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Exo-atmospheric Discrimination of Thrust Termination

Debris and Missile Segments

Cheryl Resch

I his article explores a time-delay neural network (TDNN) for exo-atmospheric
discrimination of a missile reentry vehicle (RV) from other missile parts and thrust
termination debris. The TDNN is an enhanced version of a back-propagation neural
network that accounts for the features in the time domain by using the rate of change
of the infrared signature over several seconds as a discriminant. We used simulated
infrared signatures to train and test the TDNN on 90 randomly selected scenarios.
Results showed that the TDNN could identify the RV in 97% of the cases, for a
leakage rate of 3%; the false alarm rate (percentage of cases for which a non-RV was

identified as an RV) was 5%.
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INTRODUCTION

The ability of an interceptor to discriminate be-
tween a reentry vehicle (RV) from booster parts and
other debris is critical to theater ballistic missile de-
fense. During the exo-atmospheric portion of a flight,
separating and tumbling targets are especially difficult
to discriminate using available techniques because all
pieces follow the same trajectory. Discrimination tech-
niques that use a ballistic coefficient (an endo-atmo-
spheric property) cannot be applied for exo-atmo-
spheric intercepts. Discrimination techniques that use
the difference in size as a feature do not work for
tumbling missile pieces. For example, if the largest
piece is viewed at an aspect angle of 0° (“nose on”),
and a smaller piece is viewed at an aspect angle of 90°,
the smaller piece will look larger.

During separation, the missile splits into the RV
(with payload), the booster, and the attitude control
module (ACM). Separation debris (bolts, bands, etc.)
is also generated. Thrust termination debris results
when solid fuel is expelled from thrust termination
ports that are used to pull the booster away from the
RV during separation. The solid fuel rattles around in

the fuel tank until it becomes small enough to fit
through the port and, by chance, exits the port. Thrust
termination debris is hot, but not burning; its exit
temperature is the temperature inside the tank. The
debris then cools by radiation to the exo-atmospheric
environment.

This article describes a time-delay neural network
(TDNN) to discriminate an RV from missile segments
and thrust termination debris using data from an
infrared (IR) sensor onboard the interceptor missile.
The IR sensor views the threat for about 10 s, starting
about 30 s before intercept. The TDNN uses data from
the first 3 s of the 10-s window to discriminate the RV.
The threat complex is about 100 km away from the IR
sensor 30 s before intercept. At this range, even rel-
atively large pieces are represented as single pixels on
the IR image. Larger pieces cover a larger portion of
the pixel, so they appear as brighter dots than do
smaller pieces. Hot pieces return a larger irradiance to
the sensor, so they look brighter than cooler pieces.
Thus, hot and small pieces of thrust termination debris
may be confused with cooler and larger missile pieces
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at this range. As a result, static IR images are insuf-
ficient to discriminate the RV from other missile piec-
es and thrust termination debris.

Temporal characteristics serve as potential discrim-
inants since different pieces cool at varying rates,
thereby causing their IR signatures to change at differ-
ent rates. In particular, the payload in an RV is dense,
so it cools more slowly than the empty booster tank,
the ACM, or debris. Using temporal characteristics
over a 3-s interval, the TDNN correctly discriminates
the RV even under momentarily unfavorable aspect
angle combinations. The tumble rate is generally high
enough such that, over the 3-s window, the larger
pieces will tend to return larger irradiance values.

We can easily incorporate new information as well
as new sources of information (e.g., range data, intel-
ligence information) by restructuring and retraining
the TDNN. These factors make the TDNN an attrac-
tive choice for use in exo-atmospheric discrimination.

SIMULATED IR SIGNATURES

The model for thrust termination debris is based on
a description generated by Massachusetts Institute
of Technology/Lincoln Laboratory using measured
data.? The debris was modeled as flat rectangular
plates. Ranges for length, width, and height were
determined on the basis of measured data, and values
for individual models were chosen using random draws
for those variables. The temperature of the debris at
birth was 1500 K. It was then cooled by radiation over
the entire exo-atmospheric portion of the flight (hun-
dreds of seconds). Simulated IR signatures for thrust
termination debris were generated and included in the
training and test sets.

Photon Research Associates generated the IR data
for the RV, booster, ACM, and separation debris. We
used an aerodynamic heating program developed by
Orbital Sciences Corporation® to predict the upper-
and lower-bound temperatures of the missile during its
trajectory and applied a visible and IR signature
(VISIG)* code developed by Photon Research Asso-
ciates to obtain IR signatures based on temperature
histories and trajectories.

Data included IR signatures for the missile parts over
a range of wavebands for 200 different combinations
of dynamic parameters. These dynamic parameters,
which varied for each scenario, included precession
rate, coning angle, and spin rate (Fig. 1). A dual long-
wave IR sensor (i.e., with two wavebands in the 7- to
11-um range) was modeled. (A sensor of this type is
currently being designed for an exo-atmospheric kill
vehicle.) Sensor designers chose the long-wave region
of the IR spectrum because bodies at temperatures
typical of an exo-atmospheric missile emit a large
portion of their total emissive energy in this region.

Spin -
direction )
-

Precession
direction

Figure 1. Schematic of dynamic parameters that describe the
motion of missile pieces.

For this study, we generated 90 scenarios. A scenar-
io is described by a random choice from the 200 com-
binations of dynamic parameters, a randomly chosen
exo-atmospheric intercept altitude, and a combination
of three binary variables (aligned RV versus RV with
misalignment built in, upper- versus lower-bound tem-
perature prediction, and one-pulse versus two-pulse
trajectory).

The axis of symmetry of the misaligned RV is tilted
1° from the principal axis so that spin-related features
will be present. During boost, one rocket motor pulse
burns for the one-pulse trajectory and two rocket
motor pulses burn for the two-pulse trajectory. (The
two-pulse trajectory is longer.) Each of the eight com-
binations of these binary variables is represented by the
same frequency in the training and test sets.

Noise was applied to the IR signature data using the
following equation:

Rnoisy,p,w(t) = [ecal + ewhite(t)] X [Rp,w(t) + enei] )

where

Rnoisy,pw(t) = the noisy signal,
R, w(t) = the irradiance value obtained from
the VISIG code for the piece p and
waveband w,
e,y = calibration noise,
ewnie(t) = white noise, and
i = Noise equivalent irradiance.

The value of e is assumed to be constant over a
trajectory or scenario; for each scenario, it is randomly
drawn from a Gaussian distribution from 0.9 to 1.1,
with a mean of 1.0 and a variance of 0.1. The term
ewnite 1) includes both electronics and photon noise, the
latter caused by random fluctuations in the incident
flux of photons on the detector. This noise varies for
each radiance map obtained from the VISIG code; at
each time step it is randomly drawn from a uniform
distribution of 0.925 to 1.075. The term e, is the
target irradiance at the entrance pupil of a detection
system that produces a signal-to-noise ratio of 1. It is
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assumed to be constant over a trajectory or scenario
and is randomly drawn from a uniform distribution of
0 to 1 x 10~ W/cm?. The model assumes that each
piece is tracked from one time step to the next.

TIME-DELAY NEURAL NETWORK

A TDNN is similar to a back-propagation neural
network, except that the TDNN keeps track of the
data in the time domain |(see the boxed insert).|During
each iteration, data for the current time step and the
previous six time steps are used to classify each piece
(e.g., debris, RV). Figure 2 shows a schematic of a
TDNN. If only the black nodes (contribution of the
current time step) were present, the network would be
a simple back-propagation neural network. The red
(time-delay) nodes represent the contribution in the
time domain.

The data are gathered for 3sin 0.3-s increments (11
time steps) starting, as noted earlier, 30 s before inter-
cept and are then input to the neural network sequen-
tially for each piece in the scene.

All the temporal data for the first piece are fed to
the TDNN, and during each time step, the TDNN
produces output values indicating which type of piece
it predicts is most likely. Then all the temporal data
for the second piece are fed to the TDNN, and so on.
The TDNN input values i or features for a piece are
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Figure 2. Schematic of the TDNN. Black circles = contribution of the current
time step; red circles = time-delay nodes; dashed arrows = weight updated by
back propagation; solid arrows = time-delay connection. For W, p, 4, all nodes
are fully connected to the output layer; for W, ; 4, all nodes are fully connected

to the hidden layer.
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the ratios of the piece’s irradiance to the time-averaged
irradiance values of each other piece in the scene. The
following equation describes one of the input features
for piece p:

i _ Rnoisy,p,w(t)
phw T H® !
Rnoisy,n,w
where RnOIS nw 15 the mean irradiance value over the

3-s acqumtlon time for piece n and waveband w.

Input to the TDNN for piece p consists of one of
these ratios for each other piece n in the scene for each
waveband studied. If there are four pieces, there are
three inputs for each waveband. For example, the
input for the first piece for each waveband is i 5, i1 3,
and iy 4. If there are two wavebands studied, there are
six inputs to the TDNN for each piece.

After the data are acquired, the mean radiance
values are calculated for each piece, and the sets of
ratios for each piece are calculated. Using ratios rather
than absolute irradiance values makes the features
robust to range, time of day, and other factors than can
change the overall signal to the IR sensor. For the first
time step, the ratios are arranged in order of increasing
magnitude. For subsequent time steps, the input posi-
tions remain constant, even if the order of the mag-
nitudes changes. For example, if the first piece is being
examined, and the inputs to the TDNN for
the first time step are in the order iy 5, i1 4,
and iy 5, these input positions remain con-
stant, even if the fourth piece eventually
becomes brighter than the third.

Some of the pieces are orders of magni-
tude different in irradiance than others,
with the ratios ranging from 1000 to 1 x
1073, To help the neural network distin-
guish such large variations, the logarithm of
each ratio is taken before it is input to the
TDNN.

Unlike conventional neural networks,
which input static patterns, a TDNN can
deal with patterns in the time domain.>57
As discussed previously, temporal character-
istics, in addition to size and temperature,
are used to discriminate the RV. The TDNN
accounts for temporal changes in the data
using time-delay nodes.

After a set of inputs is introduced to and
fed forward through the neural network,
they are sent to time-delay nodes (t — At)
for use during the next iteration. After
subsequent iterations, information in the
time-delay nodes is sent to subsequent time-
delay nodes, for example, from (t — At) to
(t — 2At).

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 19, NUMBER 3 (1998)

317



C. RESCH

NEURAL NETWORKS

Back-propagation neural networks are the most widely
used of the neural network paradigms. They typically have
three or more layers of nodes, which are connected by
weights W. When the network is given an input, the up-
dating of activation values propagates forward from the
input layer of nodes, through each internal layer, to the
output layer of nodes through the weights. The output
nodes are the neural network’s response. During training,
the neural network corrects itself by comparing the output
node value to the desired output node value. This compar-
ison is propagated backwards through each internal layer
to the input layer. During back-propagation, the weight
connections between the layers are changed so that the
output node value will be closer to the desired output node
value during the next iteration.

A time-delay neural network (TDNN) is similar to a
back-propagation neural network, except that it accounts
for the features in the time domain or the order in which
the features are input. (See Fig. 2 in the text for a schematic
of a TDNN.)

After a set of inputs is introduced and fed forward
through the neural network, the input is sent to a time-
delay node (t — At) for use during the next iteration. After
subsequent iterations, information in the time-delay nodes
is sent to subsequent time-delay nodes, for example, from
(t — At) to (t — 2At).

The following equations describe how the input infor-
mation is fed forward through the TDNN to the output
nodes. The activation level of input node i, aj(t), is the
value input to the TDNN. The value then sent to each
hidden node h is the sum of the products of the input values
and the weight connections,

D
Sh®=5 > Wy qailt = (Ad],
T d=0

where D is the total number of time delays, d is the index
of the time delay, At is the time-delay time increment, and
W, ;.4 is the value of the weight from input node i to hidden
node h at time increment d. The activation level for (out-
put from) the hidden node h is

an(® = f[$,®),

where f(x) is the symmetric sigmoid function. The
value sent to each output node o is then the sum of the

Each node in the input layer has three time-delay
nodes, each with its own weight connection to the
hidden layer. The nodes in the hidden layer have six
time delays apiece. Thus, during each iteration, the
neural network output is determined by information fed
forward from the current time plus the last six time steps.

We split the problem of discriminating the RV from
thrust termination debris and other missile segments
into two tasks, each with its own TDNN. Infrared
radiance for a waveband is found by integrating
Planck’s equation, which is a function of temperature,
over the waveband of interest.

products of the hidden node activation levels and weight
connections

D
So®=3 > Wonganlt - (At)d],
hd=0

where W, p, 4 is the value of the weight connection from
hidden node h to output node o at time increment d. The
activation level of output node o (the final output) is

3, (0 = f[So )]

During training, the weights are adjusted using back-
propagation of the error values. For an output node, the
error value is

30(1) =[to® ~ 2, O[S ®)],

where ty(t) is the target value for the output node (1 for “yes”
or 0 for “no” in this study), and f'(x) is the derivative of
the symmetric sigmoid function. For a hidden node, the
error value is

O b O
PO=F 3 %OWong éf'[sh ®]-

The adjustment of the connection weights is done using
gradient descent:

0 gs, O

i = 0B
.,

where m is a learning coefficient between “0” and “1”. By
evaluating this expression and adding the momentum term
to speed convergence, the following equation results for
adjusting weights:

AWh,i,d (t) = Tlsh (t)ai[t - (At)d] + O‘AWh,i,d (t = At) .

where « is the momentum term between “0” and “1”. The
momentum term increases the weight change without caus-
ing it to oscillate wildly because it changes the weight in
the direction of the long-term trend. Training does not
begin until all the time-delay nodes are filled (i.e., the
seventh time step).

Since the thrust termination debris is much hotter
than the missile pieces, its radiance relative to that of
the missile pieces will change from one waveband to
the next.! This property is used by the first TDNN,
or hot debris TDNN, to separate the hot thrust ter-
mination debris from the missile pieces. The second
TDNN, or missile piece identification TDNN, exam-
ines the remaining pieces and identifies what type of
missile piece each one is.

The hot debris TDNN has one output node, which
returns a value for every time step: ideally, “1” if the
piece is hot debris and “0” if it is not. A TDNN could
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be set up to take any number of (@) (b)
pieces as input. For this study, 35 35
we took five pieces of thrust
termination debris and four 301 3.07 f
pieces that were not, for a total
; . . 25+ 25}

of nine pieces. Since we have
nine pieces, we have eight ra- 20tk 2ot
tios for each piece for each
waveband studied. Two wave- 15Ff 1.5¢
bands were studied, so there . N
were 16 inputs to the hot debris S107 ' 210
TDNN.

The missile piece identifica- 051 . 05
tion TDNN has four output ol il ol
nodes. One output node repre- ‘i
sents whether the piece in ques- 05k b 05
tion is an RV; i.e., output for b i
this node should be “1” if the -1.01 i -1.0t
piece is an RV and “0” if it is oo
not. The second output node 155 0 20 20 30 0 2.0 2.0
represents whether the piece in o1 Ip,11

question is a booster tank;
again, the output for this node
should be “1” if the piece is a
booster and “0” if it is not. The
third and fourth output nodes represent the ACM and
separation debris, respectively. Since four missile piec-
es and two wavebands are modeled, there will be six
inputs to the missile piece identification TDNN.

The TDNN was trained and tested for 90 different
scenarios, resulting in about 5000 data points. Specif-
ically, we used “leave-one-out” training®, that is, the
TDNN was trained using all but 1 of the available sets
of 90 scenarios. It was then tested on the left-out set.
Next, the TDNN was trained again, but with a differ-
ent scenario left out. The training and testing process
was repeated so that each scenario was left out once.
This technique gives the best estimate of the true
performance of a neural network when a limited
amount of data is available.

RESULTS

We first analyzed the performance of the hot debris
TDNN. Figure 3a shows hot debris TDNN input for
two ratios in the same waveband, i, ; and i, ;, plotted
against each other. The data for the hot debris and the
missile pieces overlap; they cannot be distinguished
using data from only one waveband. Figure 3b shows
the data for one waveband input value i,,, versus
input value i,,, for the other waveband. The thrust
termination debris is clearly separated from the missile
pieces in Fig. 3b, indicating that the change in
radiance of the thrust termination debris relative to
the missile pieces from one waveband to the next can
be used to discriminate between them.

Figure 3. Hot debris TDNN input data for (a) two ratios in the same waveband and (b) one
ratio in each waveband. (Missile pieces in blue; thrust termination debris in green.)

Figure 4 (black curve) shows the percentage of
thrust termination debris test cases input to the hot
debris TDNN that resulted in an output value above
0.5 as a function of time step. This debris is correctly
identified in more than 95% of the cases. The TDNN
also did not misclassify any missile pieces, RV, or ACM
as thrust termination debris.

Figure 4 (red curve) also shows the percentage of
booster input cases that incorrectly resulted in an
output value above 0.5. At later time steps, less than
5% of booster inputs are incorrectly identified as thrust
termination debris. Thrust termination debris is very
hot, and thus very bright in the infrared. The booster
is the brightest of the missile pieces because it is the
biggest; therefore, the booster is the missile piece most
likely to be confused with thrust termination debris.

100 P A N S——
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60| ]
40} ]
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Percentage of cases

0 1 1 T I I
0 2 4 6 8 10 12

Time step

Figure 4. Percentage of test cases for which TDNN output is
above 0.5 as a function of time step for thrust termination debris
(black curve) and booster parts (red curve).
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The TDNN can distinguish hot pieces from big
pieces, even though they are represented by single
pixels, because information in two wavebands sepa-
rates pieces with different temperatures. Temporal
characteristics are not necessary for discrimination.
Hence, a simple three-layer back-propagation neural
network that does not consider temporal characteris-
tics was created that yielded performance similar to
that of the TDNN. Future implementations, therefore,
could use a back-propagation neural network for this
portion of the problem.

Next, we used the missile piece identification
TDNN to classify each missile piece. Figure 5 shows
the first three ratios (i, 4, i1, and i, 3,) used as input
plotted against each other. All three are for the same
waveband. The RV and the separation debris are
clearly distinguishable from the other pieces. The
ACM and the booster show considerable overlap.
Figure 4 indicates that this TDNN should be able to
discriminate the RV and the debris from the other
pieces, but will probably have trouble discriminating
the booster from the ACM.

Figure 6a shows TDNN output for the RV data in
the test cases. The red curve indicates the percentage
of the 90 RV test cases input to the TDNN for which
the RV node had the highest output as a function of
time step. Ideally, this fraction
should be 1, indicating that all
RV test cases were identified ()

3,1

Ip11

-4 2

Figure 5. Input to missile piece identification TDNN for three
ratios in the same waveband (booster test cases, purple; ACM,
green; RV, red; debris, blue).

Figure 6¢ shows the TDNN output for the ACM
data. Again, at later time steps, the ACM and booster

(b)

as RVs by the TDNN. The 100

results indicate about 97% of
the RVs were identified as » 80F
such. At later time steps, a
about 3% of the 90 RV test = 60F
cases are identified as ACMs. o
This represents the leakage % 401
rate, or percentage of RVs that s
are not identified as RVs. & 20t
Figure 6b shows the TDNN
output for the booster data in 0 —
the test cases. Ideally, the line  (©) 19 , ‘ ‘ ‘
representing the booster node
should be 1. The figure indi- 80l
cates that at later time steps, 2
the ACM and booster are con- < 60
flated by the TDNN. This re- ;7
sult was to be expected given g 4ol
that Fig. 5 indicates that the 8
ACM and booster feature o b
spaces overlap significantly.
However, for the test cases 0 I\/_

studied, booster data were
never misidentified as RV data
by the TDNN; there were no
booster false alarms.

(d)

Time step

Time step

Figure 6. TDNN output (RV node, red; booster node, purple; ACM node, green; debris node,
blue) for (a) RV, (b) booster, (c) ACM, and (d) debris test cases: percentage of cases for which

output nodes have the highest output.
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are conflated by the TDNN. ACM data were never
identified as RV data by the TDNN; there were no
ACM false alarms. Figure 6d shows the TDNN output
for missile debris data. At early time steps, about 35%
of the debris input is identified as an RV, this drops to
about 5% at later time steps, corresponding to a false
alarm rate of 5% for missile debris.

When ratios for incorrectly classified thrust termi-
nation debris were input to the missile piece identifi-
cation TDNN, the output nodes with the highest
output values were the ACM and booster nodes. The
output values were generally below 0.5. Since they are
not classified as RVs, thrust termination debris that
leaked from the first TDNN does not present a
problem.

To determine whether temporal variations are nec-
essary for discrimination, we trained and tested a back-
propagation neural network using the same data input
to the missile piece identification TDNN. For RV test
cases, none of the four output nodes had a significantly
higher output value than the others. The highest
output value was generally below 0.5. When the
TDNN is used for RV input data, the output value of
the RV output node is 0.7 or above. Thus, the temporal
information enhances the ability to distinguish the RV.

CONCLUSIONS

The hot debris TDNN could identify over 95% of
the thrust termination debris pieces. This corresponds
to a leakage rate of 5%. No RVs, ACMs, or missile
separation debris were incorrectly identified as thrust
termination debris. About 5% of the booster input was
identified as thrust termination debris. Since the ul-
timate goal is to identify the RVs, eliminating the
booster from consideration early is acceptable. As dis-
cussed previously, the change in radiance from one
waveband to another of the hot debris versus missile
pieces is used to discriminate them. Since temporal

EXO-ATMOSPHERIC DISCRIMINATION

variations are not used, a simple back-propagation
neural network could be applied for this portion of the
problem.

The missile piece identification TDNN could iden-
tify 97% of the RVs as RVs, with a leakage rate of 3%
and false alarm rate of 5%. Boosters and ACMs were
confused, but again, the goal is to identify RVs, so this
is not a problem.

This approach was successful because it accounts for
the long-term temporal changes in the IR signature of
the missile pieces as they cool. The TDNN is appro-
priate for use with time series data having discriminat-
ing characteristics present over a span of several time
steps.

The use of long-term temporal changes also makes
the approach robust to the aspect angle of the missile
piece being viewed. The use of ratios as features makes
the approach robust to time to go before intercept,
time of day, and other factors that change the overall
IR signature. The TDNN shows promise as a tool to
discriminate RVs from other missile pieces and thrust
termination debris in the exo-atmosphere. Further
tests should be based on actual flight data.
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