MILTON 5. EISENHOWER
RESEARCH AND TECHNOLOGY
DEVELOPMENT CENTER

Improving Software Performance with Automatic

Memoization

[Marty Hall ind|J. Paul McNamee|

utomatic memoization transforms existing procedures in a computer program
into versions that “remember” previous computations and thus avoid recalculating the
same results or those similar to ones computed previously. The technique works without
requiring the programmer to make changes to the existing source code, thus providing a
simple and transparent method of dramatically accelerating the execution of certain types
of functions. This article discusses the development of a practical automatic memoization
library, how it can be applied, technical obstacles encountered during development,
and experiences using it to significantly improve the performance of two large systems
in the Submarine Technology Department of the Applied Physics Laboratory.
(Keywords: Computer science, Dynamic programming, Memoization, Optimization.)

INTRODUCTION

Software performance is a critical issue in most
computer systems, particularly in the large complex
systems necessitated by Department of Defense require-
ments. This issue has remained a crucial one, even as
computer hardware speeds have increased, as a result
of increased demand for fidelity in simulations, stricter
accuracy requirements, application to more complex
problems, and an ever-increasing expectation for new
features. However, many optimizations that increase
execution speed do so by making the software larger,
more complicated, and harder to maintain. Automatic
memoization is a technique that can greatly improve
the efficiency of several types of software routines while
keeping the code simple and easy to maintain.

What Is Automatic Memoization?

Many functions perform redundant calculations.
Within a single function invocation, several sub-
functions may be invoked with exactly the same argu-
ments, or, over time in a system run, a function may
be invoked by different users or routines with the same
or similar inputs. This observation leads to the conclu-
sion that in some cases it is beneficial to store the
previously computed values and only perform a calcu-
lation in situations that have not been seen previously.
This technique is called “memoization.” The manual
version of the technique generally involves building
lookup tables and is a standard technique in dynamic

254 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)

programming. This process, however, is often tedious
and time-consuming, and it requires significant mod-
ification and debugging of existing code. An “automat-
ic” memoization facility is one in which existing func-
tions can be programmatically changed to cache
previously seen results in a table. These results will then
be returned when the functions are invoked with argu-
ments seen previously. This procedure can be done
without manually changing the source code, thus pro-
viding a simple, modular, and transparent way to dra-
matically accelerate certain types of functions.
Although the idea of automatic memoization is not
new, it has not been taken seriously as a practical soft-
ware engineering tool intended for widespread use by
programmers in industry. However, experience with a
prototype facility has shown that automatic memoiza-
tion is even more widely applicable than previously
thought. It must be stressed that with software devel-
opment in industry, ease of use is a paramount consid-
eration. In virtually all software development programs,
there is a trade-off between productivity (development
speed and software maintenance costs) and program
efficiency (execution speed). Providing a method to get
a large percentage of the efficiency gains with a small
fraction of the effort can be a tremendous advantage.
This is the role that automatic memoization fills.

An Example

Consider the following naive recursive version of Fib ,
a function to calculate the Nth Fibonacci number given
N, using the definition that the first two Fibonacci
numbers are 1 and any other is the sum of the previous two:

int Fib(int N) {
if(N < 3)
return(l);
else
return(Fib(N-1)+Fib(N-2));

This version is inefficient, since the second recursive
call to Fib repeats a calculation performed by the first
recursive call. In fact, the time required to compute
Fib (N) by this method grows exponentially with N.
However, by adding a single keyword, the programmer
can tell the automatic memoization system to convert
the code into a memoizing version that operates in time
proportional to N for the first calculation and in con-
stant time if the same or a lower value is computed
subsequently. This constant-time performance is
achieved by implementing the lookup table using
“hashing,” a technique whereby the time required to
retrieve an entry from a table is independent of the size
of the table. This capability is illustrated in Fig. 1,
which shows the number of operations required for the

memoized and unmemoized versions. Now, memoiza-
tion is not required for such a trivial application as
calculating Fibonacci numbers, as an iterative version
or a smarter recursive version can get the same results
as the first invocation of the memoized version. How-
ever, the point is that repetition can cause a dramatic
increase in execution time, and many problems do not
have such readily accessible alternatives.

APPLICATIONS

Automatic memoization has been applied in three
main ways: to prevent recursive repetition within a
function call, to prevent repetition over time, and to
make persistent lookup tables.

Repetition within a Function Call

The Fibonacci example illustrated the use of
memoization to eliminate repetition within a function
call. The Fib implementation is typical of a large class
of algorithms that have elegant recursive definitions
that are simply unusable for most real problems because
of repetition. The conventional response to this situ-
ation is to manually rewrite the algorithm in a dynamic
programming style.! Because such manual rewriting is
typically very difficult and time-consuming, and in-
volves the risk of introducing new bugs, it is frequently
inappropriate in the dynamic, rapid-prototyping con-
text of complex software development. An attractive
alternative is to use an automatic memoization package

50— H
Unmemoized
@ 40+ B
=]
o
L
1]
c
2
T 30r -
[}
Q.
o
o
il
=
;:3 20 Memoized: First invocation m

Memoized: Subsequent invocation

10+

Figure 1. Number of additions required to compute Fib(N)
the naive recursive implementation.

using

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997) 255

M. HALL AND J. P. Mc(NAMEE

to convert the elegant but inefficient algorithm into a
computationally tractable one. For example, a simple
recursive parser for context-free grammars may parse
the same part of speech many times, resulting in exe-
cution time that is an exponential factor of the length
of the input. Norvig’ has shown that through the
application of memoization, such an algorithm can
obtain the same polynomial performance as the best-
known context-free grammar parsing methods (chart
parsing’ or Earley’s algorithm?). Given the intricacy of
those methods, it is unlikely that a typical software
developer would reinvent them, whereas a simple re-
cursive parser is relatively obvious to developers even
without experience in formal languages or parsing.

Thus, memoization can be viewed as an automatic
dynamic programming tool. Rather than the difficult
and time-consuming process of determining the correct
order in which to construct the subpieces in a bottom-
up manner, the simple, top-down algorithm can be
memoized to achieve the same performance.! This is
the typical application of memoization in the literature.
This alternative is attractive, of course, only if the
memoization package can address the practical problems
faced in real applications.

Repetition Over Time

In a team programming environment, different sec-
tions of the system, written by different programmers,

Figure 2. Signature Management System detectability planning screen. The probability of
detection (Py) for the next 24 h is shown for the composite signature at a depth of 300 ft.

may access the same function. Alternatively, in an in-
teractive system, the user may invoke calculations at
different times that make use of some of the same pieces.
In these cases, there is no central routine that could
manage the calling sequence, and it is common to have
the routine in question manage its own global data struc-
ture to remember previous results. Memoization provides
an efficient, convenient, and reliable alternative.

For instance, Fig. 2 shows a tactical decision aid for
planning submarine operations in the Defense Ad-
vanced Research Projects Agency (DARPA) Signature
Management System’ developed by APLs Submarine
Technology Department. It shows the predicted overall
probability of detection of a submarine for various
choices of heading and speed, drawn on a polar plot
with the angle 0 indicating heading (O corresponding
to due north), and the radius r corresponding to speed.
Each (r,60) pair (arc) in the display is coded with a color
indicating the cumulative probability of detection for
the submarine if it were to operate at that course and
speed. This display is used as a high-level tool in
mission planning and thus presents highly summarized
information. Each point represents a single number for
probability of detection, which is a composite of all the
potential detection methods (signatures). The user fre-
quently is interested in the contribution of individual
signature components to this composite. Since the
probability of detection of each component is memoized
before it is combined into the composite, any component
contributing to a composite point
on the display can be retrieved al-
most instantly. Taking advantage of
this caching, we developed the dis-
play of|Fig. 3|with very little addi-
tional bookkeeping.

Whenever the user moves the
computer mouse over the compos-
ite detectability display (Fig. 2),
the corresponding speed and
course for the point under the
mouse is calculated. The individ-
ual components are then calculat-
ed by simply using the original
functions, with their relative val-
ues shown in the bar charts. As a
result of the effects of memoiza-
tion, the component values can be
calculated and graphed as quickly
as the user can move the mouse.

This example illustrates the
ease of use that automatic
memoization provides. A real-life
requirement that was expected to
require a lengthy development
process turned out to be trivial to
implement and test.

256 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)

Figure 3. Individual signature components. Relative signature
strengths are shown. Depth = 300 ft, heading = 100°.

Precomputation: Persistent Memo Tables

The preceding subsections show that memoization
can eliminate the repeated invocation of expensive
calculations. Memoization is also useful even when the
first invocation of a function is too expensive to per-
form at run time. Memoization provides an alternative
to handcrafting a lookup table of results and determin-
ing on paper the range of values that must be stored.
Instead, the function is memoized interactively and run
off-line on the cases of interest. The contents of the
automatically generated (hash) table are then automat-
ically saved to disk and later used to seed the hash table
for the function when it is reloaded.

In this situation, the ease of use of memoization
particularly pays off. If the situation were permanent,
it might be feasible to build conventional lookup tables.
However, for temporary conditions (e.g., running mul-
tiple simulations in the same environment), it would
likely not be worth the effort to build the tables.
Furthermore, unlike a handcrafted lookup table, unex-
pected inputs will still result in correct results since
values not found in the table will still be calculated by
the original function. This approach was used exten-
sively on the DARPA Signature Management System
and was found to be highly effective.

TECHNICAL OBSTACLES

When an automatic memoization library intended
for general-purpose application is being implemented,
several technical impediments need to be overcome.
Most of these issues were identified from our experience
with applying the Lisp-based library on Submarine
Technology Department programs.

Overly Strict Matching on the Input Argument

In the Signature Management System, the argu-
ments to a function differed in many cases but not by

AUTOMATIC MEMOIZATION

enough to result in significant changes in the output
value, where “significant” was defined in the particular
context in which the function was being used. Such
differences were particularly common when floating
point numbers were used as input. For instance, calcu-
lating the position of a submarine by two different
methods might result in latitude and longitude values
that differ in the tenth decimal place even though these
differences are insignificant in the models being used.

The standard solution® has been to allow the user to
define a “match” predicate that is used at lookup time
to compare the current input argument to each of the
stored parameters until a match is found. However,
using the standard solution means that the entire cache
might have to be searched each time, greatly limiting
the effectiveness of memoization as an optimization
technique. Rather than trying to do this type of match
at lookup time, our approach has been to try to stan-
dardize the values at the time of the original call and
then perform an exact match at lookup time. This
approach has the benefit of allowing a wide range of
user-defined matches but still supporting a fast and easy
hash table lookup when checking the cache for matches.

Limiting the Size of the Cache

One of the problems with the current automatic
memoization package is its all-or-nothing approach.
Either all calculations are stored or none is stored. This
is widely viewed as one of the major problems of
memoization,” but the only solution offered in the
literature (using an ordered list of cache values instead
of a hash table®) requires one to dramatically increase
the time required to access the cache on average since
access time is now proportional to the number of entries
in the table. Furthermore, the solution of Michie® and
Popplestone’ is to use a cache ordered by recency of
access. Instead, we developed an approach whereby
excessive entries were eliminated on the basis of frequen-
cy of use, and an algorithm was designed that supported
this in time independent of the size of the table.

Cache Consistency

Most of the literature on memoization discusses its
use in a purely functional environment where side
effects are not possible and, thus, memoization is guar-
anteed safe. Even in such an environment, however,
once caches become persistent, problems could arise as
code evolves over time. The cache could be flushed if
a memoized function’s definition changed. But what if
some function that was called (perhaps indirectly)
changed? The stored table might now contain invalid
data. Furthermore, few real-life programs are produced
in purely functional environments, and one of the fore-
most goals of the proposed effort is to produce techniques
and tools that are useful to real-world developers.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997) 257

M. HALL AND J. P. Mc(NAMEE

Determining if a given function is free of side effects
is a provably undecidable problem, and recent heuristic
attempts at automatically determining which functions
are appropriate for memoization have proved unfruit-
ful.!® We instead propose an interactive determination
assisted by the memoization system. Rather than always
returning the cached value, if it has one, at the user’s
request, the system can recompute a certain percentage
of cases and compare the newly computed value with
the cached one, warning the user if differences exist.
Similarly, when loading a saved memoization table
from disk, the user can specify that a certain percentage
of the entries will be recalculated at load time or that,
at run time, a cache retrieval has a certain probability
of being recalculated. This recalculation not only alerts
the user to improperly memoized procedures but also
helps to maintain the integrity of the cache as the
system evolves over time.

Implementation in Conventional Languages

The Lisp automated memoization library relies upon
several high-level features of the language, including
built-in support for hash coding and functions that can
be created and modified at run time. C++ lacks these
features, and although hashing can be implemented,
there is no way to create functions at run time.!' As
a result, our approach to automatic memoization in
C++ has been to use a source code to source code
translation system. Furthermore, storing arguments in
a type-independent manner to be used in hashing is
difficult for C++ classes with complex copy constructors,
for structures whose fields get “padded” in an implemen-
tation-specific manner, and for variable-length arrays.

Despite these difficulties, C++ is widely used, and
automated support for memoization in C++ would
benefit many existing programs. Work is currently
under way to address these problems, and an early
prototype (see the following section) has been effective
in an ongoing DARPA program. We hope to apply the
C++ library to additional APL programs soon.

CASE STUDIES

Case Study 1: Determining Magnetic
Detectability of Submarines

Table 1 gives timing statistics for the Signature
Management System Magnetic Anomaly Detection
module, timed after various uses of memoization were
put into effect. Memoization provided a 24-fold in-
crease in speed, even before persistent tables were used.
Benchmarks can be misleading, however, and in many
places the code would have been written differently if
the automatic memoization package had not been

Table 1. Timing of the Magnetic Anomaly Detection
module of the Signature Management System.
Use of Relative speedup
memoization Time (s) (cumulative)
Original 48 1.0
Conventional
optimization added 36 1.3
Repetition over time
prevented 24 2.0
Repetition within a
function call prevented 2 24.0
Persistent tables added 0.001 48,000.0

available. Nevertheless, the results are illuminating,
especially since they represent improvements over the
original, baseline system.

Case Study 2: Detectability Planning Display

Given the diverse uses of our memoization library
by various programmers on the Signature Management
System program, an attempt was made to estimate its
overall contribution to the system. To do this, the
default display (shown in Fig. 2) was run both in the
default mode and then with all memoization turned off.
The timing results, which represent the final high-level
computations of the system, are shown in

Speed improved by a factor of 631, and the amount
of temporary memory (garbage) allocated improved by
a factor of 4822. Although other approaches would
undoubtedly have been attempted if memoization had
not been available, this result is illustrative for two
reasons. First, it assesses the overall contribution of
automatic memoization to the entire system. The system
was built by multiple programmers from four companies
over the course of several years, and the programmers
were free to choose whatever techniques seemed most
beneficial and convenient to them. Second, it shows
that automatic memoization not only assisted in easily
recomputing portions of the computations (by prevent-
ing repetition over time) but also dramatically improved
the performance of the original computation of the
display.

Case Study 3: The DARPA/Submarine
Technology Department ISSIPS Magnetics
Module

The Submarine Technology Department is currently
developing the Integrated Submarine Stealth Informa-
tion Processing System (ISSIPS) in C++, and one of
the modules involves calculation of magnetic detect-
ability. Given the success of the Lisp-based library on

258 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)

Table 2. Overall contribution of memoization to the
Signature Management System.

Version Time (s) Bytes allocated
Memoized 4.06 615,784
Unmemoized 2,562.74 2,969,392,724

the Signature Management System Magnetic Anomaly
Detection module, when we completed a C++-based
prototype we applied it first to this module. An 18-fold
increase was obtained, even without the use of persis-
tent tables.

FUTURE WORK

The Lisp-based automatic memoization library is
relatively mature, and technology-transfer funding
from the Army Research Office focuses on transferring
it to a commercial Common Lisp vendor (Franz, Inc.,
the largest Lisp vendor worldwide). The C++-based
library is in a prototype stage. This year’s work focuses
on its application to additional APL programs to gain
experience with issues specific to conventional
languages. In addition, new work planned for the
upcoming year focuses on applying memoization to the
Java programming language. Java is a ripe target for an
automatic memoization system for the following rea-
sons: It is often run interpreted, it is used on the World
Wide Web, it has built-in support for hashing, it has
been plagued by performance problems, and it is rapidly
growing in popularity. However, the fact that its object-
oriented model and type system are much stricter than
those of C++ presents new technical difficulties.

THE AUTHORS

AUTOMATIC MEMOIZATION

CONCLUSIONS

Automatic memoization has been shown to be an
effective optimization tool in large real-world systems.
Its use in higher-level languages like Lisp is simple and
has resulted in huge performance gains and more main-
tainable code on Navy- and DARPA-funded programs
in the APL Submarine Technology Department. Ap-
plication in lower-level languages like C++ is more
difficult, but early results from ISSIPS are promising.
However, more experience is required to identify which
approaches work best. We solicit the opportunity to
apply the C++ and Java libraries to additional APL
programs.

REFERENCES

1Cormen‘ T., Leiserson, C., and Rivest, R., Introduction to Algorithms, McGraw
Hill, New York (1991).

Norvig, P., “Techniques for Automatic Memoization with Applications to
Context-Free Parsing,” Computational Linguistics, 17, 91-98 (1991).

Kay, M., “Algorithm Schemata and Data Structures in Syntactic Processing,”
in Readings in Natural Language Processing, Morgan Kaufmann, pp. 205-228
(1986).

Earley, J., “An Efficient Context-Free Parsing Algorithm,” Communications of
the ACM 6(2), 431-455 (1970).

SWenstrand‘ D., Dantzler, H. L., Hall, M., Scheerer, D., Sinex, C., and Zaret,
D., “A Multiple Knowledge-Base Approach to Submarine Stealth Monitoring
and Planning,” Proc. DARPA Associate Technol. Symp., pp. 112-122 (1991).

6Michie, D., “Memo Functions: A Language Feature with Rote Learning
Properties,” Research Memorandum MIP-R-29, Dept. of Machine Intelli-
gence and Perception, University of Edinburgh (1967).

7Field, A.]., and Harrison, P. G., Functional Programming, Addison-Wesley
(1988).

8Michie, D., “Memo Functions and Machine Learning,” Nature 218(1), 19-22
(1968).

Popplestone, R. J., “Memo Functions and POP-2 Language,” Research
Memorandum MIP-R-30, Dept. of Machine Intelligence and Perception,
Edinburgh University (1968).

Mostow,]., and Cohen, D., “Automating Program Speedup by Deciding
What to Cache,” Proc. Int. Joint Conf. on Anrtificial Intelligence (IJCAI-85), pp.
165-172 (1985).

Koenig, A., “Function Objects, Templates, and Inheritance,” J. Object-
Oriented Programming, 8, 65-84 (Sep 1995).

MARTY HALL is a senior computer scientist in the Advanced Signal and
Information Processing Group of the Milton S. Eisenhower Research and
Technology Development Center at APL. He received a B.S. in chemical
engineering from The Johns Hopkins University in 1984 and an M.S. in
computer science from The Johns Hopkins University in 1986, and is currently
working on his Ph.D. thesis in computer science at the University of Maryland
Baltimore County. His technical interests include artificial intelligence, the
World Wide Web and Java software development, and simulation. Before joining
the Research and Technology Development Center, Mr. Hall was a subcontrac-
tor in the Submarine Technology Department. For the past 8 years he has been
an adjunct faculty member in The Johns Hopkins University part-time graduate
program in computer science. His e-mail address is Marty.Hall@jhuapl.edu.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997) 259

M. HALL AND J. P. Mc(NAMEE

J. PAUL McNAMEE is a computer scientist in the Submarine Technology
Department at APL. He received a B.S. degree in electrical and computer
engineering in 1990 and an M.S. degree in computer science in 1996, both from
The Johns Hopkins University. He joined APL in 1994 and has worked on
several decision support systems for the analysis and real-time monitoring of
submarine detectability. His technical interests include applied artificial intelli-
gence, optimization of algorithms, and development of software engineering
tools. Mr. McNamee is a member of the Association of Computing Machinery
and the Institute for Electrical and Electronics Engineers. His e-mail address is
Paul. McNamee@jhuapl.edu.

260 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 2 (1997)

