Signal Processing Algorithms for Electronic Combat
Receiver Applications
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his article discusses algorithms developed to support improved-sensitivity elec-
tronic combat receivers. Fast Fourier transform—based channelization is used to achieve
the desired improvement. The algorithms supporting this design also improve the
receiver’s ability to acquire radar targets having complicated waveforms and enable the
receiver to operate with higher pulse densities. On-the-fly parameter estimation assists
target classification. These objectives can best be realized in a digital receiver. An
acousto-optic design was also explored, and the algorithms developed for the digital
design should be applicable to both types of receiver.
(Keywords: Microwave receivers, Digital receivers, Electronic warfare, Signal process-

ing, Automatic target recognition.)

INTRODUCTION

Electronic warfare includes warning, detection, tar-
get acquisition, and homing. Critical to its success are
support activities such as searching for, intercepting,
locating, recording, and analyzing radar signals. The
electronic combat (EC) receiver makes these activities
against enemy air defense sites possible. EC receivers,
for example, are essential components of antiradiation
missiles. Figure 1 illustrates a typical engagement. The
air-launched antiradiation missile targets a specific
emitter in the enemy air defense system. The receiver
uses pre-selected electronic intelligence to passively
acquire the target. Azimuth and elevation estimates
derived from detected signal data guide the missile to
the target emitter site. The missile receiver can be

programmed to search for other signals (possibly from
the same site) if the primary target cannot be acquired.
Thus, an EC receiver must be able to detect as many
signals as possible and, therefore, it must have a wide
bandwidth, high sensitivity, and dynamic range. Air
defense radar emissions often consist of complex pulse
patterns and may be frequency modulated; moreover,
emitters may have several modes of operation, each
having a different waveform. Since the electromagnetic
environment (Fig. 1) is becoming more complex in
waveform structure and increasing numbers and vari-
eties of emitters, future EC receivers must be capable
of fine discrimination and be able to operate in a dense
environment. They must be able to process a large
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Figure 1 . A typical antiradiation missile engagement against an air defense site. The missile receiver must identify waveforms associated
with the targeted emitter in a dense electromagnetic environment. The inset shows the cluster of air defense radar sites used in defining
scenarios to test the receiver design.

amount of data in a short time. Once a signal has been
identified as a target of interest, the receiver should be
able to provide information to help locate the signal’s
source.

APL began a program in the late 1980s to develop
signal processing techniques to meet these challenges
in future antiradiation missile receivers. Because of the
joint nature of this program, the Laboratory’s contribu-
tions will benefit both the Air Force and the Navy.
Objectives of the program were to increase sensitivity
by 20 dB over current receivers, improve the ability to
acquire radar targets having complicated waveforms,
improve on-the-fly parameter estimation and the re-
ceiver’s ability to use these estimates to assist target
classification, and enable the receiver to operate with
higher pulse density. A channelized receiver was pro-
posed to achieve these goals.! Channelized receivers
include compressive, filter bank, acousto-optic, and
digital receivers. Technological advances in analog-to-

digital (A/D) converters and digital signal processing
provide the possibility of developing a digital receiver.
If successful, digital receiver performance may be supe-
rior to conventional analog receivers since digital signal
processing is more flexible and digitized data can be
stored for long periods of time.

The feasibility of implementing channelization with
a real-time fast Fourier transform (FFT) was established
by several earlier APL studies.”* The major contribu-
tion of the authors’ design effort, therefore, is the
combination of algorithms developed to process the
large data stream out of the channelizer. The challenge
is to detect target waveform patterns in the digitized
output and then maintain contact with the target
throughout the missile flight. Many standard pattern
classification techniques, however, are too computa-
tionally intensive for antiradiation missile receivers;
thus, computability is an essential consideration. Al-
though this design was developed and evaluated for

70 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 1 (1997)



application to antiradiation missile receivers, it can also
be adapted to other EC receiver applications, such as
intelligence gathering that requires a receiver that can
simultaneously process many different waveforms.

RECEIVER SIGNAL PROCESSING
DESIGN OVERVIEW

Noise in a receiver is distributed across the entire
receiver band, but a radar signal is localized in frequen-
cy; therefore, sensitivity can be increased by channel-
ization. If the received signal bandwidth BW is divided
into n smaller channels each having bandwidth BW/n,
the channel containing the emitter will have less noise
but the same signal power, and the signal-to-noise ratio
in that channel is increased. After investigating alter-
native channelization techniques, it was decided that
the receiver improvement objectives could best be
realized in a digital receiver. (An acousto-optic design
was explored, but several problems prevented its imple-
mentation.’ Nevertheless, the target identification and
classification algorithms developed for the digital de-
sign should be applicable to both types of receiver.)
Whereas channelized receivers are more complex than
superheterodyne, instantaneous frequency measure-
ment, or crystal video receivers, the advantage of digital

@

SIGNAL PROCESSING ALGORITHMS

channelizers is their flexibility. Filter shapes can be
changed and the analysis bandwidth varied; moreover,
a digitized copy of a radar signal can be stored and used
as a template or correlator.

Figure 2 consists of two diagrams showing the receiv-
er signal processing. The color coding indicates the
level of development of each component. Those that
are more complete have been implemented in the
Receiver Acquisition Simulation Model (RASM)®’.
This model was developed to provide a flexible modular
simulation test bed for studying signal processing algo-
rithms. Other signal processing components have been
simulated off-line and are still being refined. Figure 2a
is an overview of the design, and Fig. 2b highlights the
functions required for detection, identification, and
classification.

The first block in Fig. 2a shows the antenna, a four-
arm spiral providing monopulse direction finding (DF).
Spiral antennas are circularly polarized and exhibit
nearly constant beamwidth independent of frequency.®
Thus, low- and high-band frequencies can be received
by the same antenna. The four-arm spiral can be ex-
cited in two different modes: The sum mode 3, forms
a beam pattern with maximum response on the bore-
sight axis, and the difference mode A has a beam pat-
tern with a deep null along the boresight. The sum and
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Figure 2. Improved EC receiver functional diagram showing algorithm
in RASM. Less-developed algorithms have been simulated off-line. (a)
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development stages. Refined algorithms have been implemented
Signal processing flow diagram. The dual-mode switch optimizes

signal processing by switching between channelization when greater sensitivity is required and less intensive signal processing in the time

domain otherwise. (b) Detail of the target identification and classificati

on functions.
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difference patterns are related such that the azimuth
and elevation to a radar source can be estimated by the
equations,

. S +jA
th l =201 )
azimuth angle 0g10 S - jA
and (1)
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levat le =201
elevation angle 0810 s —A"

where j denotes \/——1 .

Figure 2a represents the signal processing functions
for both X and A modes. After converting the signal
to an intermediate frequency and attenuating to avoid
saturation, an adaptive filter is used to limit the accept-
ed waveforms to a predetermined frequency band,
depending on the targets of interest. Electronic intel-
ligence is used in current antiradiation missile receivers
to provide these range limits for frequency. EC receivers
use this rough frequency information to center the
bandwidth. The improved design, however, provides
much finer frequency estimates at a later processing
stage that can be fed back to the adaptive filter to
further reduce the receiver bandwidth, thus attaining
additional processing gain for improved tracking and
providing a discriminant for target identification. The
pulse repetition interval (PRI) is another primary
waveform discriminant, but it is not used until the
target identification and classification steps in Fig. 2b.

Although the improved design provides more infor-
mation about radar frequency and waveform structure,
the A/D sampling rate limits time resolution to 1 us
(approximate) at the channelizer output. Thus, a pulse
with width less than 1 us cannot be measured accurate-
ly. The pulse width (PW), however, is not used as a
discriminant, and so this is not a severe limitation for
target classification. On the other hand, it is particu-
larly critical regarding multipath-induced DF errors.
Monopulse azimuth and elevation estimates are used to
guide a missile or track a target. If, however, the pulse
is corrupted by overlapping pulses (e.g., from multipath
or another emitter), the DF estimates can have a sig-
nificant error. Because reflections arrive at the receiver
after the direct signal, one way to avoid multipath
errors is to calculate azimuth and elevation angles using
3 and A samples from the leading edge of the pulse
before it can be corrupted. This method, however,
requires finer time resolution than current FFT tech-
nology allows, so we concluded in Ref. 9, after inves-
tigating several approaches for resolving the problem
including superresolution and differential Doppler

techniques, that a dual-mode receiver offered the best
solution.

The dual-mode switch shown in Fig. 2a is used to
optimize the signal processing system. The processing
gain from channelization and improved acquisition
algorithms increase the probability of acquiring the
target faster and at greater distance where multipath-
induced DF errors are insignificant. If the receiver is
close to its target, however, and sensitivity is not an
issue, the mode can be switched to less intensive time-
domain processing.

Once the target emitter’s waveform has been iden-
tified and the target has been acquired, a passive loca-
tion system using the antiradiation missile receiver’s
position (provided by an onboard global positioning
system) could calculate refined target position esti-
mates for guidance or tracking. Preliminary studies of
the associative memory technique of Kagiwada et al.!°
showed that their technique can accurately estimate an
emitter’s position and is feasible to implement. This
approach was developed and tested for estimating dis-
tance and altitude assuming zero-mean Gaussian DF
measurement noise. Although we were able to extend
the method to three dimensions, the effect of bias in
the DF measurements is still being analyzed.

RECEIVER SIGNAL PROCESSING
ALGORITHMS

Channelized receivers have traditionally been im-
plemented with filter bank designs, and efficient hard-
ware realizations of digital filters are available. Alter-
natively, the set of outputs from the channelizer can be
regarded as the Fourier transform of the input signal and
realized by an FFT digital processor. These approaches
were examined, and after theoretical considerations
and a comparison of their computational intensity, it
was determined that the specifications for the EC re-
ceiver could be achieved effectively with the FFT-based
channelizer.?

Our design consists of a digital FFT-based channel-
izer attaining a 20-dB gain in sensitivity and processing
a 500-MHz bandwidth with 40-dB instantaneous dy-
namic range. Since each channel is approximately
1-MHz wide, this technique also improves frequency
resolution significantly. This capability is achieved by
a 512-point complex FFT that samples the receiver
input signal every 2 ns. Sensitivity and bandwidth are
limited by the A/D conversion rate. However, fast
A/D conversion is critical to many signal processing
applications, and efforts to improve performance is con-
tinuing in the semiconductor industry.

illustrates the sensitivity of our channelizer
design. Figure 3a shows a time-domain segment of a
simulated continuous wave (CW) signal from a low-
power emitter. The signal is not visible because it is
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buried in noise. Detection requires at least a 10-dB
signal-to-noise ratio; therefore, this target would be
undetectable using time-domain processing. On the
other hand, Fig. 3b shows the output of the channelizer.
A definite peak, corresponding to the frequency of the
target, is visible in bin 256 and could be detected. The
gain in performance from this sensitivity improvement
is the capability to detect low-power targets at greater
range and to obtain more accurate DF estimates.!!
To take full advantage of the improved sensitivity,
but at the same time minimize data processing by lim-
iting false alarms, we implemented an adaptive thresh-
old detector (Fig. 2b) at the channelizer output. In
contrast to a fixed-threshold detector, characterized by
a strong dependence of the probability of false alarm Py
on the noise power, a constant false-alarm rate (CFAR)
detector maintains a false-alarm rate independent of
fluctuating background noise by calculating the detec-
tion threshold at a specific resolution cell based on a
comparison of its power with the average noise power
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Figure 3. An example showing the sensitivity improvement gained
by channelization. (a) A simulated CW signal from a low-power
radar buried in noise. (b) After passing the signal through the
channelizer, the radar signal appears in frequency bin 256.

SIGNAL PROCESSING ALGORITHMS

in a set of adjacent cells. (Variations in noise power are
caused by clutter or interference.) This estimate, along
with a predetermined scaling factor allowing for uncer-
tainties in the estimate, establishes the adaptive noise
threshold.

CFAR detectors differ in how the average noise
power is calculated. The ordered statistics (OS-CFAR)
method, introduced by Rohling,'? was chosen over
conventional CFAR techniques for its superior han-
dling of the masking or frequency resolution problem.
OS-CFAR estimates noise power by taking quantiles
rather than the first moments of reference cells. That
is, it rank orders the power in the neighboring cells
according to magnitude and selects the kth element,
where k is a predefined rank-order index. Whereas
properties of the OS-CFAR detector are normally
derived for a time-domain signal, the only assumption
used in their derivation is that the noise is quadrature
Gaussian. Since it can be shown that the FFT output
will also be quadrature Gaussian, these properties are
also valid in the frequency domain. Their validity has
also been confirmed through extensive simulations."
References 13 and 14 provide more detailed discussions
of OS-CFAR.

Figure 4 compares the FFT-channelized output to
the OS-CFAR detector threshold with P; =107 for
three closely spaced simulated CW signals. The weaker
signal can be detected, even when it is in close prox-
imity to stronger signals. This detector was able to
distinguish these signals when their center frequencies
were as little as 4 MHz apart. Normally, the operating
frequencies in an air defense system are separated by
guard bands somewhat wider than this. Therefore, the
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Figure 4. Detail of the channelizer output of a simulated signal
consisting of three target emitters closely spaced in frequency. The
OS-CFAR threshold is superimposed.
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designed EC receiver should be able to resolve individ-
ual emitters.

The OS-CFAR technique may be too computation-
ally intensive for time-sensitive missile guidance appli-
cations. If so, for this application, it may be necessary
to trade some sensitivity for increased processing speed.
Blais and Rioux! discuss an alternative digital peak
detector based on differentiating the signal, using a
finite-impulse response filter to remove high-frequency
noise, and then interpolating the zero crossing to esti-
mate peak location.

The quantity of channelized data to process is fur-
ther reduced, after detection, by clustering and then
using DF as a discriminant.!® Clustering consists of
replacing a set of detections in adjacent frequency bins
with the bin containing the output of greatest magni-
tude. Next, the DF for each cluster representative is
calculated. Because the Fourier transform is a linear
operator, the equations for azimuth and elevation can
be computed on detected FFT output, just as would
normally be done on a time-domain pulse. If the DF is
inconsistent with previous target position estimates (if
available), the cluster is rejected. Generally, the set of
cluster representatives could be partitioned into dis-
joint subsets consisting of those corresponding to spec-
ified azimuth and elevation ranges; these subsets could
then be processed in parallel to classify all detected
waveforms passed by the adaptive filter. The waveforms
may include a few similar signals from several emitters,
or if the intent is to survey the electromagnetic envi-
ronment, the filter could be opened to admit as many
signals as possible.

Once data reduction has been completed, the target
must be identified. Since the waveform pattern of each
emitter evolves in time—frequency space, some type of
pattern matching is an obvious method. Figure 5 shows
the time—frequency output after detection and cluster-
ing for a 10-ms segment of simulated signal consisting
of four different emitter waveforms. Resolution is de-
termined by the FFT parameters: Each cell is 1 us by
1 MHz. Since the PW of each emitter is less than 1 ws,
signal detections cannot be visually distinguished from
the false alarms (shown in gray). Therefore, the cells
where pulses from the emitters should appear are
colored.

Identifying a waveform pattern in time—frequency
space poses some difficulty, especially if it is embedded
in noise and patterns from other emitters. Two-dimen-
sional histograms are used for further data reduction
and to reveal emitter patterns that may not be visible
in the time—frequency data. Time-of-arrival (TOA)
histogramming is computationally intensive if the dif-
ferences between every pair of pulses must be calculated
to “de-interleave” overlapping signals from different
emitters. In the FFT-based design with its narrow chan-
nel width, however, the emitter traces will be separated

in frequency. Thus, it should be possible to realize a
substantial reduction in computation by using frequen-
cy and PRI, or the time-of-arrival difference (ATOA)
between consecutive pulses (i.e., a first order histo-
gram). Other combinations such as frequency vs. PW
and PW vs. ATOA could be used; however, PW is not
a strong discriminant since it can easily be distorted by
multipath, and the A/D conversion rate limits the
accuracy with which it can be measured.

The shaded portion of the ATOA vs. frequency
histogram space shown inrepresents a limited
region defined by the target’s estimated frequency and
PRI ranges, either from electronic intelligence or re-
fined measurements made by the receiver. Only con-
tributions to histogram cells falling within this restrict-
ed region are calculated. As with the adaptive filter, the
parameters defining this region can be constrained to
eliminate all but a few waveforms or relaxed until the
region coincides with the entire histogram space. Fur-
thermore, only cluster representatives falling within
the histogram window, a time interval large enough to
contain a sufficient number of pulses from the target to
ensure a valid detection, are used. For a waveform
consisting of a simple pulse train, at least six pulses are
required to form a histogram in which the probability
of a detection error can be made as small as 0.05.°
However, to account for missing pulses and more com-
plex pulse patterns, a larger histogram window would
be required. Histograms are computed sequentially as
the window is advanced each time an FFT is calculated:
New TOA differences are computed and old ones are
dropped. Figure 6 shows the histogram obtained from
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Figure 5. Approximately 10 ms of a simulated signal consisting of
four emitter waveforms have been processed, and the detections
plotted. A detection is indicated in the (i,j)th position whenever the
output of the jth channel, or frequency bin, exceeds the OS-CFAR
threshold. The cells where radar signals should appear have been
superimposed in the colors corresponding to the respective emitter
sites in The other (gray) data points are false alarms.
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Figure 6. Output of the moving window histogram applied to the
signal in Fig. 5 (window length is 40 ms). The magnitude of the
spike at an (x,y) cell represents the number of pairs of consecutive
detections in frequency bin y for which ATOA =x. The (ATOA,
frequency) coordinates of three corner cells are shown.

processing time—frequency detection data from the
simulated signal using a 40-ms histogram
window length. The base in the figure corresponds to
the shaded region of and is defined by the
(ATOA, frequency bin) coordinates of the three
corner cells shown in the figure. Each spike represents
the content of a histogram cell; the smaller ones are
false targets. The spreading associated with the large
target peak is caused by slight variations in ATOA
because the PRI is not an exact multiple of the frame
time. For real targets, there may also be spreading
because of variations characteristic of the signal gen-
eration hardware.

The histogram technique transforms a waveform in
time—frequency space into a pattern of densities on the
histogram plane. This pattern forms a signature char-
acteristic of the signal type; it may even reflect features
of a specific emitter. These histogram patterns must be
processed by a classifier to determine whether or not
the target is present. The classifier could range from a
simple threshold (e.g., the target is present if any his-
togram cell exceeds the threshold) to an associative
memory that can recognize several different histogram
distribution patterns. A classifier that keeps track of
several modes of the same emitter, or several different
emitters, must be more sophisticated than a simple
threshold. Template matching'” and several neural
network—based approaches'®!” were examined. Distrib-
uted memory systems appear to be natural for this
application. For example, the histogram distribution
patterns of eight different waveforms were coded into
a three-layer classifier by defining an appropriate set of
connection weights and hidden nodes. These weights
and nodes were determined heuristically rather than by
training the net with back propagation or a similar
method. illustrates the procedure for a jittered

waveform. Figure 7a displays the parameters defining

SIGNAL PROCESSING ALGORITHMS

jitter, and Fig. 7b illustrates how the histogram char-
acteristics can be represented. Each input node
processes the contents of a histogram cell; each of the
three 3 X 3 node clusters corresponds to one of the
possible ATOA values. The clusters model the small
variations in ATOA that may occur. The green con-
nections activate the hidden node they connect to if

x—y+z=0, (2)

where x, y, and z are the histogram densities at the
clusters corresponding to a — 2b, a, and a+2b, respec-
tively. Similarly, the red connections activate the hid-
den node they connect to if

x—y+z=0. (3)

Together, the two inequalities characterize the distri-
bution of ATOA values. However, both inequalities
also hold if x = y = ¢ = 0. The blue connections are
intended to eliminate activation in this case. They
activate the middle node only after at least four pairs
of consecutive pulses with ATOA = a have been pro-
cessed. Thus, the presence of a jittered waveform is
required to fully activate all three hidden nodes. A
single output node threshold is determined so that its
activation requires the simultaneous activation of each

hidden node.

SCENARIOS FOR TESTING THE
RECEIVER ALGORITHMS

The signal processing algorithms were tested in the
RASM using realistic air defense scenarios designed to
stress the algorithm’s capability. These scenarios were
derived from a database of air defense sites consisting
of many radar systems with a variety of waveforms. The
radars chosen for our scenarios were from a cluster of
sites that provided the greatest variety of systems. The
inset to shows the geographical distribution of
this cluster relative to an arbitrary origin. Other radar
systems were added to the sites as needed to provide
arealistic, complex signal environment for testing. The
radars at each site were modeled by parameters that
described the waveform (e.g., radar frequency, PRI, PW/,
and polarization) and propagation characteristics such
as power level, pointing angle, beam size, and sidelobe
pattern.

The first scenario was devised to test receiver sen-
sitivity against a low-power target. In the[Fig. 1]inset,
the low-power target site is shown in red. The receiver
is on a missile positioned 18.5 km away; its field of view,
indicated by the shaded region, contains three emit-
ters—the black and green circles—operating in the
same receiver band as the target. These emitters were
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This section describes results
obtained by testing the signal pro-
cessing algorithms in the three
scenarios of increasing complexity
defined in the previous section.

The first scenario was intended
to show that with improved sensi-
tivity, the receiver can detect low-
power targets at ranges where other
antiradiation  missile  receivers
would be ineffective. In this scenar-

io, a radar having a simple pulse
waveform and very low power was
chosen as the target. With the sen-
sitivity gain realized by the im-

proved receiver design, this target
was detected at a range almost 5
times as great as that achievable by

15 +15

Node response function

Figure 7. Classifier connections and weights for detecting the jittered waveform. (a)
Schematic diagramiillustrating pulse jitter. Each pulse occurs at an offset of what otherwise
would be a fixed PRI of a units. The sign varies randomly from one pulse to the next, so
the ATOA hasthree possible values: a — 2b, a, or a + 2b. Moreover, ATOA =aoccurs twice
as often as either of the other possibilities. (b) Each input node of the classifier corresponds
to a histogram cell, and its input is the histogram magnitude. The hidden array consists of
three nodes corresponding to the possible ATOA values. The response of each hidden
node is a ramp function as shown. Connections to the hidden nodes and their weights are
color-coded for clarity (weights are listed above the input nodes). The hidden nodes are

all connected to a single output node with weight equal to +1.

included to further stress the algorithms. Current an-
tiradiation receivers can detect the low-power target at
a range of at most 3.7 km. The ability to maintain
contact with the target was tested by a second scenario
involving an operational mode change. For the second
scenario, the same emitter signals were used as in the
first scenario, except that a strong signal with a two-
level pulse stagger (shown in black in the inset) was
chosen to be the target. In general, an m-level stagger
consists of a repeated group of m+1 pulses in which the
m intrapulse distances, or stagger intervals, are different
lengths. The target’s second mode had a different pair
of stagger intervals and began after 20 ms. A third
scenario including multiple targets operating in multi-
ple modes was also defined. This scenario consisted of
active emitters located at the eight colored sites in the
inset with frequencies distributed throughout the
receiver band. These signals included a jittered pulse,
linear frequency-modulated (LFM) pulses, two-level
and four-level staggered pulses, and a triple pulse group
repeated every 80 ms.

Output array

current antiradiation receivers.
The probability of detection Py, a
simple measure of performance, is
the ratio of pulses detected by the
receiver to the total number of
pulses transmitted. In the first 10
ms of data processed by the new
design the low-power tar-
get had a probability of detection
P; =0.90; in subsequent segments,
P, was lower as the missile passed
through antenna nulls and, conse-
quently, several pulses were not
detected. As shown in however, there were
enough detections to get a significant peak in the his-
togram, indicating the target’s presence. (When the
histogram window length was narrowed to 10 ms, the
target was detected initially, but subsequent contact was
lost as the frames containing more missing pulses passed
through the histogram window and were processed.)
The second scenario was intended to test the receiv-
er’s ability to track a target through an operational
mode change. If the frequency changes, the target may
no longer be in the receiver band. In this case, the band
must be tuned to an appropriate intermediate frequency
before the emitter can be acquired again. Reference 20
is an exploratory study of a parallel processing tech-
nique that promises a significant increase in the band-
width that can be processed by an FFT without losing
sensitivity or increasing the sampling rate. This parallel
processing technique has not been tested in RASM.
Even if the frequency of the new operating mode is
within the receiver band, the PW and PRI structure
may change. This change was examined using the
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stronger two-level pulse stagger sig-

nal defined in the second scenario.

The moving histogram window

length was chosen wide enough (10

ms) to include a sufficient number

of pulses to calculate the double-

peak histogram signature of two- |
level stagger. When the first 10 ms
of signal data was processed, the two
peaks characteristic of the first
mode appeared (Fig. 8a). As the
signal passed through the histogram
window, the mode change was ob-
served (Fig. 8b). First, indications of
both modes appeared, but the peaks
were small because no more pulses
were being transmitted in the first
mode and the second mode was just
beginning; finally, all traces of the
first mode disappeared and the second mode could
clearly be detected (Fig. 8c). When the classifier was
a simple threshold, the target was lost during part of the
mode change. The distributed memory classification
algorithm, however, was able to keep track of the target
throughout the mode change.

The objective of the third scenario was to see how
well individual emitters could be distinguished in a
relatively dense signal environment. The distributed
memory classifier was used. Histogram patterns for each
of the eight-emitter waveforms were coded similar to
the jittered waveform example, using appropriate elec-
tronic intelligence cueing; there were eight output
nodes, each corresponding to one of the emitters.
Experiments with this scenario were encouraging. Each
signal was correctly classified. However, more work
needs to be done to determine an appropriate architec-
ture in which to implement this classifier. Reference 21
is a promising approach.

In all tests so far, target detection has been success-
ful, although when the target signal is LEM, or chirped,
the resulting frequency spread can mask signal indica-
tions that are nearby in time-frequency space; more-
over, since the energy is spread over a wide frequency
band, its spectral peak is lowered and consequently its
detectability reduced. An option for processing LFM
signals was proposed in Ref. 22. This option uses a
variable offset correlator to compress the energy in a
chirp into a single frequency bin. Although theoretical
studies have been encouraging, the technique has not
yet been implemented in RASM.

CONCLUSIONS

An improved digital channelized receiver design
has been defined, and algorithms for the functional
components have been developed. The performance

SIGNAL PROCESSING ALGORITHMS

M First mode
Il Second mode

(b) 15-25ms (c)30-40ms

Figure 8. Three views of the moving histogram window (window length is 10 ms) for
scenario two. Each histogram is derived from 10 ms of signal data and limited by
operationally realistic estimates of frequency and stagger parameter ranges. (a) The first
mode. (b) Transition from the first to second mode. (c) The second mode.

advantages include increased sensitivity, ability to pro-
cess complex waveform types, and operation in a dense
emitter environment. The frequency and pulse struc-
ture of an emitter can be extracted from the histogram
signature and used to tune the adaptive filter, or stored
as a template for future target identification. This de-
sign was successfully tested in simulations against a
single low-power target operating in a single mode and
a single target with a mode change, and in a scenario
consisting of multiple in-band targets. These simula-
tion studies are the first step in assessing the feasibility
of the design. To develop a hardware prototype, how-
ever, more work needs to be done, including further
development of the algorithms explored in several of
the references.?>*? The storage capacity of the distrib-
uted memory classifier needs to be determined and
compared with operational requirements before making
a final judgment on its suitability for EC receiver ap-
plications. Moreover, an appropriate computational
architecture remains to be identified to realize the
design in real time.
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