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TEST AND EVALUATION
I

System Understanding and Statistical Uncertainty
Bounds from Limited Test Data

James C. Spall

n many DoD test and evaluation programs, it is necessary to obtain statistical
estimates for parameters in the system under study. For these estimates to provide
meaningful system understanding, uncertainty bounds (e.g., statistical confidence
intervals) must be attached to the estimates. Current methods for constructing
uncertainty bounds are almost all based on theory that assumes a large amount of test
data. Such methods are not justified in many realistic testing  environments where only
a limited amount of data is available. This article presents a new method for
constructing uncertainty bounds for a broad class of statistical estimation procedures
when faced with only a limited amount of data. The approach is illustrated on a
problem motivated by a Navy program related to missile accuracy, where each test is
very expensive. This example will illustrate how the small-sample approach is able to
obtain more information from the limited sample than traditional approaches such as
asymptotic approximations and the bootstrap.
(Keywords: Confidence regions, Parameter estimation, Small-sample analysis.)
INTRODUCTION
A pervasive problem in defense test and evaluation

(and other areas) is the need to make meaningful in-
ference from a limited amount of data. This issue is
especially critical as defense testing budgets are reduced,
resulting in a need to extract as much information as
possible from a limited sample. Such inference usually
involves a statistical estimation process and an uncer-
tainty calculation (e.g., confidence region). For many
estimators used in system testing (e.g., least squares,
maximum likelihood, and maximum a posteriori), there
exists a large-sample theory that provides the basis for
determining probabilities and confidence regions in
large samples (see, e.g., Refs. 1 and 2). However, except
for relatively simple cases, it is generally not possible
to determine this uncertainty information in the small-
sample setting. This article presents an approach to
determining small-sample probabilities and confidence
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regions for a general class of multivariate M-estimators
(M-estimators are those found as the solution to a
system of equations, and include those common esti-
mators just mentioned). Theory and implementation
aspects will be presented. Three distinct examples will
be presented to illustrate the broad potential applica-
tions of the approach: (1) a “signal-plus-noise” estima-
tion problem that arises in applications such as weapon
system accuracy analysis, small-area estimation from
surveys, Kalman filter (state-space) model identifica-
tion, and estimate combining; (2) a nonlinear regres-
sion setting; and (3) a problem in correlation analysis
for time series.

The approach is based on a simple—but apparently
unexamined—idea. Suppose that the model used in the
identification problem is some e distance (to be defined
later) away from an idealized model, where the small-
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sample distribution of the M-estimate for the idealized
model is known. Then the known probabilities and
confidence regions for the idealized model provide the
basis for computing the probabilities and confidence
regions in the actual model. The e distance may be
reflected in a conservative adjustment to the idealized
quantities. This approach is fundamentally different
from other finite-sample approaches, where the accuracy
of the relevant approximations is tied to the size of the
sample (versus the deviation from an idealized model).

The M-estimation framework is very general as it
encompasses many (perhaps most) estimators of prac-
tical interest in system testing and allows us to develop
concrete regularity conditions that are largely in terms
of the score function (the score is typically the gradient
of the objective function, which is being set to zero to
create the system of equations that yields the estimate).
One of the significant challenges in assessing the small-
sample behavior of M-estimates is that they are usually
nonlinear, implicitly defined functions of the data
(determined by some numerical iteration procedure).

The problem of probability and confidence region
calculation in small samples has, of course, been widely
considered. Let us briefly highlight some of the most
popular approaches that might apply to M-estimates.
Perhaps the most popular current approach is resam-
pling, most notably the bootstrap (e.g., Refs. 3–6). The
main appeal of this approach is relative ease of use, even
for complex estimation problems. Resampling tech-
niques make few analytical demands on the user, instead
shifting the burden to one of computation. However, the
bootstrap can provide a highly inaccurate description of
M-estimate uncertainties in small samples, as illustrated
in the example discussed later (which considers the
parametric bootstrap technique described in Efron and
Tibshirani3). This poor performance is inherently linked
to the limited amount of information about the small
sample, with little improvement possible through a larger
amount of resampling.

Other relatively popular methods for small-sample
probability and confidence region calculation are those
based on series expansions, particularly the Edgeworth
and saddlepoint (e.g., Refs 7–10). However, as noted
in Reid,8 “saddlepoint approximations have not yet had
much impact on statistical practice.” The major limit-
ing factor of these series-based methods is the cumber-
some analytical form and numerical calculations in-
volved. Namely, there is a requirement to compute a
certain probabilistic generating function and associated
inverse transformations (typically via numerical inte-
gration) to obtain the small-sample density and then
(typically) perform additional numerical integrations
to obtain the boundaries for a confidence region.
Hence, most of the literature in this area focuses on the
relatively tractable case of estimates that are a smooth
function of a sample mean (e.g., Refs. 8, 11, 12, and
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13), although some authors have considered more
general cases such as M-estimates or quantities related
to certain stochastic processes (e.g., Refs. 9, 14, and
15). The cumbersome calculations for these methods
become particularly prominent in multivariate M-
estimation problems, although some partial results for
this setting are in Tingley and Field14 and Field and
Ronchetti9 (“partial” in the sense that these results
consider a scalar function of a multivariate M-estimate;
they use the 1980 Lugannani–Rice formula16 together
with the bootstrap to calculate the resulting scalar tail
probabilities and associated confidence interval end-
points). An alternate approach to the multivariate
M-estimation setting, which is based on estimating
various saddlepoint quantities, is given in Ronchetti
and Welsh.17 This approach seems most appropriate in
sample sizes that are at least moderately large, where
these estimated quantities would be reliable.

The essential relationship of the small-sample ap-
proach here to the analytical (saddlepoint) methods is
as follows. The saddlepoint methods are very general
in principle and may provide accurate probability and
confidence region approximations. However, they
make strong analytical and computational demands on
the user and appear infeasible in most of the multivari-
ate M-estimation problems encountered in practice
(where the estimate is usually implicitly defined and
must be found numerically). The approach here, on the
other hand, is generally easy to use for multivariate M-
estimates and also can provide accurate results. How-
ever, it requires that an idealized setting be identified
from which to make adjustments, which may not be
available in some problems. In the signal-plus-noise
example considered here, where the data are noniden-
tically distributed, the idealized case is one where the
data would be i.i.d (independent, identically distribut-
ed). A resulting fundamental distinction between the
saddlepoint method and the method here is in the
nature of the errors in the probability calculations. For
the saddlepoint, these errors are in terms of the sample
size n and are typically of order 1/n; for the approach
here, the error is in terms of the deviation from the
idealized case. In particular, if e > 0 is some measure of
the deviation (to be defined), then the error is of order
e for any n for which the estimate is defined. In addi-
tion, the implied constant of the order e term can be
explicitly bounded if needed.

PROBLEM FORMULATION
Suppose we have a vector of data x (representing a

test sample of size n) whose distribution depends on a
p-dimensional vector u and a scalar e, where u is to be
estimated by maximizing some objective (say, as in max-
imum likelihood) and e represents a known parameter.
The estimate û is the quantity for which we wish to
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characterize the uncertainty when n is small. It is as-
sumed to be found as the objective-maximizing solution
to the score equation:

s(u; x,e) = 0, (1)

where s(·) represents the gradient of a log-likelihood
function with respect to u when û  represents a max-
imum likelihood estimate. Suppose further that if e = 0
(the idealized case), then the distribution for the esti-
mate is known for the small n of interest. Our goal is
to establish conditions under which probabilities for û
with e > 0 (the real case) are close to the known prob-
abilities in the idealized case. In particular, we show
that the difference between the unknown and known
probabilities for the estimates is proportional to e when
e is small. This justifies using the known distribution
for û  when e = 0 to construct approximate confidence
regions for û  when e is small. Further, when e is not
so small, we show how the difference in the real and
idealized probabilities can be approximated or bounded.

To characterize probabilities for the estimate û , we
introduce two artificial estimators that have the same
distribution as û  when e > 0 and when e = 0, respec-
tively. The two artificial estimators, say ûe  and û0, are
based, respectively, on fictitious vectors of data, ye and
y0, of the same dimension as x. To construct the two
fictitious data vectors, we suppose there exists a random
vector z (same dimension as x), with associated trans-
formations Te and T0 (T0 is the same as Te at e = 0)
such that

y T ze e u= ( , ) , (2)

y T z0 0= ( , ) ,u (3)

and such that ye and y0 have the same probability
distribution as x for the chosen e > 0 and for e = 0,
respectively. Then, from Eq. 1,

ˆ : (ˆ ; , ) ,u u ee e es y = 0 (4)

ˆ : (ˆ ; , ) .u u0 0 0 0s y 0 = (5)

The fundamental point in the preceding machina-
tions is that the distributions of ûe  and û0 are identical
to the distributions of the estimate û under e > 0 and
e = 0, even though the various quantities (z, ye, etc.)
have nothing per se to do with the real data and asso-
ciated estimate. Our goal in the “Main Results” section
is to establish conditions under which probabilities for
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 4 (19
ûe are close to the known probabilities for û0, irrespec-
tive of the sample size n. This provides a basis for approx-
imating (or bounding) the probabilities and confidence
regions for û under e > 0 through knowledge of the
corresponding quantities for û0. Throughout the remain-
der of this article, we use the order notation O(e) and
o(e) to denote terms such that O(e)/e and o(e)/e are
bounded and approach 0, respectively, as e→0.

THREE EXAMPLE PROBLEM
SETTINGS

 To illustrate the range of problems for which the
small-sample approach is useful, this section sketches
how the approach would be applied in three distinct M-
estimation settings. Further detailed analysis (including
numerical results) for the first of these settings is pro-
vided in the section entitled “Application in Signal-
Plus-Noise and Related CEP Problem.”

Example 1: Parameter Estimation in Signal-Plus-
Noise Setting with Non-i.i.d. Data

Consider the problem of estimating the mean and
covariance matrix of a random signal when the mea-
surements of the signal include added independent
noise with known distributional characteristics. In
particular,  suppose we have observations {x1, x2, . . . , xn}
distributed N(m, S + Qi), where the noise covariances
Qi are known and the signal parameters m, S (for which
the unique elements are represented in vector format
by u) are to be jointly determined using maximum like-
lihood estimation (MLE). From the form of the score
vector, we find that there is generally no closed-form
solution (and no known finite-sample distribution) for
the MLE when Qi ≠ Qj for at least one i ≠ j. This cor-
responds to the actual (e > 0) case of interest. We also
found that the saddlepoint method was analytically
intractable for this problem (because of the relative
complexity of the score vector) and that the bootstrap
method worked poorly in sample sizes of practical in-
terest (e.g., n = 5).

Estimation problems of this type (with either scalar
or multivariate data) have been considered in many
different problem contexts, for example, Rao et al.18 in
the estimation of a random effects model; James and
Venables19 and the National Research Council20 in a
problem of combining independent estimates of coef-
ficients; Shumway et al.21 and Sun22 in a Kalman filter
(state-space) model identification problem; Ghosh and
Rao23 in small-area estimation in survey sampling; and
Hui and Berger24 in the empirical Bayesian estimation
of a dose–response curve. One of the author’s interests
in this type of problem lies in estimating projectile
impact means and covariance matrices from noisy
observations of varying quality; these are then used in
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calculating CEP values (the 50% circular quantile
values) for measuring projectile accuracy, as in Spall
and Maryak.25 Finally, for general multivariate versions
of this problem, Smith26 presents an approach for en-
suring that the MLE of the covariance matrix is positive
semi-definite, and Spall and Chin27 present an ap-
proach for data influence and sensitivity analysis.

Central to implementing the small-sample approach
is the identification of the idealized (e = 0) case and
definition of e relative to the problem structure. We can
write Qi

–1 = Q–1 + eDi, where Q and Di are known
matrices. (We are using the inverse form here to relate
the various matrices since the more natural parameter-
ization in the score vector is in terms of {Qi

–1 }, not {Qi}.
However, this is not required as the basic ideas would
also apply in working with the noninverse form.) If
e = 0 (the idealized identical Qi case), the distribution
of the m, S estimate is normal-Wishart for all sample
sizes of at least two. For this application, the Theorem
in the “Main Results” section provides the basis for
determining whether confidence regions from this ide-
alized distribution are acceptable approximations to the
unknown confidence regions resulting from noniden-
tical Qi. In employing the Theorem (via Eqs. 4 and 5),
we let ye,i = (s2 + Qi)

1/2zi 
 + m = [s2 + (Q–1 + eDi)

–1]1/2 zi

+ m, where zi is distributed according to an N(0, I)
distribution, where I represents the identity matrix, and
i = 1, 2, . . . , n. In cases with a larger degree of differ-
ence in the Qi’s (as expressed through a larger e)—
where this idealized approximation for the confidence
regions may not be adequate—implied constants asso-
ciated with the O(e) bound of the Theorem provide a
means of altering the idealized confidence regions
(these implied constants depend on terms other than
e : Q, {Di}, etc.).

This example illustrates the arbitrariness sometimes
present in specifying a numerical value of e (e.g., if the
elements of Di are made larger, then the value of e must
be made proportionally smaller to preserve algebraic
equivalence). This apparent arbitrariness has no effect
on the fundamental limiting process as it is only the
relative values of e that have meaning after the other
parameters (e.g., Q, Di , etc.) have been specified. In
particular, the numerical value of the O(e) bound does
not depend on the arbitrary way in which the deviation
from the idealized case is allocated to e and to the other
parameters; in this example, O(e) depends on the prod-
ucts {eDi}, which are certainly not arbitrary.

Example 2: Nonlinear Regression

Although the standard linear regression framework
is appropriate for modeling input–output relationships
in some problems, a great number of practical problems
have inherent nonlinearities. In particular, suppose
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that data are modeled as coming from the relationship

xi = fi(u, e, hi) , (6)

where fi(·) is nonlinear mapping and hi is a normally
distributed random noise term. Typically, least-squares,
Bayesian, or MLE techniques are used to find an estimate
of u. In contrast to the linear setting (with normally
distributed noise terms), the finite-sample distribution
of û  will rarely be known in the nonlinear setting. In
particular, although the problem of estimating param-
eters in nonlinear regression models is frequently solv-
able using numerical optimization methods, the
“situation is much worse when considering the accuracy
of the obtained estimates.”28 The small-sample approach
here is appropriate when the degree of nonlinearity is
moderate; the corresponding idealized case is a linear
regression setting that, in a sense illustrated later, is
close to the actual nonlinear setting. Relative to Eqs.
4 and 5, it is natural to choose ye = [f1(u, e, z1)

T,
f2(u, e, z2)

T, . . . , fn(u, e, zn)
T]T, where  z = ( , , . . . , )z z zT T

n
T T

1 2
has the joint normal distribution of ( , , . . . , )h h h1 2

T T
n
T T .

Let us illustrate the ideas for two specific nonlinear
cases. First, suppose that fi(·) is a quadratic function
Ai + Biu + euTCiu + hi , where Ai , Bi , and Ci  are vectors
or matrices (as appropriate) of known constants.  Such
a setting might arise in an inversion problem of at-
tempting to recover an unknown input value from
observed outputs (as is, e.g., the main theme of fields
such as statistical pattern recognition, image analysis,
and signal processing). Clearly, for e = 0, we have the
standard linear regression model. As with Example 1,
the apparent arbitrariness in specifying e is accommo-
dated since the product eCi  is the inherent expression
of nonlinearity appearing in the O(e) bound. In the
second case, suppose that fi(·) represents the constant
elasticity of substitution (CES) production function
relating labor and capital inputs to production output
within a sector of the economy (Kmenta29 or Nichol-
son30). This model includes a “substitution parameter,”
which we represent by e. After making a standard log
transformation, the CES model has the form fi(u, hi)
= u1 – (u2/e)log[u3CAPi

–e + (1 – u3) LABi 
–e] + hi, where

the three parameters within the u vector represent
parameters of economic interest, and CAPi and LABi

represent capital and labor input from firm i. As
discussed in Kmenta29 and Nicholson,30 when e = 0 the
CES function reduces to the well-known (log-linear)
Cobb–Douglas production function, representing the
idealized case here. Hence, confidence regions for
the u estimate in the CES model can be derived from
the standard linear regression–based confidence
regions for the Cobb–Douglas function through use of
the Theorem.
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Example 3: Estimates of Serial Correlation for
Time Series

A basic problem in time series analysis is to deter-
mine whether a sequence of measurements is correlated
over time, and, if so, to determine the maximum order
of correlation (i.e., the maximum number of time steps
apart for which the elements in the sequence are corre-
lated). A standard approach for testing this hypothesis
is to construct estimates of correlation coefficients for
varying order correlations, and then to use the known
distribution of the estimates to test against the
hypothesis of zero correlation. Let us suppose that we
construct MLEs of the jth-order correlation coefficients,
j = 1, 2, . . . . Our interest here is in the case where the
data are non-normally distributed. This contrasts, for
example, with the small-sample approach in Cook,31

which is oriented to normal (and autoregressive) mod-
els. (By the result on pp. 220–221 of Bickel and Dok-
sum,32 we know that standard correlation estimate
forms in, say, Section 6.1 of Anderson,33 correspond to
the MLE when the data are normally distributed.)

There are many ways, of course, in which one can
model the non-normality in practical test and evalua-
tion settings, but let us consider the fairly simple way
of supposing the data are distributed according to a
nonlinear transformation of a normal random vector.
(Two other ways that may also be appropriate are (1)
suppose that the data are distributed according to a
mixture distribution where at least one of the distribu-
tions in the mixture is normal and where the weighting
on the other distributions is expressed in terms of e, or
(2) suppose that the data are composed of a convolu-
tion of two random vectors, one of which is normal and
the other non-normal with a weighting expressed by e.)
In particular, consistent with Eqs. 4 and 5, suppose that
x has the same distribution as ye = Te(z, u), where z is
a normally distributed random vector and Te(·) is a trans-
formation, with e measuring the degree of nonlinearity.
Since T0(·) is a linear transformation, the resulting ar-
tificial estimate û0 has one of the finite-sample distribu-
tions shown in Section 6.7 of  Anderson33 or Wilks34

(the specific form of distribution depends on the prop-
erties of the eigenvalues of matrices defining the time
series progression). Note that aside from entering the
score function through the artificial data ye, e appears
explicitly (à la Eq. 1) through its effect on the form of
the distribution (and hence likelihood function) for the
data x or ye. Then, provided that e is not too large, the
Theorem (with or without the implied constant of the
O(e) bound, as appropriate) can be used with the known
finite-sample distribution to determine set probabilities
for testing the hypothesis of sequential uncorrelatedness
in the non-normal case of interest.
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MAIN RESULTS

Background and Notation
The following subsection presents the main result,

showing how the difference in the unknown (e > 0)
and known (e = 0) probabilities for û  lying in a p-fold
rectangle decreases as e → 0. The computation of such
probabilities is the critical ingredient in determining
the small-sample confidence regions. In particular, we
will be interested in characterizing the probabilities
associated with p-fold rectangles:

Va h

p p p p

a h a h a h a h

a h a h
, – , – ,

. . . – , ,

= +[ ] × +[ ]
× × +[ ]

1 1 1 1 2 2 2 2

(7)

where a = (a1, a2, . . . , ap)
T, h = (h1, h2, . . . , hp)

T, and
hj $ 0 ; j. (Of course, by considering a union of arbi-
trarily small rectangles, the results here can be applied
to a nonrectangular compact set subject to an arbitrari-
ly small error.) As discussed earlier, we will use the
artificial estimates ûe  and û0 in analyzing this differ-
ence. The Theorem shows that the difference in prob-
abilities is O(e).

An expression of critical importance in the Theorem
(and in the calculation of the implied constants for the
O(e) result in the Theorem) is the gradient d ûe /de.
From the fact that ûe  depends on ye and e, we have

d
d y

dy
dT

ˆ ˆ ˆ
.u

e

u

e

u

e
e e e

e

e= ∂
∂

+ ∂
∂ (8)

When the score s(·) is a continuously differentiable
function in a neighborhood of ûe and the ye, e of in-
terest, and when (∂s/∂uT)–1exists at these ûe , ye, e, the
well-known implicit function theorem (e.g., Trench
and Kolman35) applies to two of the gradients on the
right-hand side of Eq. 8:

∂
∂

= ∂
∂







∂
∂

ˆ
– ,

–
u

e u e
e s s

T

1

(9)

∂
∂

= ∂
∂







∂
∂

ˆ
– ,

–
u

u

e

e ey

s s

yT T T

1

(10)

where the right-hand sides of the expressions in Eqs. 9
and 10 are evaluated at ûe , ye = Te(z, u), and the e of
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interest. (All references to s = s(·) here and in the
Theorem correspond to the definition in Eq. 1, with ye

replacing x as in Eq. 4.) The remaining gradient on the
right-hand side of Eq. 8 is obtainable directly as
dye /de = dTe(z, u)/de. Note that ye (and its derivative
in Eq. 8) is evaluated at the true u in contrast to the
other expressions in Eqs. 8–10, which are evaluated at
the estimated u. One interesting implication of Eqs. 8–
10 is that d ûe /de is explicitly calculable even though
ûe  is, in general, only implicitly defined. From the
implicit function theorem, the computation of d ûe /de
for the important special case of e = 0 (see notation
that follows) relies on the previously mentioned as-
sumptions of continuous differentiability for s(·) hold-
ing for e both slightly positive and negative.

The following notation will be used in the Theorem
conditions and proof:

• Consistent with preceding usage, a subscript i or j on
a vector (say on ûe , z, etc.) denotes the ith or jth
component.

• Ae represents the inverse image of Va,h relative to ûe ,

i.e., the set {z: aj –hj # ˆ
,ue j # aj +hj ; j = 1,2, . . ., p}.

Likewise, A0 is the inverse image relative to û0.
• D(z) = [d ûe /de]e = 0 .

Order Result on Small-Sample Probabilities
The main theoretical result of this article is present-

ed in the Theorem. A proof is provided in Spall.36 The
Theorem regularity conditions are quite modest, as dis-
cussed in the remarks following their presentation in
the Appendix and as demonstrated in the signal-plus-
noise/CEP example discussed later. The regularity con-
ditions pertain essentially to smoothness properties of
the score vector and to characteristics of the distribu-
tion of z and would apply in almost all practical test
and evaluation applications.
Theorem. Let ûe  and û0 be as given in Eqs. 4 and 5,
and let a ± h be continuity points of the associated
distribution functions. Then, under regularity condi-
tions C.1–C.5 in the Appendix,

P P Oa h a h(ˆ ) – (ˆ ) ( ) ., ,u u ee e[ [V V = (11)

The Implied Constant of O(e) Bound
Through the form of the calculations in the proof

of the Theorem, it is possible to produce computable
implied constants for the O(e) bound, i.e., constants
c(a, h) > 0 such that

P P c a h oa h a h(ˆ ) – (ˆ ) ( , ) ( ) ., ,u u e ee [ [V V0 ≤ + (12)
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We present one such constant here; another is
presented in Spall.36 The constant here will tend to be
conservative in that it is based on upper bounds to
certain quantities in the proof of the Theorem. This
conservativeness may be desirable in cases where e is
relatively large to ensure that the “#” in Eq. 12 is
preserved in practical applications [i.e., when the o(e)
term is ignored]. (The constant in Spall36 is less con-
servative and is determined through a computer resam-
pling procedure.)

The details behind the derivation of the bound here
follow exactly as in Spall36 and so will not be repeated
here. The bound is

c a h M P a h a h i j

p p

j
j

p

i i i i i

j j j j

( , ) ( – ˆ )

[ ( ) ( )] ,

,

(–) ( )

= ≤ ≤ + ∀ ≠

× +

=
+

∑2
1

0u

z z (13)

where Mj is an upper bound to uDj(z)u for z [ A0, pj(·) is
the marginal density function for ˆ , [ –,

( )u z0 j j j ja h+ +[
eM a hj j j, ] ,+ and z ej j j j j ja h a h M(–) [ – , – ][ + . From
a practical point of view, z j

( )+  and z j
(–) could be chosen

as the midpoint of the (assumed small) intervals in
which they lie.

APPLICATION IN SIGNAL-PLUS-
NOISE AND RELATED CEP PROBLEM

Background
This section returns to Example 1 and presents an

analysis of how the small-sample approach would apply
in practical test and evaluation. In particular, consider
independent scalar observations {x1, x2, . . ., xn}, distrib-
uted xi ~N(m, s2 + Qi), where the Qi are known and
u = (m, s2)T is to be estimated using maximum likeli-
hood. We also consider the CEP estimate derived from
the u estimate. As mentioned in the discussion of
Example 1, when Qi ≠ Qj for at least one i, j (the e ≠ 0
actual case), no closed-form expression (and hence no
computable distribution) is generally available for û .
When Qi = Qj for all i, j (the e = 0 idealized case), the
distribution of û  is known (see Eqs. 18 and 19 in the
next subsection).

This example is directly motivated by the author’s
work in accuracy analysis for naval missile systems. The
parameters m and s2 represent the impact mean (rel-
ative to the target point) and variance along either the
downrange or crossrange direction. (The real imple-
mentation of the small-sample approach pertains to the
simultaneous estimation of the downrange/crossrange
parameters, but we do not present those results here in
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 4 (1997)
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order to better illustrate the fundamental issues without
the encumbrances and additional notation of the mul-
tivariate analysis.) The Qi terms represent the variance
of the measurement error associated with the impact
measurement instrumentation. After obtaining an es-
timate of u (m and s2), we then estimate the missile
CEP in a manner analogous to Spall and Maryak.25 In
particular, if R = R(u) represents the function translat-
ing the impact mean and variance into the CEP radius,
the CEP estimate (MLE) is R̂ = R( û) (i.e., a determin-
istic function of an MLE is also an MLE, as in, e.g.,
Bickel and Doksum,32 p.111). One of the subsections
that follow will elaborate on some of this in the context
of presenting numerical results for CEP estimation.

For this estimation problem, the next subsection
discusses the regularity conditions of the Theorem and
comments on the calculation of the implied constant
c(a, h), and the following two subsections present some
numerical results. This two-parameter estimation prob-
lem is one where the other analytical techniques dis-
cussed in the Introduction (i.e., Edgeworth expansion
and saddlepoint approximation) are impractical be-
cause of the unwieldy calculations required (say, as
related to the cumulant generating function and its
inverse). The parametric bootstrap technique was also
tested, but it performed poorly because of the small-
sample size from which the resampling was performed,
as discussed later.

When using the e = 0 distribution for û  as an ap-
proximation to the actual e ≠ 0 distribution (when jus-
tified by the Theorem), we choose a value of Q corre-
sponding to the “information average” of the
individual’s Qi’s, i.e., Q is such that Q–1 = n–1 Qii

n –1
1=∑ .

(The idea of summing information terms for different
measurements is analogous to the idea in Rao.37) As
mentioned in the discussion of Example 1, deviations
of order e from the common Q are then naturally
expressed in the inverse domain: Qi

–1 = Q–1 + eDi,
where the Di’s are some fixed quantities (discussed lat-
er). Working with information averages has proven
desirable as a way of down-weighting the relative con-
tribution of the larger Qi’s versus what their contribu-
tion would be, say, if Q were a simple mean of the Qi’s.
(From Eq. 15 that follows, we see that the score expres-
sion also down-weights the data associated with larger
Qi .) A further reason to favor the information average
is that the score is naturally parameterized directly in
terms of Qi

–1 through use of the relationship (s2 + Qi)
–1 =

Qi
–1– (1 +s 2 Qi

–1)–1s 2 Qi
–2. Hence, Q–1 represents the

mean of the natural nuisance parameters in the prob-
lem. Finally, we have found numerically that the ide-
alized probabilities computed with the information
average have provided more accurate approximations
to the true probabilities when the Qi’s vary moderately
than, say, idealized probabilities based on an average
equal to the mean Qi . Note, however, that any type of
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average Qi will work when the Qi’s are sufficiently close
since Qi

–1 – Q–1 = O(e) if and only if Qi – Q = O(e)
when Q > 0.

The log-likelihood function, L(u; x, e), for the esti-
mation of u = (m, s2)T is

L x

Q Q xi i i
i

n
( ; , )

– log( ) ( ) ( – )

constant

–

u e

s s m

=

+ + +[ ]
+

=
∑ 2 2 1 2

1
, (14)

where Qi = Qi(e) = (Q–1 + eDi)
–1, from which the score

expression s(u; x,e) = ∂L/∂u is found:
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Since s 2 $ 0, we will consider only those sets of in-
terest (i.e., Va,h = [a1 – h1, a1 + h1] 3 [a2 – h2, a2 + h2])
such that a2 – h2 $ 0. This does not preclude having a
practical estimate ŝ2< 0 come from s(u; x,e) = 0 (in
which case one would typically set ŝ2to 0); however,
in specifying confidence sets, we will only consider
those points in s 2 space that make physical sense.
(Note that if n is reasonably large and/or the {Qi} are
reasonably small relative to s 2, then ŝ2  from
s(u; x,e) = 0 will almost always be positive.)

Theorem Regularity Conditions and Calculation
of Implied Constant

The first step in checking the conditions for the
Theorem is to define the artificial data sequences, {ye,i},
{y0,i}, and associated artificial estimators ûe and û0.
From the definitions in the “Problem Formulation”
section, the two artificial MLEs are

ˆ : ( ; , ) ,u u u ee e= ={ }s y 0 (16)

ˆ ˆ
ˆ
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where y n y ii
n= =∑–

,
1

01 . As required to apply the
Theorem, û0 has a known distribution (the same, of
course, as for the û  of interest from Eq. 15 when
Qi = Qj ; i,j). In particular, m̂0 and ŝ0

2  satisfy
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ˆ ~ [ , ( )/ ] (normal),m m s0
2N Q n+ (18)

n
Q

Q
n

ˆ
~ (chi squared).–
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s
x0

2

2 1
2+

+
− (19)

Spall36 includes a verification of the regularity con-
ditions C.1–C.4 in the Appendix (C.5 is immediate by
the definition of {zi }). We assume that Q > 0; then
Qi > 0 for all e in a neighborhood of 0 (i.e., Qi is well
defined as a variance for all e near 0, including e < 0,
as required by the implicit function theorem in com-
puting D(z), as discussed previously).

Now consider the calculation of the constant c(a, h)
introduced earlier. Although an analytical form is
available for D(z), it may be easier in practice to ap-
proximate max{uDj(z)u: z [ A0} for each j by randomly
sampling D(z) over z [ A0. This yields estimates of M1
and M2 and is the procedure used in computing c(a, h)
in the subsection that follows. The probabilities P(aj –
hj # û0,j # aj + hj) for j = 1, 2 are readily available by
the normal and chi-squared distributions for m̂0  and
ŝ0

2 . Likewise, the density-based values pj( z j
( )± ) are

easily approximated by taking z j
( )± as an intermediate

(we use mid) point of the appropriate interval [aj + hj –
eMj, aj + hj]. This provides all the elements needed for
a practical determination of c(a, h), as illustrated in the
next subsection.

Numerical Results for Signal-Plus-Noise
Problem

This subsection presents results of a numerical study
of the preceding MLE problem. Our goals here are
primarily to compare the accuracy of confidence re-
gions based on the small-sample theory with the actual
(empirically determined) regions. We also briefly ex-
amine the performance of the bootstrap technique and
asymptotic MLE theory. Computations for this subsec-
tion were performed on an IBM mainframe with IMSL
subroutines DRNNOR to generate normal random
variables and DNEQNJ to find the solution of the MLE
score equations. (The high variability in the small-
sample estimates requires that very large Monte Carlo
studies be performed here; these studies were beyond
the capability of the Pentium-based PCs available to
the author.) In this study, we took n = 5 and generated
data according to xi ~ N(0, 1 + Qi) with Qi such that
Qi

–1 = 0.04–1 + eDi, D1 = D2 = D3 = 40, D4 = D5 = –60
(so the average Qi, in an information sense, is 0.04
according to the earlier discussion). As discussed pre-
viously, we estimate u = (m, s 2)T and are interested in
confidence regions for û1 = m̂ and û2 = ŝ2 . For ease of
presentation and interpretation, we will focus largely
on the marginal distributions and confidence regions
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for each of m̂  and ŝ2 ; this also is partly justified by the
fact that m̂  and ŝ2 are approximately independent
(i.e., when either e = 0 or n is large, m̂  and ŝ2 are
independent). We will report results for e = 0.15 and
e = 0.30, which correspond to values of {Q1, Q2, Q3, Q4,
Q5} equal to {0.0323, 0.0323, 0.0323, 0.0625, 0.0625}
and {0.0271, 0.0271, 0.0271, 0.143, 0.143}, respectively.
Results for these two values of e are intended to rep-
resent the performance of the small-sample theory for
a small- and a moderate-sized e.

Before proceeding, let us briefly discuss our experience
with the bootstrap method mentioned in the Introduc-
tion. Since our data are non-i.i.d., we used a parametric
bootstrap approach, as discussed in Sections 2 and 7 in
Efron and Tibshirani.3 Essentially, the bootstrap confi-
dence region is determined by first estimating u from
the given sample of size 5, and then, following Efron
and Tibshirani,3 generating 1000 bootstrap data sets
(also of size 5) from the distributions N( m̂ , ŝ2+ Qi), i
= 1 to 5. These bootstrap data sets are used to produce
1000 new estimates m̂*, ŝ2*, which are then ranked
and sorted to determine quantile points (and the
associated confidence regions). This procedure was re-
peated for 10 original samples of size 5 to produce 10
different bootstrap confidence regions in the e = 0.15
case. (Of course, in practice, only one sample is avail-
able.) These 10 confidence regions varied considerably:
the width of a 95% (marginal) confidence interval for
m̂  varied from 0.39 to 4.91, whereas for ŝ2  it varied
from 0.09 to 16.58 (the true widths are 1.79 and 2.22,
respectively, as considered later). This unacceptable
variation is inherently a result of the small sample size,
and no real improvement was seen with larger (e.g.,
10,000) bootstrap data sets. Hence, we rule out the
bootstrap method from further consideration in this
small-sample setting. These results also suggest that one
should use the bootstrap with extreme caution in other
small-sample test and evaluation settings.

Spall36 shows that for the m portion of u, the small-
sample confidence intervals differ little from the true
intervals or those obtained by asymptotic theory.
Hence, we focus here on the s 2 part of u. Figure 1
depicts three density functions for ŝ2 for each of the
e = 0.15 and e = 0.30 cases: (1) the “true” density based
on the marginal histogram constructed from 2.5 3 106

estimates of u determined from 2.5 3 106 independent
sets of n = 5 measurements (a smoother in the SAS/
GRAPH software system38 was used to smooth out the
small amount of jaggedness in the empirical histogram),
(2) the small-sample density from Eq. 19 (correspond-
ing to the idealized O(e) = 0 case), and (3) the asymp-
totic-based normal density with mean = 1 and variance
given by the appropriate diagonal element of the
inverse Fisher information matrix for û . We see that
with e = 0.15, the true and small-sample densities are
virtually identical throughout the domain while the
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 4 (1997)
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asymptotic-based density is dramatically different. For
e = 0.30, there is some degradation in the match be-
tween the true and idealized small-sample densities, but
the match is still much better than between the true
and asymptotic-based densities. (Of course, it is the
purpose of the O(e) adjustment based on c(a, h) to
compensate for such a discrepancy in confidence interval
calculation, as discussed below.) Note that the true
densities illustrate the frequency with which we can
expect to see a negative variance estimate, which is an
inherent problem due to the small size of the sample
(the asymptotic-based density significantly overstates
this frequency). Because of the relatively poor perfor-
mance of the asymptotic-based approach, we focus here
on comparing confidence regions from only the true
distributions and the small-sample approach.

Figure 2 translates the preceding situation into a
comparison of small-sample confidence regions with
the true regions. Included here are regions based on the
O(e) term of the Theorem when quantified through use
of the constant, c(a, h). The indicated interval
endpoints were chosen based on preserving equal
probability (0.025) in each tail, with the exception of
the conservative e = 0.30 case; here the lower bound
went slightly below 0 using symmetry, so the lower
endpoint was shifted upward to 0 with a corresponding
adjustment made to the upper endpoint to preserve at
least 95% coverage. (Spall36 includes more detail on
how the O(e) = c(a, h)e probability adjustment was
translated into a confidence interval adjustment.) For
e = 0.15, we see that the idealized small-sample bound
is identical to the true bound. (This, of course, is the
most desirable situation since there is then no need to
work with the c(a, h)-based adjustment.) As expected,

Figure 1. Comparison of true, idealized small-sample, and asymp-
totic density functions for ŝ2  when (a) e = 0.15 and (b) e = 0.30.
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the confidence intervals with the conservative c(a, h)-
based adjustments are wider. For e = 0.30, there is some
degradation in the accuracy of coverage for the ideal-
ized small-sample interval, which implies a greater need
to use the conservative interval to ensure the intended
coverage probability for the interval.

The preceding study is fully representative of others
that we have conducted for this estimation framework
(e.g., nominal coverage probabilities of 90% and 99%
and other values of 0 < e # 30). They illustrate that
with relatively small values of e, the idealized confi-
dence intervals are very accurate, but that with larger
values (e.g., e = 0.25 or 0.30), the idealized interval
becomes visibly too short. In these cases, the c(a, h)-
based adjustment to the idealized interval provides a
means for broadening the coverage to encompass the
true confidence interval.

Numerical Results for CEP Problem
We now illustrate how the results in the preceding

subsection translate into confidence intervals for the
weapon system CEP estimate. As mentioned earlier, the
MLE for CEP is R̂ = R( û), where R(·) represents the
nonlinear CEP function relating the impact means and
variances to the radius such that there is a 50% prob-
ability of an impact landing within a circle of this radius
about the target point. The function R(·) is presented,
for example, in Spall and Maryak25 and Shnidman.39

The CEP value for a weapon system is typically the
single most important measure of accuracy for the sys-
tem, and is a critical number in making strategic de-
cisions related to targeting and number of missiles to
fire. Hence, it is important to make accurate statements
about likely maximum and minimum values for the
CEP based on the small number of tests available.

Figure 3 compares the 90% confidence intervals for
R̂ resulting from an application of the small-sample
approach of this article and from the classical asymp-
totic approach discussed in the preceding subsection.
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[c(a,h)-based]
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Figure 2.  True and small-sample 95% confidence intervals for ŝ2

when e = 0.15 and e = 0.30.
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These results are derived from the e = 0.15 case (so the
small-sample confidence interval based on the idealized
case is essentially identical to the true confidence in-
terval). As a reflection of the limited information in
only five test flights, the confidence intervals are rel-
atively wide. However, the figure shows that the inter-
val based on asymptotic theory is over 40% wider than
the (true) small-sample interval. Hence, by more prop-
erly characterizing the distribution of the underlying
parameter estimates, the small-sample approach is able
to extract more information about the CEP quantity of
interest from the limited number of test flights.

SUMMARY AND CONCLUSIONS
Making statistical inference in small samples is a

problem encountered in many applications. Although
techniques such as the bootstrap and saddlepoint ap-
proximation have shown some promise in the small-
sample setting, there remain serious difficulties in ac-
curacy and feasibility for the type of multivariate
M-estimation problems frequently encountered in
practical test and evaluation applications.

For a range of problem settings, the approach de-
scribed here is able to provide accurate information
about the estimate uncertainties. The primary restric-
tion is that an idealized case must be identified (where
the estimate uncertainty is known for the given sample

Small-sample
confidence

interval
(0.4 to 1.6)

Traditional
confidence
interval
(asymptotic
theory)
(0.1 to 1.8)

True (unknown)
CEP (1.2)

Target

Figure 3.  90% confidence intervals on CEP from 5 test flights.
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size) with which the estimate uncertainty for the actual
case is compared. A Theorem was presented that pro-
vides the basis for comparing the actual and idealized
cases. The Theorem provides a bound on the difference
between the cases. Implementations of the approach
were discussed for three distinct well-known settings to
illustrate the range of potential applications. These
were a signal-plus-noise estimation problem (see the
Appendix), a general nonlinear regression setting, and
a problem in time series correlation analysis.

In illustrating the small-sample approach, this arti-
cle focused mainly on a signal-plus-noise problem aris-
ing in a Navy test and evaluation program for missile
accuracy analysis. It was shown that the small-sample
approach yields a significant improvement over the
conventional method based on large-sample theory. In
particular, when translating the results into the CEP
estimate confidence intervals, it was found that the
small-sample approach yielded intervals that were sig-
nificantly tighter and more precise than those resulting
from the previously used large-sample approximations.
This finding represents an increased understanding of
the weapon system performance with no expenditure
for additional tests. Hence, the methodology of this
article is one example of how improved analytical tech-
niques may be able to compensate for reductions in
DoD test and evaluation budgets.

Although the approach here was developed for M-
estimates (largely for purposes of identifying explicit
regularity conditions in terms of the score function),
this restriction is not necessary. In other small-sample
settings, it appears that the ideas would also apply
provided that an idealized case can be identified. Al-
though such extensions are desirable, the analysis here
shows that the approach is broadly applicable to small-
sample problems of practical interest.

APPENDIX: THEOREM REGULARITY
CONDITIONS

Regularity conditions C.1–C.5 for the Theorem are as
follows:
C.1. Let Sj

(±) ; {z: ˆ
,u0 j – aj ± hj = 0} > A0 be a bounded

set ; j = 1, 2, . . . , p (Sj
(±) = [ is valid). Further, if Sj

(±) = [,
suppose that ˆ

,u0 j – aj ± hj is uniformly bounded away from
0 on A0. If Sj

(±) Þ [, then, except in an open neighborhood
of Sj

(±) (i.e., a region such that for some radius > 0, an n-
ball of this radius around any point in Sj

(±) is contained
within this region), we have ˆ

,u0 j – aj ± hj uniformly bound-
ed away from 0 on A0.
C.2. Except on a set of Pz-measure 0, D = D(z) exists on A0.
Further, for each j = 1, 2, . . . , p, Dj Þ 0 on A0 almost surely
(Pz) and P(uDju–1 # ce, A0) = o(e) ; 0 < c < `.
C.3. For each j = 1, 2, . . . , p, when Sj

(±) Þ [, suppose
that there exists an open neighborhood of Sj

(±) (see C.1)
such that d û0/dz and dDj/dz exist continuously in the neigh-
borhood. Further, for each j and sign ±, there exists some
scalar element in z, say zkj(±), such that ; z [ Sj

(±) we have
d ˆ

,u0 j /dzkj(±) Þ 0.
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