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oftware coupling—the interdependence among software components—directly
affects error rate and maintenance costs. Although reuse can reduce errors and cut
initial development expenses, many reuse techniques such as inheritance (in which
components derive behavior from ancestors) increase coupling. In contrast, composi-
tion—the combination of independent (i.e., noncoupled) components into larger
units—promotes reuse without coupling. This article formulates models that show why
coupling should be avoided and how compositional techniques result in higher
reusability. However, the use of composition to the exclusion of inheritance is not
always advisable because the former has associated costs whereas the latter has
important benefits. Therefore, a balance that combines the strengths of both is
preferable. For graphical user interface systems at APL, window classes have proven to
be good candidates for inheritance. Classes for business rules, however, are designed
as composable components that maximize their reusability without compromising
independence.
(Keywords: Inheritance, Software complexity, Software composition, Software cou-
pling, Software reuse.)
INTRODUCTION
Software reuse, i.e., the use of existing software

components to construct new software, is one of the
most promising approaches for boosting software devel-
opment productivity, both within a system and across
systems.1 In most software systems the degree of func-
tional overlap and code redundancy is such that the
application of reuse techniques creates significant
improvements in the software development process
and in the products produced.2–5 For example,

• A NASA software reuse team found that 30% of exist-
ing components were relevant to new projects, and 80%
of those components did not need modification. Their
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reuse program achieved a concomitant decrease in
development cost.6

• Toshiba’s practice of code reuse lowered error rate
from 20 to 3 defects per 1000 lines of code over an 8-
year period.7

• Hughes Aircraft achieved a 37% development cost
savings through reuse.8

• Hewlett-Packard’s organized effort to define and build
reusable software components eliminated the need to
write 10% of code.9

• A French Navy and Army software reuse program
resulted in a 34% reduction of new code develop-
ment, with a 33% drop in error rate.10
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• Raytheon achieved a 50% productivity increase for
software projects selected for reuse.2

Unfortunately, not all reuse programs have been
successful.11,12 Reuse techniques cannot save a poorly
managed project. In fact, reuse itself is a process with
its own organizational and managerial requirements
(e.g., time, effort, knowledge).13–15 To be reused, the
software must fit the requirements specified for the
application to be developed, be designed in a reusable
form, and be locatable by developers.16

A factor that works against reuse is that some en-
vironments are varied and volatile. Reusable software
designed and developed under such conditions often
never has an opportunity to be reused. Frustration
ensues when an organization realizes that its earlier
attempts at reuse were in vain. Those that have been
successful at reuse may have selected a narrowly focused
domain and may have done so during periods of tran-
quillity. In fact, the ability to expend the extra effort
needed to make software reusable may be feasible only
during relatively tranquil times.

Reuse protocols such as object linking and embed-
ding (OLE) and common object request broker archi-
tecture (CORBA) have helped circumvent these dif-
ficulties for information systems. These standards have
made reusable text editors, spell checkers, word proces-
sors, and spread sheets available for many platforms and
environments. For some organizations, this is the only
type of reuse that is cost-effective; the additional ex-
pense of more involved reuse efforts offers no payoff.
However, organizations that invest heavily in custom-
built applications will benefit from the reuse of their
domain-specific software. Therefore, it is worth inves-
tigating the nature of software reuse.

This article focuses on a single aspect of reuse: how
the form of code at its most fundamental structural level
affects software reusability. Although we will deal with
software as a product here, software improvement may
be more readily achieved through studying the process
of software development rather than its product. Fur-
thermore, studying the elemental unit of the product
does not create a complete picture of the finished prod-
uct (e.g., an executable application) because of the
many complexities and dynamics that the delivered
product exhibits over and above those of its elemental
units. Nonetheless, an understanding of the elemental
unit of the product offers insights into the nature of the
application as a whole and the types of process improve-
ments most likely to be effective.

The purpose of this article is twofold: (1) to explain
why certain forms of reuse have detrimental side effects
and (2) to present an approach that enables designers
to realize the benefits of reuse while minimizing disad-
vantages. First, quantitative studies in the software
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engineering literature are reviewed and models of fac-
tors that affect cost and error rate are formulated from
them. Next, the mechanism and advantages of tech-
niques that lower cost and error rate are explained.
Finally, guidelines for achieving a balance of tech-
niques that have conflicting attributes are given, and
an example of a highly reusable component designed
and developed at APL for a specific application is
described.

THE EFFECT OF COUPLING,
COMPLEXITY, AND COHESION
ON ERROR RATE AND COST

Over the past 20 years, software engineers have
discovered a relationship between software cost and
error rate. Figure 1 is a model formulated as a composite
of results from dozens of published studies. Coupling
(references from one software component to another)
is a central item in the model. Although most popular
programming courses and books discuss encapsulation
and decoupling, this article explains the mechanism
behind these concepts by integrating the results of
numerous published studies into a single model. An
understanding of this model can help guide and mo-
tivate more developers to find ways to integrate engi-
neering techniques into their everyday work. In the
following paragraphs, the factors (boxes in Fig. 1) in
the model are defined and their relationships (lines in
Fig. 1) are explained.

Figure 1. Model of software code factors that affect error rate and
cost. Numbered lines represent relationships found in published
studies. The lines, however, do not have arrowheads because the
research findings do not imply causality. Both error rate and cost
are indirectly related to module cohesion and directly related to
module complexity and component coupling. Postrelease errors
are more costly to fix than other errors and are therefore repre-
sented by a box that is more than half the size of the total error rate
box. Since maintenance is costlier than initial development, it too
is represented by a larger box. Component coupling is directly
related to both postrelease errors and maintenance costs.

Maintenance
cost

Component
coupling

Module
complexity

Module
cohesion

Error rate

1

2

3

4

5

6

7

8

Cost

Initial
development

cost

Postrelease
error rate
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 4 (1997)



BALANCING SOFTWARE COMPOSITION AND INHERITANCE
Factors
The associations among the factors in Fig. 1 have

been found to be statistically significant by various
research studies, as will be indicated in the next section
on relationships. The term “module” in our model
means the smallest nameable unit of code (e.g., a func-
tion), not an executable application as it is sometimes
defined. “Component” refers to a structure that is a step
higher in scope than module but still below the appli-
cation level. The metrics associated with software at
the module and component levels are also fundamental
and do not include larger measures such as function
points (a measure of the size of functionality units from
the application customer perspective) or application
development cost-estimating models. Instead, metrics
at the levels discussed here can serve as inputs to these
systemic measures.

Module Cohesion

A module is an elemental, callable unit of code.
Functions and class methods are modules. The con-
cepts of “class” and “object” are used throughout the
article and are defined here.

A class consists of data members and methods that
represent state and behavior, respectively.17,18 An ob-
ject is an instance of a class. A software object is the
abstraction of something that can be expressed as a
noun: a person, place, or thing. It can be a real-world
object modeled in software, such as “employee,” or it
can be a concept, such as a doubly linked list. A
“method” is a function found as part of a class. It
represents a behavioral aspect of the object being ab-
stracted. A string search method is a function that is
a member of class “text,” for example. For this discus-
sion, both traditional classes and Ada packages (a lan-
guage construct in which modules are grouped into a
single named component) are referred to as classes,19

even though Ada packages can be utilized for non–
object-oriented purposes.

“Cohesion,” also known as strength, refers to how
well all parts of a module contribute to the performance
of a single well-defined task. For example, a curve-
fitting module should not directly output a physical
representation of its result because different output
devices describe line segments and curves differently.
Each output function should be a separate method.
Similarly, in information systems, business rule logic
should be distinct from display algorithms. Cohesion is
difficult to define mathematically, and most studies
quantify it by employing ranking techniques performed
by software professionals.20
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Module Complexity

Module complexity can be calculated by using many
approaches, including number and types of operators
and the extent of branching and looping. Although no
approach has a rigorous derivation,21 many studies have
adopted definitions based on branching and looping. A
notable example is McCabe’s22 cyclomatic complexity
metric, which has been found to have significant re-
lationships to error and cost, as will be shown.

Component Coupling

A component is a discrete unit of code that can be
transferred in its object form (e.g., .obj file ) among
environments. Functions, libraries, and classes are
components. Coupling is created by references and
calls from one component to another. This includes
references to global variables and data members of
another class as well as calls to functions or methods
of another class. The more calls and references, the
higher the coupling. However, calls among methods
within a class do not increase coupling because a class
is a component (see the section entitled Calling Tech-
niques). The opposite of coupling is independence.

An important attribute of an independent compo-
nent is “encapsulation.” An encapsulated software
component can be used correctly and effectively solely
through its external definition and declaration, with-
out the need to understand its internal characteristics
or facts about other components. A component’s ex-
tent of encapsulation is one indication of its degree of
independence.

Different terms for coupling are used in the research
literature on software engineering. “Fan-out” indicates
that a functional component fans out to numerous calls
to other components, thereby dividing the labor. “De-
sign complexity” denotes the structure created by calls
among numerous components. “Interface complexity”
can refer to the number of calling parameters in a
module declaration, but the same term can also be used
to mean the number of calls among components.
Therefore, some studies that deal with fan-out, com-
plexity, or both are, in fact, measuring coupling.

Error Rate

Error rate is the average number of defects per (usu-
ally) 1000 lines of code. Whenever studies do not
specify pre- or postrelease errors, total error rate is
assumed. This, again, is represented by the large error
rate box in Fig. 1, which encompasses the postrelease
error rate.
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Many studies focus on errors that are detected only
after release of software. The longer it takes to identify
an error, the costlier it is to fix.23,24 Therefore, initia-
tives to establish methods to avoid postrelease errors
(the larger portion of the error rate factor in Fig. 1)
deserve special attention.

Costs

Initial development cost is the cost to bring an
application to its initial release. Total cost is the sum
of initial development and maintenance expenses.

Maintenance cost, which is based on the ANSI/
IEEE 729 standard definition of maintenance,25,26 in-
cludes postrelease expenses incurred to fix defects,
improve performance, add enhancements, and adapt
code to match changes in the environment. Within
conventional environments, maintenance of existing
systems is the costliest aspect of the development pro-
cess, shifting most resources away from the creation of
new applications.27–30 Thus, in Fig. 1, the maintenance
cost box is larger than the initial development cost box.

Relationships
The model in Fig. 1 is based solely on actual study

results, not on inferences. For example, according to
the standard definition of maintenance cited previous-
ly, postrelease error correction is included in mainte-
nance, thereby creating an implicit relationship be-
tween the two factors. The model, however, does not
link them because the relationship is known by defi-
nition rather than by experimental studies. In contrast,
line 6 (between component coupling and postrelease
error rate) and line 8 (between component coupling
and maintenance cost) are included in the figure be-
cause different studies measured each of these and
found the relationships to be statistically significant.

In summary, the relationships represented in our
model (Fig. 1) are as follows:

1. Initial development cost is indirectly related to mod-
ule cohesion.20

2. Error rate is indirectly related to module cohesion.31

3. Error rate is directly related to module complexity.32–34

4. Maintenance cost is directly related to module
complexity.30

5. Error rate is directly related to component
coupling.31,35–39

6. Postrelease error rate is directly related to component
coupling.24

7. Initial development cost is directly related to compo-
nent coupling.31

8. Maintenance cost is directly related to component
coupling.26,30
488 JOH
Some early studies implicated module size measured
in lines of code as being directly related to error rate
and cost, whereas others found no such relationships.
Subsequent studies were more carefully controlled for
module complexity and cohesion. These studies indi-
cated that size, rather than being related to errors and
cost,30 was merely a covariant of coupling and/or com-
plexity in some environments due to the nature of the
domain or the software coding approach.

Interpretation
The lack of arrowheads in Fig. 1 indicates that the

research findings do not imply causality. For example,
even though maintenance cost is directly related to
component coupling, a decrease in component cou-
pling does not mean a decrease in maintenance cost.
Instead, coupling and complexity may be symptoms or
artifacts of other factors, such as project size, project
complexity, design technique, or programmer experi-
ence. However, the more recent studies cited have
controlled as many of these factors as possible. There-
fore, the published findings, for purposes of this article,
will be interpreted as implying these relationships.
Thus, the model states that if we can increase cohesion,
decrease complexity, and/or decrease coupling, we can
decrease cost and errors.

Managing the simultaneous optimization of cou-
pling, complexity, and cohesion can be too difficult to
put into practice. Fortunately, intrinsic relationships
exist among these factors that simplify the task and
enable formulation of a manageable approach. Increas-
ing cohesion can be accomplished by removing code
that is extraneous to the activity at hand and instead
creating a separate module for it. This very process also
reduces complexity, enabling designers to concentrate
on optimizing either cohesion or complexity, rather
than attempting to control both simultaneously. Cohe-
sion is largely subjective,20 whereas complexity is easy
to measure. Therefore, a practical and effective ap-
proach could be to use intuitive cohesion-strengthen-
ing techniques as a guide for reducing complexity. With
such an approach, cohesion becomes a working crite-
rion for design decisions, whereas complexity is the
attribute that is measured and monitored as an indica-
tor for both complexity and cohesion.40 This narrows
the overall objective to the reduction of complexity
and coupling.

Much effort was spent in the 1970s and 1980s to find
optimal ways to reduce complexity by decomposing
software through partitioning.41–43 A certain level of
success has been achieved with this approach. For
example, a cost-reduction program for a Navy attack
aircraft software system achieved a 10% reduction in
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 4 (1997)
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schedule and cost simply by partitioning software com-
ponents.26 Also, complexity has been used as a feed-
back mechanism for partitioning.24,44 In addition, by
reengineering legacy systems via partitioning, a measur-
able decrease in complexity has been achieved.45

The problem with partitioning is that, within tra-
ditional (i.e., non–object-oriented) environments, as
each module becomes less complex and more cohesive,
coupling increases. For example, a large module can be
divided into two modules, thus distributing the com-
plexity. However, each instance of partitioning neces-
sitates at least one call from one module to another,
which increases coupling. On projects that adopted
partitioning, modules were indeed simplified in the
early developmental phases as expected, but these tech-
niques only deferred complexity to later phases of the
project and, more importantly, caused coupling to in-
crease. Consequently, as deadlines approached, projects
were hopelessly swamped in more complexity than
ever. Excess coupling added to the difficulty of untan-
gling that complexity.

An opposite approach is to concentrate on decreas-
ing coupling. Taken to an extreme, an entire applica-
tion can be contained in a single module, thereby
eliminating coupling completely. The resulting com-
plexity and lack of cohesion are unacceptable, howev-
er. The nature of object classes makes them an espe-
cially effective vehicle for increasing cohesion while
reducing complexity, since algorithms can be decom-
posed into their elemental activities and separated into
individual methods, although the result is still a single
component. Thus, a class is a powerful engineering
structural unit. Ultimately, however, since components
must communicate and interact, we need more com-
prehensive techniques to reduce coupling without in-
creasing complexity.

COUPLING REDUCTION
Table 1 compares various software reuse techniques,

which are divided into three groups on the basis of their
reuse mechanism, i.e., compositional techniques, tech-
niques that achieve reuse through calls from one
module to another, and inheritance techniques. The
techniques are listed in descending order of engineer-
ing rank. Compositional techniques rank high in en-
gineering value. Techniques that enable calls without
coupling rank higher than those that do not. Classes
are notable in that calls within classes do not introduce
coupling. Inheritance, which is not necessarily a trait
of classes,17 is treated separately. Inheritance ranks
lowest in ability to encapsulate. As seen in the table,
a low coupling rank indicates high independence.
Each technique will be described in the following
paragraphs, and the overall reusability of languages
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 4 (1
incorporating them will be compared. First, the ratio-
nale for the ranking is explained.

The ranking of these techniques is derived from the
values of three major characteristics—composition,
decoupling, encapsulation—plus other considerations,
which are given in column [5] of Table 1. Column [1]
indicates whether the techniques represent a compo-
sitional process. The top two techniques (rows [A] and
[B]) are compositional. In column [2], the techniques
are evaluated in terms of decoupling. For this evalua-
tion, calls to built-in modules, classes, or libraries for
a language are not considered coupling, even though
they limit software to that language. (This is a com-
monly accepted limitation, although object files of C
functions and libraries are not restricted because they
are callable from most other languages.) On the basis
of this definition of coupling, the top five techniques
(rows [A–E]) are decoupled.

The ability of a technique to encapsulate is indicat-
ed in column [3], which reveals a major shortcoming
of inheritance, i.e., it is the only technique that pre-
vents encapsulation by its very nature, as will be ex-
plained.17 Within groups of techniques having equal
values for the three major characteristics (composition,
decoupling, encapsulation), ranking is based on factors
presented in column [5] in terms of scope of reuse and
difficulty of reuse. These additional criteria are used to
produce the final ranking order.

Composition
The top two reuse techniques in Table 1 are com-

positional. The mechanism of composition via “generic
formal parameters” (row [A]) is diagrammed in Fig. 2.
The component of interest (in the center of the figure)
achieves independence by not calling any physical
modules or referencing any physical data items. In-
stead, surrogate data types and modules are defined as
generic formal parameters. To utilize the component in
an application, a developer substitutes physical meth-
ods and data types for the generic formal parameters.
This is referred to as an instantiation, which consists
of references, shown in Fig. 2 by arrows, to the inde-
pendent components. Instantiation does not change
the independence of any of the components.

Note that “generic” is used in two different ways
throughout the article. The term “generic formal pa-
rameter” is a technical term that is part of the defini-
tion of the Ada language. When used by itself, the word
takes on its common meaning, namely, relating to a
whole group. Both terms imply independence of soft-
ware components.

Generic formal parameters have many benefits.
First, a developer can mix and match components,
which makes them “composable.” Second, source code
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Table 1. Comparison of reuse techniques.

[1] [2] [3] [4] [5] [6]
Fully decoupled

Reuse technique Composition within Encapsulated Coupling Rationale for Sample
(type) language rank rank order languagea

[A] Generic formal Yes Yes Yes 1 Totally decoupled. Large Ada
parameters scope of reuse within the
(composition) language. Components

must be available as
substitutes for generic
formal parameters, but
can be freely selected
from numerous
components.

[B] Custom user Yes Yes Yes 2 Compositionally combines PowerBuilder
objects classes into larger, more
(composition) functional classes.

Moderate scope of reuse.

[C] Classes No Yes Yes 3 Extremely decoupled, but C++
(calling) reuse is limited to calls

and references made
within the component.

[D] Standard No Yes Yes 4 Reuse without coupling C
classes within language/
(calling) compiler/operating system

domain. Resulting modules
can be highly callable
across languages via
standard interface protocols.

[E] Built-in No Yes Yes 5 Reuse without coupling Fortran
functions within language/
(calling) compiler/operating system

domain.

[F] Reference to No No Yes 6 To use a component, All
global declare and initialize the
(calling) global variable, edit the

code to reference a global
already in the application,
or parameterize the
component.

[G] Call or reference No No Yes 7 Highly coupled. To use, All
to an external include all references.
component (calling)

[H] Inheritance No No No 8 Most tightly coupled. C++
(inheritance) Cannot correctly use a PowerBuilder

descendant object without Ada95
knowing everything about
all its ancestors.

aLanguage that exemplifies use of this technique.
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never needs to be duplicated. For example, code for
date methods resides only in a date class. Similarly, all
code for text manipulation is found in a text class. Any
component that needs date or text algorithms avoids
coding them by defining them as generic formal param-
eters. Third, when changes are needed to a component,
they are made in one place only. All instantiations will
register the changes. A fourth benefit is that when
changes are made to the operational requirements of
an application, existing components are not modified.
Instead, the instantiations are modified and new ones
are added as needed. These benefits explain why gener-
ic formal parameters boost reuse, which was one of the
original visions and motivations for the definition of
Ada.46 The Ada generic formal parameter is a model
for defining highly reusable independent components
through composition.

Components, although independent, must be able
to be combined in order to be usable and useful. This
requires planning and may limit the freedom to mix
and match components in real-world situations. For
example, suppose a component declares generic formal
parameters for various operations on dates, including
the ability to find the next Monday after a given date.
A date class that does not contain this method, even
if preferred for its other features, will not be usable for
the instantiation. Instead, the developer must obtain
the source code for the preferred date component and
add the needed method; settle for some other date
component that has all the needed methods but may
lack certain desired qualities such as fast execution; or

Instantiation

Application

Class Y
Generic class A

Generic function F
Generic function GClass Z Class X

Figure 2. Mechanism of composition via generic formal param-
eters. In Ada, these parameters eliminate the need to call external
modules. In the application, actual modules and types are defined
in the instantiation. Developers compose functional components
by combining simpler components. The arrows indicate that the
instantiation statement creates a new object by combining inde-
pendent classes.
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code a new component from scratch that has all the
desired qualities. Another difficulty is that compilers
and run-time environments for Ada typically produce
applications with unacceptably long response times
when software uses advanced features such as generic
formal parameters. This problem has been remedied in
recent years with the advent of more efficient Ada
systems. However, given the potential for reuse that
generic formal parameters provide, these practical fac-
tors help explain why the much-anticipated reuse
explosion from this technology never occurred.47

Theoretically, however, composition via generic
formal parameters provides the greatest potential for
reuse. Therefore, developers should seek features that
emulate this paradigm in whatever language or envi-
ronment used. Custom user objects (row [B] of Table
1) in the PowerBuilder language approach the compo-
sitional nature of generic formal parameters. They are
formed from standard classes and can themselves be
combined into larger functional classes. But no mech-
anism exists to substitute classes the way generic formal
parameters allow, which results in the need to duplicate
some code to achieve independence. For example, if
two classes must perform a string search, calling a
method from a text class will create coupling. In Ada,
this is avoided by declaring a generic formal parameter
string search. In languages that have no such mecha-
nism, one can avoid coupling only by including the
method physically in each class that needs it. In its
favor, however, PowerBuilder also provides many at-
tributes and methods that are generic across objects,
thereby increasing the ability to achieve independent
classes that can be placed freely into various applica-
tions as needed.

Calling Techniques
Table 1 includes five techniques (rows [C–G]) that

call modules or reference variables. Figure 3 shows
examples of calls that create coupling and calls that do
not. Coupled techniques are denoted by red arrows,
whereas the black arrows are calls that do not increase
coupling. The only black arrows in the figure are those
for intraclass calls and references, because calls among
modules within a class and references to data members
within a class do not introduce coupling. This is a
powerful way in which classes encourage good engi-
neering. In Table 1, the first three of these techniques
(rows [C–E]) are independent, whereas the last two ([F]
and [G]) are coupled, as shown in column [2].

Function libraries also enable noncoupled calls be-
cause the entire library must be transferred to an ap-
plication as a unit. Libraries of classes compound this
benefit even further because calls within classes as well
as calls among classes within the library are not
coupling. However, calls among components within a
1997) 491
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library limit the freedom to mix and match separate
components. Therefore, only classes, not libraries, rep-
resent this technique in the model. This does not imply
that libraries of classes cannot be used, however. Class-
es, whether stand-alone or in a library, that contain
only internal calls and references are equally indepen-
dent. The exclusion of libraries for this discussion refers
only to the idea of considering a library as one large
component, in which calls among different member
components are not considered coupling.

It is important to differentiate between two charac-
teristics of classes. The first is the ability to make calls
internally so that coupling is not increased, as stated
previously. The second is that most languages that sup-
port classes also support inheritance. Many believe that
a language must offer inheritance to be object oriented.
In fact, this is not true.17 Classes and inheritance are
not synonymous, and in this article classes are used to
represent the ability to increase reuse and decrease
complexity without increasing coupling. Inheritance is
treated as a separate technique.

Inheritance: Loss of Encapsulation
With the increased growth of object-oriented pro-

gramming, inheritance has become a popular reuse
technique. The immediate benefits are easy to demon-
strate; e.g., behavior and attributes common to numer-
ous classes can be placed in an ancestor and never need
to be coded again.

However, inheritance has drawbacks that appear only
during later phases of development and mainte-
nance. The major difficulty is that, as shown in Table 1,
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Figure 3. Examples of types of calls and references. Red arrows indicate calls and
references that span components, thereby increasing coupling. Black arrows are calls and
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inheritance nullifies encapsulation
(column [3]). An object that inher-
its from an ancestor requires devel-
opers to understand the entire an-
cestor lineage for that object, a fact
that goes against modern engineer-
ing principles.17 Second, descen-
dants often inherit behavior that is
incorrect for them owing to require-
ments that are unique for different
descendant objects. In such cases,
the code in the ancestor must be
suppressed and subsequently be-
comes useless baggage. In practice,
this occurs often because the mech-
anism of biological taxonomic clas-
sification that serves as the para-
digm for inheritance is not well
suited for software.17 Third, addi-
tions and changes to requirements
make a previous inheritance archi-
tecture obsolete. It is quite labor-
intensive to redesign ancestors to fit

s and forces developers to re-create de-
l, thus adding to the effort. However,
pedient alternative, i.e., creating work-
sults in complex, splintered layers of
rol flow is hard to follow. This makes
e difficult to learn, use, and maintain.
made from inheritance are lost in later
hases and during maintenance.

s the effects of applying decoupled
 (rows [A–E] of Table 1) on complexity
y the sample programming language
n [6] of Table 1. Each language, be-
re of the decoupled reuse techniques
developers as to how much they can
omplexity.
 for using average McCabe cyclomatic
follows. All systems contain modules
cyclomatic complexity because they
trol flows. However, when the com-
odules of a system are averaged, poorly
 have high average complexity values.
n and coding techniques reduces the
reviously complex modules, thereby
rage complexity.

 the most basic language, Fig. 4 charts
ngineering techniques. As techniques
eering value, the optimization point
the region of low coupling and low

e optimization point is the language’s
 with the optimization line and
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represents the point at which a decrease in complexity
does not cause an increase in coupling and vice versa.
The optimization line is created by fitting the optimi-
zation points.) In Fortran, the lack of classes, packages,
and standard libraries creates an increase in complexity
as decomposition occurs. Complexity can be lowered,
but only at the expense of coupling, and vice versa. The
C language adds standard libraries. This creates a bend

Figure 4. Sample language comparison based on the language’s
ability to enable developers to use decomposition techniques
while keeping coupling low without increasing complexity. Cou-
pling rank is taken from Table 1, column [4]. Circles along the
optimization line represent optimization points. Complexity values
(from quantitative studies45  and unpublished measurements taken
by the author) are based on the average McCabe cyclomatic
complexity that is achievable from using the engineering features
of the language. To the left of the optimization points, a decrease
in coupling produced by combining modules (aggregation) causes
an increase in complexity. To the right of those points, a decrease
in complexity via partitioning techniques produces an increase in
coupling.
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in the middle of its line at which point coupling and
complexity do not negatively impact each other (see
the circled optimization points in the figure). C++ adds
classes so that internal calls create a line that is more
conducive to coupling and complexity reduction.
PowerBuilder provides standard classes, calls to which
do not increase coupling, and custom user objects for
compositional design. Ada has generic formal param-
eters, the paradigm of independence and composition.

Although there is no absolute preferred high limit
for module complexity value, empirical studies,34 in-
cluding those for the Aegis Naval Weapon System,48

have concluded that error rate decreases significantly
when the average complexity does not exceed a value
of 10. Figure 4 shows that Ada generic formal param-
eters, with an expected best average complexity value
of 7, readily help developers achieve this limit. Custom
user objects (e.g., PowerBuilder), with a value of 14,
enable software to come close to this ideal.

Table 2 calculates a reusability index (column [4])
based on the lowest average complexity attainable
when capitalizing on the decoupling techniques avail-
able in each language. The index is derived as complex-
ity (column [3]), which is taken from the optimization
point on Fig. 4 for each language, divided by the cou-
pling rank in column [2], which is taken from column
[4] of Table 1. Independent, composable software com-
ponents, such as classes with generic formal parameters
and custom user objects, impart a high reusability (low
index value in column [4], Table 2). The reusability
index quantifies what is shown graphically in Fig. 4,
namely that compositional techniques enable designers
to achieve lower values of complexity and coupling.
Software developed in languages that provide less rig-
orous reuse techniques, on the other hand, can attain
only limited reusability.
Table 2. Reusability index.

[1] [2] [3] [4]
Sample Coupling Average Reusability

Technique language rank complexitya indexb

[A] Generic formal parameters Ada 1 7 7
[B] Custom user objects PowerBuilder 2 14 7
[C] Classes C++ 3 30 10
[D] Standard libraries C 4 50 12.5
[E] Built-in functions Fortran 5 100 20
aAchievable when engineering techniques are fully utilized.
bCoupling/complexity: [4] = [3]/[2].
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Composition (generic formal parameters) and inher-
itance each have advantages and drawbacks (Table 3).
The choice of technique depends on such factors as
time allotted for development (row [D]), expertise
available (row [E]), the expected life span of the ap-
plication, and how actively it will be maintained (row
[F]). Generic formal parameters and user objects, being
compositional reuse techniques, share the following
advantages: they result in independent, composable
components; the resulting components are encapsulat-
ed; and, based on the model, they have the potential
to lower maintenance costs. Whether maintenance
costs actually will be lower depends on the volatility
of the environment and the nature of the changes. On
the whole, however, there is a greater probability that
a system can be adapted in response to changing re-
quirements without rewriting existing parts. Inherit-
ance does not exhibit these advantages. However, the
disadvantages of compositional techniques are that
they require greater expertise and take longer to devel-
op. Although custom user objects may not eliminate
duplication of code, generic formal parameters do. In-
heritance also eliminates duplication of code, shortens
development time, and demands less expertise; it does
not, however, encapsulate software, and higher main-
tenance costs can be expected.

How should designers decide between composition
and inheritance? No code duplication requirement
(Table 3, row [C]), shorter development time (row [D]),
and lower expertise requirement (row [E]) make inher-
itance an efficient approach for small applications. On
the other hand, large projects whose software is expect-
ed to have an extended shelf life will benefit from
compositional techniques owing to lower error rate and
maintenance costs (row [F]). However, even for large
applications, the benefits of inheritance should not be
ignored. Creating an overall inheritance architecture
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provide a rea
to capitalize 

APL has 
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framework i
correct inher
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Table 3. Comparison of major design techniques.

Generic
formal User

Reuse technique trait parameters objects Inheritance

[A] Composable Yes Yes No
[B] Encapsulated Yes Yes No
[C] Code duplication requirement No Yes No
[D] Shorter development time No No Yes
[E] Lower expertise requirement No No Yes
[F] Lower maintenance cost Yes Yes No
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 compositional components are used can
l-world compromise that enables designers
on the advantages of both techniques.17

adopted this balanced approach for some
hierarchy of ancestor windows forms a
n which basic attributes are set at the
itance level. However, algorithms are not
n ancestors. Instead, most software is pro-
ependent composable classes. These com-
 be placed on any of the windows in the
 task of switching from one inheritance
 another, if needed because of changing
, is somewhat eased since the independent
can be placed within any inheritance

DENT, REUSABLE
ENTS AT APL
puter Applications Group in the Business

ion Services Department modified legacy
to a client server architecture in an effort
ware off the mainframe a few years ago.
ed as an opportunity to select a language

 compositional techniques. For graphical
e (GUI) applications, the PowerBuilder
 environment provides numerous standard
includes the ability to compose classes into
nal components via custom user objects,
 many attributes and methods that are
s classes to maximize independence.
, the PowerBuilder product supported
evelopment only for Microsoft Windows
s, although Macintosh and Solaris ver-
w available. However, users with non-
tforms at APL are supported by the orig-
ions, which are accessed through a server
s emulation. Classes developed with cus-
ects can be used in the C++ environment

via the Optima++ product released by
Sybase, extending even further their
reusability.

The specific class developed at APL
using composition, although highly
specialized and technical in nature,
provides a concrete example of the real-
world application of the various design
principles explained in this article.

Compositional Design Example:
Reusable Class for the Automatic
Saving of History Rows

One reusable component developed
at APL is a class that automatically
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saves history rows when data are modified or rows are
deleted. This class functions with any database man-
agement system. During the following discussion, ref-
erences to SQL (the commonly used relational data-
base language) and procedural language statements are
included to illustrate how the language features are
applied to boost composition and independence.

A history row is a row in an SQL table as it existed
in the past. In a system that saves history rows, when
a commit  (the statement that saves changes to data-
base tables) is issued, a modified row is inserted as a new
row, and the original row is left intact. Similarly, a row
that a user deletes is not physically deleted from the
system, but instead is marked as deleted. Ordinary
systems keep only the current state of data, whereas a
system that saves history rows is two-dimensional in
that it stores data over time.

Many benefits are realized from keeping history
rows. They provide a running record of “who did what
when.” This lowers the risk of decentralizing data
maintenance because inadvertent data modifications
and deletions can be corrected by restoring an earlier
row. Also, reports can be generated as they would have
appeared at previous points in time, and an entire
database or portion of it can be restored to a previous
state.

Few systems today save history rows because of in-
creased disk space requirements, algorithm complexity,
lengthened response time, etc. The component de-
signed at APL is a reusable generic class that alleviates
the algorithm complexity problem since it can readily
be integrated into many systems without any additional
developmental effort. It also reduces the additional disk
storage space needed by eliminating duplication of
stored data and minimizes response time for critical
repetitive operations that users perform in real time.
The solution presented here can be used not only as
part of the design of new databases but can also be
applied to existing tables by appending history col-
umns. The following material is simplified to focus on
the essential concepts. The actual implementation has
many other features.

Throughout this discussion, history columns for the
row creation time stamp and for the identification (id )
of the operator who created the row are named
last_update_date  and last_update_id , re-
spectively. In addition, db_operation_ind  is an
indicator column that allows the rows to be marked as
deleted by setting its value to the letter ‘D’. The column
names and deletion code value are declared in the
instantiation of the object by initializing instance
variables, and can therefore be used within any orga-
nization’s naming convention without modification.

In an ordinary system, the primary key, referred to
here as the functional primary key, is defined solely by
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requirements (e.g., the primary key for table customer
is customer_id ), and only one row exists for each
unique primary key value. In a system that stores his-
tory rows, however, there can be many physical rows
for each logical row. The current row is the latest
physical row. Whereas a logical row is unique by func-
tional primary key, physical rows are unique by a com-
pound key formed by the functional primary key plus
the time stamp. A deleted row has no current row,
although there are at least two physical rows: the row
itself and a more recently created row that indicates the
time of deletion.

One design alternative is to define two additional
columns—deleted_date and deleted_id —
instead of db_operation_ind . Then the delete
operation can be recorded in the row itself, without the
need for a second row. However, more disk space will
be used because most rows never get deleted, yet space
is set aside on each row for an extra time stamp and
id . As the number of rows increases, increasing
amounts of disk space are wasted. So although this
design alternative is ostensibly simpler, it was not
selected.

Three table designs are available for storing history
rows: single, column-duplicated, and row-duplicated
tables. Each alternative is explained in terms of its
characteristics, strengths, and weaknesses in the follow-
ing paragraphs. A design is selected, and the implemen-
tation of a class that provides history row saving for that
design, especially in terms of its generic and composi-
tional character, is then explained.

Single-Table Design

In a single-table design, current rows and history
rows reside in one table. This alternative can be im-
plemented with just four steps: (1) The update method
of the datawindow object (i.e., a class that serves as a
graphical representation of an SQL statement) is set to
Use Update ( not Use Delete then Insert) .
(2) The itemchanged  event (the system event that
is triggered when the data value changes) of the data-
window control (a class that resides on a window and has
a datawindow object as an attribute) must contain the
following line of code so that a modified row is inserted
and the previous row is kept as a history row, rather
than being overwritten: setItemStatus(getRow(),
0, primary!, newModified!) . (3) setRow()
(a method that sets the row as selected) is called in the
clicked event (the system event that is triggered when
the left mouse button is clicked while the cursor is
over the datawindow object) so that the getRow() in
setItem-Status() detects the correct row as se-
lected. With these three steps in place, when the
update()  method is called to update the database
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table, modified rows are inserted, leaving the original
row untouched. (4) The db_operation_ind  is set
to the letter ‘D’ in the delete()  method.

The single-table design offers several benefits. For
example, the implementation does not reference any
columns unique to the table. Therefore, it can be
written once and placed as a user object datawindow,
which is a composable class. Also, no rows or columns
are duplicated, thereby minimizing disk requirements.
This, then, is one way of avoiding inheritance and
coupling while increasing reuse. Such an increase is
accomplished through designing the class as generic so
it can be placed on any window, rather than in an
ancestor where it must reference physical attributes and
methods of a specific window class.

This design has numerous drawbacks, however. The
foreign keys (columns in a data table that refer back
to another table’s primary key) cannot be defined
because the time stamp is part of the primary key. Also,
retrieval of current rows is the slowest of the three
design alternatives because it requires a nested select
(a select within another select statement) with an
aggregate function (a function that accumulates rows)
to find the latest row for all logical rows:

select * from table_a t1
where (db_operation_ind <> ‘D’
and id||last_update_date =
  (select max

(t2.id||t2.last_update_date)
from table_a t2

where t1.id =
t2.id group by t2.id))

order by t1.id asc

Response time to retrieve current rows can be sig-
nificantly shortened by including Boolean indicator
column latest_ind . The statement to find all
latest rows then simplifies to

select * from table_a
where latest_ind = ‘Y’
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order by id asc
The table design that includes this column is shown
in Table 4. In all database table design figures, the
names of primary key columns are underlined. Columns
id  and data  are example data columns, and all
other columns are history columns. Adding column
latest_ind  improves performance for selecting the
latest rows for each id  by avoiding the use of an ag-
gregate function in the SQL select.

Examples of an unmodified row, a modified row, and
a deleted row are exhibited in Tables 4–7. Even with
the benefit of latest_ind , however, response time
is still not optimal because of the extra where
clause, which must extract current rows from a table
crowded with history rows. More importantly, once
latest_ind  is added to the table, the generic four-
step solution stated previously no longer works because
code must be written to set the latest_ind  of the
old row to ‘Y’ without creating a new row in the pro-
cess. Thus, algorithm development, coding, and testing
become factors for the developmental effort, making it
advantageous to evaluate other design alternatives that
may overcome these problems.

Column-Duplicated Table Design

The column-duplicated and row-duplicated table
design alternatives have a separate history table for
each table with current data, allowing faster retrieval
of current rows. In the column-duplicated table design,
history columns are duplicated in the current data
table. But the current data table contains only current
rows, and the history table contains only history rows
(Table 5). Therefore, no rows are duplicated.

This design uses even less disk space than the single-
table design because there is no latest_ind  col-
umn. The column db_operation_ind  is not need-
ed for current rows. It can, however, be included in the
current data table to make the code generic for data
transfer between current and history tables for archive
and restore utilities that are common to most informa-
tion systems. The history row custom user object, as
implemented, functions whether the current table has
the extra column or not. Since retrieval of current rows
Table 4. Database table design for storing current and history rows in a single table.

id last update date data last_update_id db_operation_ind latest_ind

1 10/01/95 10:00 A 00102331
1 10/15/95 09:00 A1 00100227 Y

2 09/03/95 11:15 B 00102200
2 10/05/95 13:00 B 00100345 D Y

3 09/09/95 09:09 C 00100123 Y
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Table 5. Database table layout for column-duplicated design for saving history rows.

id last update date data last_update_id db_operation_ind

1 10/01/95 10:00 A 00100001
2 09/03/95 11:15 B 00100200
2 10/05/95 13:00 B 00110345 D

Table 6. Current table layout
for row-duplicated design.

id data

1 A1
3 C

Table 7. History table layout for row-duplicated design.

id last update date data last_update_id db_operation_ind

1 10/01/95 10:00 A 00100011
1 10/15/95 09:00 A1 10011007
2 09/03/95 11:15 B 00110200
2 10/05/95 13:00 B 00110345 D

3 09/09/95 09:09 C 00120123
is faster than in the single-table design, designers are
free to define foreign keys for current data tables.
Although every table has columns that are unique
to it, methods such as describe() and column at-
tributes such as dwo.name  enable coding of generic
algorithms. An added benefit of the column-duplicated
design is that history column information can be
displayed without the overhead of an SQL select be-
cause it is part of the current data table.

Row-Duplicated Table Design

A row-duplicated table design duplicates the current
row in the history table so that the current data table
(Table 6) does not have to store the extra history
columns (Table 7). This may further speed retrieval of
current rows. However, in tables with many current
rows, the extra space used by duplicating current rows
in the history table may create an unacceptable disk
resource constraint. As in the column-duplicated table
design, the algorithm to save history rows can be made
generic.
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The column-duplicated table design was selected for
implementation because it is generic across data tables
and does not require extra disk storage space. Table 8
compares the strengths and weaknesses of these three
table design alternatives and shows that the column-
duplicated table design has the most advantages and
fewest disadvantages.

Implementation
The algorithm to save history rows for the column-

duplicated table design is implemented as a method of
a custom user object that contains a datawindow con-
trol for current rows and a datastore (a datawindow that
has no display attributes, and therefore functions as an
SQL-intelligent data array) for history rows. Data
members are declared as protected; therefore, access
methods are provided. As implemented, numerous
methods are included for ancillary functionality such
as support for different row selection modes. The his-
tory row capability consists of a single public method,
save() , and a private method for transfer of data that
is called in multiple places between tables.
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Table 8. Comparison of alternative database table designs for storing history rows.

Design alternative Strengths Weaknesses

Single-data table Less disk space than row-duplicated; Slow retrieval of
generic implementation; fast current rows
retrieval of row statistics

Column-duplicated Minimum disk space required; fast Union creates slow
table retrieval of current rows; generic retrieval of current

implementation; fast retrieval of row plus history
row statistics rows

Row-duplicated table Faster retrieval of current rows; More disk space
generic implementation required
With the latest version of the language, the history
row portion of the class can be implemented as a sep-
arate service class. This more closely matches the in-
stantiation technique of Ada because it can be com-
bined with any datawindow class rather than being
coded as part of a specific physical class.

The essential logic for the save() method is to
loop through modified rows. For each modified row, a
row is inserted into the history table datastore. The
column values are set to the values in the original buffer
of the current table datawindow (the more generic
rowsCopy()  cannot be used because it cannot access
original buffers). Then, to service row deletions, the
algorithm loops through the delete buffer, and, for each
deleted row, inserts two rows into the history table
datastore, one for the current row itself and one
as a copy of the current row including the current
time stamp and user. This latter copy also sets
db_operation_ind  to ‘D’. In contrast to the insert
operation, rowsCopy() can be used to simplify the
insertion of the second copy of the deleted row.

A few rules must be followed to integrate this class
into an application. First, the names of parallel fields
in the current data datawindow object and history data-
window object must be identical (the table column
names can differ because they can be renamed in
datawindow objects). Second, the system traces the
history of a row via its functional primary key. There-
fore, once a functional primary key value is saved, the
system must prevent the user from changing the prima-
ry key. Otherwise, the old row will be orphaned in the
history table with no entry in the current data table.
This preventive measure can be accomplished gener-
ically with the following statement in the protected
attribute of the primary key fields in the current data
datawindow: if(isRowNew(),0,1) . This statement
prevents the primary key from being modified in ex-
isting rows. Adhering to these two guidelines ensures
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that the generic nature of the class is available for any
data table.

Results
The model created by Figs. 1 and 4 and Table 2

predicts that applications built from independent,
composable components should yield high cohesion,
low complexity, high reusability, fewer errors, and low-
er maintenance cost than normally experienced when
not using such components. The average module com-
plexity for custom user objects developed at APL is 10,
a value that is within the preferred guidelines.48 Al-
though it took more time, effort, and knowledge to
develop these reusable components, they have already
shown cost benefit. For example, no postrelease errors
have been reported over the 2-year history of these
components. One component that provides security
based on organizational structure was especially note-
worthy because a system-wide change request required
a change in the rules of security. Code modifications
in response to the request were made in only a single
custom user object that is found in all eight windows
affected by the requirements change. This requested
change was made months after the release of the ap-
plication and ran contrary to the original objectives.
Our experience at APL underscores the notion that
designing for reuse is often beneficial, even if software
is not expected to be modified or reused. Making reuse
design techniques a standard part of developmental
methodology has long-term payoffs.

CONCLUSION
Dramatic gains in software development productivity

will be achieved when independent, composable soft-
ware units are readily available and usable across differ-
ent environments. The Ada generic formal parameter
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is a model for defining highly reusable independent
components through composition.

Modern programming languages have features that
enable developers to perform or emulate compositional
techniques. Understanding the nature and advantages
of composable software facilitates successful identifica-
tion and effective utilization of those features in a
language that promotes composition. Some reusable
components developed at APL are created using a
language feature known as custom user objects, which
have many of the features of generic formal parameters.
They were available originally only within a propri-
etary environment but are now available to C++ de-
velopers via the Optima++ product by Sybase. Al-
though Optima++ can only be used for Microsoft
Windows platforms, it may be extended to UNIX plat-
forms in the future.

Custom user objects are composed of existing inde-
pendent classes that are standard within the develop-
ment environment. Coupling is avoided as long as
there are no references to global variables or external
modules. Cohesion and low complexity are attained
through the use of object orientation. Methods are a
natural way to decompose functionality, and classes
serve to organize them in a formal and convenient
manner.

Successful reuse begins at the fundamental level,
namely, designing software building blocks to be reus-
able. This requires greater time and effort but offers
long-term benefits. Often, in the early stages of a
project, designers and developers are not aware of
opportunities or the need for independence or reuse.
In such cases, it is tempting to take a quick, nonreus-
able approach to software development. However, the
advantages of components being independent, com-
posable, and reusable often become evident at a later
date. Organizations that build and maintain multiple
large software systems need to view software as an asset
to be managed for long-term gain. By making “design
for reuse” the rule rather than the exception, benefits
will accrue. Independent, composable components,
both those developed in-house and those commercial-
ly available, provide the greatest path to reuse.
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