Tloj) = [pKX]w)dx ,
{x:dy ()< T}
Puiss,ij (T) = P(d < T]w;) = Ip()‘(lwi)d)_( . @
i ()< T}

The implicitly defined limits of this integral can be
difficult to evaluate for continuous probability distri-
butions. In practice, however, p(X]w,;) isan edf. In the
discrete case, these expressions are straightforward. For
I N-dimensional realizations of x for the w; class and
J realizations for the o; class,
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107 _ 0
Peaij(M = 3 Hzls[dij Kl < T]E,
()

PMISS ij M= Hz B[du (Xk I‘” )< T]E

where
d(=) = 1 if the expression is true
= 0 if the expression is false.

A:s stated before, the measure of quality for a feature
(or set of features) is twofold: the degree to which it
tightly clusters given classes (especially the class of
interest, the RV class), and the degree to which it
separates classes. Addressing the latter criterion, a
natural measure is the expected difference between the
decision statistic d; for objects of class i versus those
of class j. The difference between the conditional
means is written as

Dy = E[d; ()l w;] = E[d;; ()] o]
=E,, [d;K)]-E »[dij()_()]

4
PRI@) @

) o)]I
?[P(XI i) — p(X]w)]log P o)

This is the “information divergence” discussed in
Ref. 1.

The intra-class dispersion criterion can be captured
by computing the variance of the decision statistic for
a given class:

V; = Var[d;(X) | o]
= [{d;(x) - Eld; ()l o]} pX | w;)dx .

In practice, it is straightforward to choose the best
feature set for one, two, or three dimensions simply by
looking at scatter plots of the different classes rendered
in candidate feature sets. However, it is desirable to
have a constructive approach for higher dimensions.
With the separation and dispersion criteria, potential
features can be evaluated. The best scalar feature
x, 0{x,}/L, for distinguishing between two classes w;
and «j; is given by

u( I)
K BJV(xl)W(x.)E )

Xy =

It seems intuitive that adding features can only
improve inter-class separability as long as the features
added individually provide some separability. This can
be shown formally using the information divergence.
Less obvious, however, is what the choice of the best
set of features should be for a specified feature set
dimension. The best M-dimensional feature vector is
seldom the set of the first M of N rank-ordered possible
features. This is because good features will often be
correlated, or contain the same information. There
will be (W) possible feature vectors. Choosing the best
feature in a procedure analogous to[Eg. 5]is then a
problem of combinatorial computational complexity.
This problem can be relieved somewhat by performing
an eigenvalue analysis of p(X @), P(Xny ;) to de-
termine the principal values and principal vectors of
the class-dependent feature distributions. The objec-
tive is to find independent linear combinations of the
available features {x,}]L, that maximize inter-class
separability while minimizing intra-class dispersion.
The subscript (N) above denotes an N-dimensional
feature vector.

Capturing Uncertainty in Feature Models

The feature distributions will comprise all that is
known about the given class for the specified param-
eters. Each distribution will constitute a number of
discrete realizations in the feature space, from either
actual or simulated data, or both. The variability in the
realizations will be due to both the ensemble and the
temporal variation in the underlying signatures. This
variation should be fully captured by independently
sampling enough realizations: there is no “confidence
interval” either for a given realization or for the feature
distribution for a whole. All of the uncertainty should
be contained in the sampling for the parameters used
to produce the signatures. For example, if the value for
ambient launch temperature is suspect, it should be
varied during signature production. Variability cannot
be “added” to the feature distribution after the fact.
This is because of the transformations the parameters
undergo:

{parameters} - {signatures} - {features}.

Each one of these transformations is, in general, non-
linear, so that even if the input parameter distributions
are well characterized, a closed-form expression of the
transformed distribution is not attainable. If it were
possible, there would be no reason to simulate the pro-
cess: the class-dependent feature distributions p(X ] w;)
discrimination models could be built analytically.
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Independent Sampling

An important question in building the class-depen-
dent feature distributions is what constitutes indepen-
dent samples of the feature vector. Double-counting
the sample points will result in a feature distribution
that is more tightly clustered than it should be. This
gives undue confidence about the separation achieved
between object classes. On the other hand, undersam-
pling fails to take advantage of the information con-
tained in the signature training sets.

The causes of variability in the feature realizations
can be divided into those due to parameters underlying
the time series signatures and those due to the phasing
of each individual signature. This latter temporal
variation can be further parsed into the deterministic
variation due to which epoch of the noise-free signa-
ture is chosen, and the random variation due to addi-
tive and multiplicative noise.

Achieving independence with respect to the pa-
rameter set is straightforward: the underlying param-
eters are simply sampled randomly and independently
prior to generating the time series signal. For example,
to model the IR signatures of solid fuel chunks, each
signature was generated from a random angular rate
and angular momentum vector orientation.

Correctly reproducing the sample statistics due to
temporal variability is more problematic. For wide-
sense stationary Wiener or Markov processes driven by
white noise, the typical criterion is when the autocor-
relation R, (1) = E[X(t)X(t + 7)] has decayed to 1/e of
its maximum value. (Thus, a narrow autocorrelation
function signifies a process that is relatively uncorre-
lated in time.) For ascertaining feature independence,
this is problematic for two reasons. First, even if the
autocorrelation of the input signal Ri(7) is known, the
feature autocorrelation cannot be determined due to
the nonlinearity of the feature processing. This means
that the sampling interval T would have to be deter-
mined empirically, perhaps for every signature. Sec-
ond, the signals are not random; they are periodic. The
torque-free motion of rigid bodies in space produces IR
intensity sinusoids that are modulated by the shape of
the objects. Therefore, the autocorrelation of the sig-
nal will evince a number of periodic peaks.

These two confounding factors mean that it is best
to deal with temporal variability in the feature space.
The rule of thumb to use is that clustering of sample
points about a given signature realization should not
be evident in the feature space. Another way to put
this is that the variability due to temporal sampling
should replicate that due to parameter sampling. This
criterion can be formalized using cluster analysis, but
is probably best attacked empirically by looking at
scatter plots of the feature data.

THEATER BALLISTIC MISSILE DEFENSE
Example (continued)

Each of the five time series signatures for the ACM
and the RV were reduced to the three features de-
scribed above: mean intensity, scintillation, and fre-
guency of maximum amplitude. The three features for
each class are plotted in

The features are plotted two at a time in Figs. 5a—
5¢, and all three are plotted in Fig. 5d. The efficacy
of the univariate features can be surmised by projecting
the two-dimensional features to the feature axis.

Figures 5a and 5b show that the mean intensity is
a good feature: it separates the two classes with no
overlap. Furthermore, the separation distance is large
with respect to spread for each individual class. The
ability of this feature to separate the two types of
objects could be anticipated by realizing that the two
objects are at nearly the same temperature, whereas the
ACM is considerably larger.

Scintillation is also a good feature, with only one
of the ACM realizations straying into the RV area in
Figs. 5a and 5c. This ACM realization fortuitously
illustrates the power of multidimensional feature
models: it is well-separated in the two-dimensional
space. The efficacy of the scintillation feature arises
from the spin stabilization of the RV in contrast to the
tumbling ACM. Another noteworthy aspect of Fig. 5a
is the nonlinear correlation especially evident in the
ACM class. This is because the scintillation is inverse-
ly proportional to the mean intensity (x, « 1/x;). The
almost perfect correlation of the ACM class is uncom-
mon; more typical is the clustering of the RV class.

Frequency of maximum amplitude is shown to be a
useful feature in Figs. 5b and 5c¢. Only one of the RV
class realizations penetrates the ACM boundaries.
However, the intra-class dispersion of the RV class does
not give tremendous confidence. The two upper sam-
ples could be misclassified as ACM-like with respect to
this feature. A greater number of samples might reveal
these two points to be outliers. However, the spectra
of [Figs. 4a and 4b|show that the RV frequency com-
ponents are more susceptible to additive sensor noise
than those of the ACM because the RV is relatively
dimmer (due to its smaller size). Hence, the spectral
feature will be of greatest use in concert with other
features as shown in Figs. 5b, 5¢, and 5d. It should be
clear that the signal-to-noise ratio (SNR) will impinge
upon the features. However, the dependency is implicit
in the feature scatter. On the other hand, SNR is
explicitly functionalized in the track initiation logic
upon which the feature epochs are predicated.

As discussed earlier, the feature edfs for the Phase
I COEA were reduced Gaussian parametric distribu-
tions using the sample statistics of each class. The
resulting models for the classes projected onto the
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(feature 3)-(feature 2) plane are plotted in

These are the 1-sigma ellipses.

Decision Boundaries

Decision boundaries can be used in two ways. For
a hypothesis test for classifying an object into one of
two possible classes, the decision boundary is set ac-
cording to the desired probabilities of false alarm and
leakage (or miss). The boundary is static.

As discussed in the section entitled The TBMD
Classification Problem, the RV classification problem
is of a different sort: a number of objects must be
classified, and only one of them can be the RV. The
object selected will be that which is most RV-like. This
requirement translates formally to finding the object
in the feature space that is on the decision contour
closest to the RV class.

Nonparametric techniques are well-suited to devel-
oping static boundaries with low, fixed probabilities of
error. This is because information in the feature edfs
is not lost in reducing the data to parametric distribu-
tions. Another way to see this is to realize that complex
hyper-surfaces can be fashioned with simple functions
to separate the feature realizations of each class. The
literature on neural networks and regression on various
functions is voluminous.

Parametric techniques have an advantage in choos-
ing the decision contour closest to a given class in that
the notion of “close” is well-defined: it is simply the
probability that a particular realization belongs to the
class. For the Gaussian assumption, each class is rep-
resented by a hyper-ellipse. The closeness to a given
class is established by the k-sigma ellipse upon which
a point lies. For the two-class problem, a given point
in the feature space will lie on the k;-sigma ellipse of
the first class and the k,-sigma ellipse of the second
class. A decision contour will then constitute the set
of all such points for k;, k, fixed. It is established by
the log likelihood:

o )
4, (%) = o1 -
PElo)g
=-@-m) Y ®-m) - (6)
x3 X -m)
for the Gaussian assumption.
It is clear from Eq. 6 that the Gaussian parametric

assumption induces a quadratic decision space. The
decision contours will be ellipsoids, hyperbolas—and

in degenerate cases, parabolas and lines—in the fea-
ture space. Contours are sketched for a two-dimension-
al feature space in [Fig. 7]for class ellipses in various
relative locations and orientations. Here the subopti-
mality of the Gaussian assumption becomes apparent:
the only curves that can be drawn to separate the two-
class edfs are quadratic curves. This suboptimality
results in larger probabilities of error. However, the
Gaussian assumption does not engender any uncer-
tainty about these resulting probabilities of error; they
can be computed exactly, as will be shown in the next
section. The only “error” in the probabilities of error
is due to failure of the feature edfs to capture the true
variability of the threat in the feature space.

Example (continued)

The feature realizations and models of [Fig. 6] are
reprised in Fig. 8 with the iso-contour of each realiza-
tion sketched. As the contours make clear, the prob-
ability of error is zero for this simple training set. All
of the RVs are more RV-like than the most RV-like
ACM. The converse obtains as well.

Probability of Error

This section develops the mathematics necessary to
compute the probability of classification error. The
probability of error is the yardstick by which any pro-
posed system design—comprising signal processing,
feature set, and decision algorithm—must be mea-
sured. Although the notation can be cumbersome, the
concepts are clarified in the associated figures. The
vital insights into what drives classification error are
evident in the two-class problem described thus far and
continued below. The sections on the multi-class prob-
lem are included for completeness and can be skimmed
or omitted.

It is clear that the probability of error in classifica-
tion will be contingent upon the inter-class variability
and the intra-class dispersion. For the problem of clas-
sifying an object into one of two classes, the operating
curve is the plot of PcA(T) against Py(T). For the edfs
p(X | w;), p()‘(le), this will be a plot of | + J points of

where T is computed for each of the X realiza-

tions for each class. This curve is reduced to a scalar
by finding the point Tz such that Pea(Ter) =
Puiss(Teer) = Peer- This point is the equal error rate
(EER) for the two distributions. The equal error rate
is often used interchangeably with the k-factor, al-
though the equivalence requires stringent parametric
assumptions. If p(X]w;), p(X]w;) are Gaussian with
means w;, «j and identical variances 2, = Zj =2, then
the information divergence (Eq. 4) can be written as
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Figure 7. Binary decision boundaries for two-dimensional Gaussian models.

D; =IE,, [- X -m)'Y K - m)
+(X _ﬁj)Tz_l(X -l
-E, [-& _ﬁi)Tz_l()_( ~ i)
+()_(_ﬁj)Tz_l()_(_ﬁj)]D
=1 E[-X*(M) + X*(M,p))]
— E[-X*(M,p;) + X*(M)]0
=I-M+(M+p)) - (M+p;) + M|

Here M is the dimension of the feature vector and p;,
pj are the noncentrality parameters for the chi-squared

=ij_

pil-

distribution: p; =z S "'z&;. Then

For scalar x this reduces to

Dij = (& _Ei)TE_l(I_Lj - %)
=K2
ij -

as noted in Ref. 1. The k-factor K; can be looked up
in a standard table of unit normal p-values. The asso-
ciated p-value is the equal error rate.

Shortcomings of the k-Factor and Equal Error Rate

The k-factor is a qualitative measure of error in a
binary classification process. It can only be used quan-
titatively if the class-dependent feature distributions

Frequency of maximum amplitude (Hz)

0.2
0

1

1

0.1

L L
0.2 0.3
Scintillation

0.4 0.5

Figure 8. Decisionboundaries for the reentry vehicle and attitude
control module classes in [feature (3,2)]-space.
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are Gaussian with equal variances. This is rare. Stip-
ulating this assumption allows the equal error rate to
be looked up. However, the equal error rate is the
probability of error only for a binary hypothesis test
with the threshold T set at the equal error level. As
discussed in the section entitled The TBMD Classifi-
cation Problem, the TBMD classification problem is
not a binary hypothesis test with a preset threshold.
Rather, of all the objects in the FOV, the classifier will
target that object whose feature vector lies on the
decision threshold closest to the RV class.

Classifying 1 RV vs. 1 Non-RV

Assume there are two objects in the FOV, one from
the RV class w;,i# j, and one from a non-RV class ;.
Denote the RV feature observation X; and the non-
RV feature observation X;. Both are random variables.
A classification error occurs if d;(X;) <d;(X;). The
probability of error is the probability that this occurs.
This probability is written as

Perror = [P, Xj w;, ;)dX;dX;

{005 () < dj (%)}
= [ p(X; lo)p(X; | w;)dx;dx; . @)
{=}

Here the joint distribution can be written as the prod-
uct of the marginals under the assumption of indepen-
dence. In reality, the motions of one object in the
ballistic complex will not be independent of the
motions of others. For example, the spin rate with
which the ACM deploys the RV will affect its own
kinematics by Newton’s laws and the residual fuel
remaining for other maneuvers. However, determining
the parameter relationships to seed Monte Carlo sim-
ulations to produce joint distributions is beyond the
current state of intelligence.

Equation 7 is an integration in 2M-dimensional
feature space. The implicit limits of integration render
it very difficult to evaluate either for empirical
or for analytic distribution functions. The probability
of error integration must be transformed to a trac-
table domain. Denote the distribution of d;(X;) as
P, (dlw;), and that of dy(X;) as Py (dlw)). If the
feature distribution Py, (dlw;). is specified analytical-
ly, in principle it can be transformed to yield the cor-
responding decision distribution Py, (dl®;). In prac-
tice, these analytic transformations often involve a
number of convolutions that result in integrals with
obscure closed-form solutions or none.

The utility of the pdij(dlwi),pdij(dle) distribu-
tions is twofold: they have scalar domains, and the

decision region for either class is one-sided. If the
transformation is feasible,[Eq. 7] can be rewritten with
straightforward limits of integration:

w 0

PError = I I pdii (di)pdij (dj)adiadj . (8)

—00 —00

Here Py, (d1@;) has been rewritten as pq, (di), and the
total differential d has been replaced by 0 to avoid
disagreeable notation. The difficulty in integrating Eq.
7 has been relieved in Eqg. 8 at the expense of trans-
forming p(x]w;) to obtain Py (dlw;). However, if
p(XJw;) is an edf, Py, (dlw;) can be obtained very
simply by applying the d; operator to each element of
p(XJw;). Then Eqg. 8 can be rewritten as

P _10g o d[d; (X <d; (X o
Error —EHZZ:lklzﬂ [djj (X, lo0i) <djj(Xy, |03j)]H 9

where 8(=)was defined inThis is effectively a
Monte Carlo integration.

The form of the probability of error in Egs. 8 and
9 suggests a relationship to the probabilities of miss and
false alarm in Eqgs. 2 and 3. Rewriting Eq. 8,

. d;
PError = I pdij (dJ)I pd‘j (di)adiadj

= [ P, 0 Pus (00, (10)

=E,, {Puis(@)}.

The d; in the last line is a random variable; it is left
lower case to avoid confusion with the information
divergence. Equation 10 shows that the probability of
error for picking the RV against a single non-RV is
simply the expected probability of miss given the
decision distribution for the non-RV, Py, (d]w;). This
seems intuitive. The converse can also be shown:

I:’Error = Ew, {PFA(di)} : (11)

The probability of error can now be related to the
equal error rate Pger. Equation 10 can be rewritten
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I:’Error = I pdij (dJ) J'pdij (d|)ad|adj

w g
+ [Py, (d;) [ Py, (d)ad;ad;
T —00

T g
= [ pq,(d;) [Py, (d)ad;d,

-00

ot o

0 Pg, (d)] Py, (d))0d;0d;

+0™ T

% [Pg, (@[ P, (d)0d; 0,
T d,

mMooo d

N
= _[ Pa; (dj)PMiss(dj)adj
+ Puiiss(T)Pea(T) + ?pdij (d;)PrA(dy) ad;
T (12
N
<Puiiss(T) [ Py, (dad; + Pyigs(T)Pea(T)

+ P (T, (4)0,
T

= Puiss (ML = Pea (] + Puiss (T)Pea(T)
+Pea ()L — Pyiss(T)]
= Pyiiss (T) + Pea(T) = Pyiss (T)PeA(T) .

This is true for any decision distributions P (d), P, (d)
and any decision threshold T. Choosing T = Teeg, EQ.
12 becomes

Perror < Pwmtiss(Teer) + Pea(Teer)
- PMiss(TEER)PFA(TEER) (13)
<2Pger -

If the decision distributions are unimodal, Eq. 12 can
be shown to be

Perror < %[PMiss(T) + PFA(T) - PMiss(T)PFA(T)]

U I:)Error < PEER .

(14)

This is an important finding:

The equal error rate will be an upper bound on the
probability of error for a binary classification decision
between one object from each class.

THEATER BALLISTIC MISSILE DEFENSE

This analysis has assumed that each object is equally
probable (that is, there is one of each object.) Typically
the equal error rate will be a loose bound; the prob-
ability of error will usually be much smaller. The bound
becomes tighter as the feature distributions for the two
classes move closer together, that is, as the equal error
rate approaches 0.5.

Example

shows that for the given distributions there
is no probability of error in misclassifying members of
either class. This is because the most RV-like of the
ACM realizations (each denoted by a circle) has a
lower RV likelihood than the least RV-like of the RV
realizations (denoted by X) as shown by the likelihood
contours drawn through each realization. Therefore, to
illustrate how probabilities of error are derived, the
example proceeds with the feature models from the
sketch in|Fig. 7f] Data were generated from the models
used in[Fig. 76 data points from the RV class and 10
from the ACM class. The sample statistics for each
class were calculated. These models were then used to
form the decision statistic for the classification. As in
Fig. 8, the iso-contours of the decision statistic are
drawn through each point in Fig. 9. As in Fig. 7, each
contour comprises two halves: one half is the image of
the other reflected about an axis of symmetry. Thus,
the contour lines that appear to have no associated
feature realization are in fact reflections at the same
value of the likelihood ratio.

At each feature realization of either class, the prob-
ability of leakage (or miss) is the percentage of RV
realizations that are more ACM-like. This is the num-
ber of RV realizations that lie on the ACM side of the
given realization divided by the total number of RV

2.0

1.0

Feature 1
o

-2.0
-2.0 -1.0 0 1.0 2.0

Feature 2

Figure 9. Generating probabilities of error for 1-vs.-1 classifica-
tion: feature realizations and decision contours.
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realizations (six). Similarly, the probability of false
alarm is the percentage of ACM realizations that
are more RV-like at the decision threshold of the
given realization. These are the discrete probabilities
of [Eq. 3.]

illustrates three points about the signifi-
cance of the number of realizations chosen to each
class-dependent feature distribution.

1. Thepointscharacterize thedistributions. The greater
the number of independent samples, the more reli-
ably the distribution is characterized. The models
used to generate the samples inwere those in
Fig. 7f, yet the sample statistics clearly do not repro-
duce the models due to the limited sample size.
However, the ACM sample statistics, drawn from 10
points, better reflect the underlying model than the
RV sample statistics, which are based on only 6
points.

2. The number of points chosen to characterize each
class has nothing to do with the scope of the classifi-
cation engagement.[Figure 9|does not depict a 6-vs.-
10 engagement. However, the edfs can be used to
compute the probabilities of error for 1-vs.-many
engagements as described below.

3. The probabilities of error computed are exact for the
edfsshown. There is no way to adjust these probabili-
ties to account for the fact that the edfs might not
reproduce the true distribution as noted in the first
point. The edfs comprise all that is known about how
the threat objects will vary in the feature space.

Figure 10 plots the probability of false alarm against
the probability of leakage for each of the 16 realiza-
tions. This is the operating curve for the two distribu-
tions. The equal error rate is the point on the operating

1.0 T T T T
0.8% i
£
K]
S
2 0.6 K .
£ EER =0.33
E ’ Probability of error = 0.15
£ 04 A
@
Qo
o
& 1_
0.2 - 1 -
O 1 1 | |
0 0.2 0.4 0.6 0.8 1.0

Probability of leakage

Figure 10. Generating probabilities of error for 1-vs.-1 classifica-
tion: operating curve and equal error rate (EER).

curve where the two probabilities are equal. An equal
error rate of 0.33 would seem to indicate that the
probability of error in selecting the RV would be little
better than a coin flip. However, the true probability
of error for classifying one of two objects in the FOV
as the RV is much lower as shown in and

computed in[Eq. 9.]

Classifying 1 RV vs. q Non-RVs

Now assume there are g + 1 objects in the FOV, one
from the RV class w; and g from a non-RV class ;.
As before, denote the RV feature observation X; and
the non-RV feature observation

A classification error occurs if d;(X;) < d;(X¥) for any
k—if any one of the non-RVs looks more RV-like than
the RV itself. Thus, it suffices to look at the feature
vector from the ;class with the largest decision
metric. Let

di(jq)(ij)s sup {d; (X},
kL, q]

the gth order statistic of the decision metric. The
distribution of d;(X}) is known: Py, (dle;) = py, (d).
For continuous d;, the distribution of the largest of g
independent observations is given by

Py @)= bbe, @), @I (15)

Here Pdu' is the cumulative distribution function, or
the integral of Pg, - Mnemonically, the probability that
the largest dj; (Xf) is equal to d; is the probability that
any one is equal to this value times the probability that
the remaining q — 1 are smaller. For the (1 vs. q) case,

becomes

o G

PError = I I pdij (di)Pd_(_q>(dj)0di6dj .

—00 —00

(16)

The class-dependent feature edfs will induce a dis-
crete decision space for d; as shown in However,
Eq. 15 cannot be used in the discrete case as the
underlying probability argument does not obtain. To
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produce the analog for Eq. 16, a discrete version of Eq.
15 is necessary. The order statistics of the discrete
distribution can be obtained with the following devel-
opment. Suppose a scalar edf comprises M discrete
points {d,}M . Let {dy}M , denote the ordered set
of possible points and d@ represent the largest of
independent observations.

Prd® =dy,) =Pr({Lor more of the q d’s = dy,;}
n {all remaining d’s <d,;})
=[pq (d[k])]l[Pd (dy —1])]q -
+[pd(d[k])]2[Pd (d[k—l])]q_z *ee
+ [pd(d[k])]q

'il[pd (d[k])]i[Pd (d —1])]q o

MmO

. 0
% Py (d[k])]l[Pd (di —1])]q o E
=0 an
=[Py (dy I

=[pa(dpq) + Py (dy —1])]q
=[Py (d[k —1])]q
=[Py (d[k])]q =[Py (d[k—l])]q .

This last equation states that the probability that the
largest of g independent observations is equal to the
kth largest possible value is equal to the probability
that all g values are less than or equal to the kth largest
minus the probability that all g values are less than or
equal to the (k — 1)th largest. With the rank ordering,
Eq. 17 can be rewritten very simply:

b (@ )_Dkd‘_tk—lﬂ 5
4@ (g %q% EIV% (18)

Returning to the classification problem, if the ob-
servations {d;(X,, |u>]-)}|i2:1 are rank sorted so that
d;j(X ) l;) is the kyth largest decision metric for the
class w;, then the discrete edf formula ofis
reprised:

1 J
Peror == 3. [k = (i, =1)]
107 «,=1

19
xkilzzla[dij(iklI(’)i)<dij(¥k2I(’Jj)])- (19)

For g = 1, this equation simplifies to|Eq. 9, as it should.

THEATER BALLISTIC MISSILE DEFENSE

Example (continued)

The example of the section entitled Classifying 1
RV vs. 1 Non-RV continues with the assumption that
now ¢ non-RV objects are drawn from the non-RV
distribution denoted by the circles inThe prob-
ability of classification error for correctly selecting 1
RV against g non-RVs is plotted against g in Fig. 11.
The probability of error asymptotically approaches 0.5.
This might seem counterintuitive in that one might
expect mistaken classification with virtual certainty as
the number of non-RV objects becomes large. The
distribution of the non-RVs in the feature space in Fig.
9 explains this result. As the number of non-RVs in-
creases, the distribution of most RV-like non-RV ap-
proaches a Dirac delta function on the most RV-like
of the possible non-RV feature realizations. (This is
analogous to the distribution of largest of a sequence
of dice rolls. As the sequence grows longer, the largest
value will be a 6 with increasing likelihood.) However,
3 of the 6 RV realizations are more RV-like than the
most RV-like of the non-RVs. Put another way, half of
the RVs are outside of the non-RV boundary. Hence,
the probability of error approaches 0.5, rather than 1,
for large numbers of non-RVs. This is an important
observation:

The probability of error in classifying 1 RV against
g non-RVs may be considerably lower than 1 even
for large q.

It can be argued that this rather benign circum-
stance is due to the small sample of non-RV feature
realizations: a larger sample would certainly have a
worst-case hon-RV sample that was more RV-like than
all but the most RV-like RVs. However, the process for
introducing extrema is the same as that for nominal
realizations: the simulation. The class-dependent fea-
ture edfs contain all that is known about how the
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Probability of selection error
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Figure 11. Probability of errorin classifying 1 reentry vehicle (RV)
against g non-RVs.
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objects will appear in the feature space. There is no
other formal method for making inferences about
performance.

In tandem,and illustrate the superior
performance (lower error rate) of the likelihood ratio
approach to classification to the popular maximum
likelihood approach. The maximum likelihood ap-
proach chooses as the RV the object with the feature
realization (Fig. 9) closest to the center of the RV
ellipse. As the number of non-RVs in the ballistic
complex increases, the non-RV realization (circle)
near the center of the RV cluster becomes increasingly
likely. Although the iso-ellipses for the RV class are
not sketched in Fig. 9, it is clear that only one of the
six RV realizations is closer to the center than this non-
RV circle. Therefore, the asymptotic probability of
error will be 5/6, considerably worse than the 1/2
shown in Fig. 11.

Classifying 1 RV vs. n Unique Non-RVs

Suppose now there are n + 1 objects in the FOV:
1 RV and n non-RVs, each from a unique class. Then
there are n + 1 models of the class-dependent feature
distributions, and n possible pairwise decisions be-
tween the RV class and another class. Let w, denote
the RV class and w,, w5,-+, w,,; denote the non-RV
classes. Designate the feature realizations from the
respective classes Xy, X,, -+, X, +1. The objective is to
choose the feature realization that is most RV-like with
respect to the n possible likelihood ratios. To assess the
error in making this choice, the characteristics of the
selection algorithm must be specified. The probability
of error is the integral over the class-dependent distri-
butions in the feature space where an object other than
the RV will be determined to the RV. An error integral
analogous to must be specified. As in the section
entitled Classifying 1 RV vs. 1 Non-RV, the integra-
tion is facilitated by circumventing the implicit limits
of integration with the transformation of the feature
distributions to the decision space.

In Shannon’s Theorem it is shown that the capacity
(or error rate) of a noisy channel can be determined
without specifying the signal encoding to achieve that
capacity. A similar situation obtains for assigning the
RV in a polychotomous decision space: conditions can
be imposed on feasible but undetermined assignment
algorithms sufficient to determine the error rate of
those algorithms. In the section entitled Classifying 1
RV vs. 1 non-RV, the algorithm for choosing 1 RV
against 1 non-RV was straightforward and the error
integral proceeded directly. Some care must be taken
in specifying the characteristics of the analog for
choosing one RV against n non-RVs from n unique
classes.

It is desired to classify only the RV. (There is added
benefit to assigning each of the n non-RV feature
realizations to their respective classes in that the spa-
tial context of the identified objects provides addition-
al discrimination information. This assignment pro-
ceeds in exactly the same fashion as the assignment of
the RV feature realization; therefore, it suffices to
specify the algorithm for assigning a feature realization
to the RV class.) The n pairwise decision families are
the log-likelihoods {d; {‘;21, where d;; was defined in
the section entitled Classifying 1 RV vs. 1 Non-RV.
The set of decision families will be used to cull the
feature realization X, associated with the RV class o,
from the set of realizations {Xi}?:ll. The algorithm
should correctly choose X, if d;;(X;)>d,;(X;)0i#1.
With this requirement, an error will occur if
dy;(X;)>d;;(X,) for any iO[2,n+1]. Denote each
possible error E;. Then

PError = P(EZ ) E3 U”'UEn+1)

n+1
= 3 PE)- 5 PENE,)

ky <ky

by

ky <ky << kp

+-+(-D""P(E,NE;N---NE, . ,).

P(Ekl ﬂ Ek2 ﬂﬂ Ekp)

In the preceding equation, p <n + 1. Since each of
the feature realizations is independent, the pairwise
errors are independent so that

n+1
Perror = Z P(Ek) - z P(Ekl)P(Ekz)
k=2 ky <k,
ok (DPH 3 PEPE,)PE)

ky <kp <<k,

et CTPEPE)PED)- (o

Here each error P(E,) is the one vs. one error derived
in the section entitled Classifying 1 RV vs. 1 Non-RV.

Classifying 1 RV vs. g4, 5, - .
Unique Classes

Extending the problem from the previous section,
allow ¢; objects to be drawn from each non-RV class
w; ; 1. (Recall that w; denotes the RV class, of which
there is a single member.) The algorithm is required
to select the RV if the RV is more RV-like than each
member of every class with respect to the appropriate
likelihood ratio metric. This is written as

.» g, Non-RVs from n
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dy;(X;) > d (X,

Here d()(X,) is the largest of the observed decision
metrics for the class w; as defined earlier. Then if the
error E; is redefined from the previous section to be the
event ¢, (X,) <d®(X,), suffices to specify the
error, where P(E,) is now the assignment error for 1
RV vs. g non-RVs computed in|Egs. 16/and[19.]

SUMMARY

This article traced the application of likelihood
classification techniques to the problem of selecting
the RV in a TBMD discrimination problem. The
process was illustrated with an example using simu-
lated IR data. The probability of error for a dichot-
omous decision between two objects was derived and
related to the familiar quantities, equal error rate and
k-factor. This probability of error formula was extend-
ed to a decision against a number of non-RVs from
a single class. In tandem, these results yielded the
probabilities of error for choosing the RV from an
arbitrary number of objects drawn from an arbitrary
number of classes.
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