
IMPULSIVE ECHO RANGING SONAR
mpulsive Echo Ranging systems are air-deployed, active, multistatic sonar systems
designed to operate in both littoral and open-ocean areas. Sources ensonify a target, and
multiple receivers detect resulting short-duration echo signals. Because the source
illuminates ocean bottom features, particularly in shallow littoral waters, and the ocean
is rich in independently generated transients, the system requires automation dedicated
to reducing operator load and enhancing target recognition. The APL-designed
Multiple Return Association and Localization (MRAL) algorithm serves as part of this
automation. MRAL is an efficient data-fusion algorithm that groups sets of spatially
consistent energy detections, collected across pings and receivers, into single operator
alerts. Operator classification decisions based on grouped detections are less frequent
and more informed than those otherwise made for each detection independently. Also,
combined detections provide the means for automation to harness the joint information
inherent in the individual detections.
(Keywords: Data fusion, Sonar, Sonobuoy.)
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INTRODUCTION
Impulsive Echo Ranging (IER) systems are the

Navy’s newest generation of air-deployed active sonar
systems. The envelope of operations for these systems
includes shallow littoral areas where APL’s contribution
in the design of a spatial correlation algorithm, referred
to as the Multiple Return Association and Localization
(MRAL), provides the means to reduce operator load-
ing and enhance target recognition. The IER systems
were born out of a need to detect increasingly quiet
submarines emerging from the Soviet Union in the late
1970s and 1980s.1 Before that time, passive sonar sys-
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tems successfully relied on the target to provide detect-
able signals originating from the submarine’s main
propulsion system, auxiliary systems, and hotel systems
such as air-conditioning. Active sonar systems emerged
with increasing importance to ensonify the quiet sub-
marine to provide a detectable target echo. However,
after the collapse of the Soviet Union in the early 1990s
and the initial retreat of Soviet submarines from the
open ocean, the new threat became quiet, third-world,
diesel-electric submarines in littoral areas. Quiet diesel-
electric submarines in shallow coastal waters typically
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challenge active sonar systems because of the increased
reverberation levels caused by energy returning from
the ocean bottom. The increase in reverberation reduc-
es the probability of detection and, in many circum-
stances, increases the false alarm rate.

BACKGROUND
As Fig. 1 indicates, during an IER operation, an

aircraft deploys a sensor field by dropping a number of
sonobuoy receivers and sources. The aircraft then se-
quentially commands each source to sink to transmit
an impulsive signal. For a given transmission (or ping),
the aircraft has the opportunity to detect a target when
sound energy propagates to the target and a subset of
sonobuoys (perhaps only one, if any), dependent on
channel characteristics and the target’s scattering
strength pattern, senses the reflected target echo. All
acoustic data (i.e., acoustic pressure transformed to
electrical signals in the sonobuoy) are transmitted via
a radio link to the aircraft for processing and operator
evaluation. After each ping, sonar operators are tasked
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to identify possible target echoes. This is a critical
aspect of the mission because chasing a false alarm is
costly in a time-critical mission. Unfortunately, not
only does the source acoustically illuminate the target,
but features among broader bottom topology can pro-
vide target-like echoes as well. Equally detrimental are
independently generated transients such as whale
whistles or system-induced electrical glitches. Whereas
the system attempts to automatically eliminate signals
that do not behave like target echoes, enough target-
like signals pass the screening algorithms to require
further aural and visual evaluation by the operators.

Figure 2 illustrates how the IER system combats false
alarms. Using signal feature attributes, an automated
parametric pattern recognition algorithm screens non-
target-like signals flagged by the energy detector.2 All
signals that pass the screening algorithm, referred to as
“returns,” feed the MRAL data-fusion algorithm.  The
MRAL algorithm operates on returns collected across
multiple sonobuoys, accumulated across multiple pings,
and uses arrival times and bearings to spatially correlate
the returns.  The set of associated returns, referred to
Figure 1.  Impulsive Echo Ranging systems are air-deployed, active, multistatic sonar systems. The aircraft monitors multiple sensors to
detect a submarine echo.
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as a “contact,” acts as a single operator alert. MRAL
reduces an operator’s load by mapping multiple nontar-
get returns (clutter), each of which would otherwise
require independent evaluation, into single alerts. The
number of contacts generated by the algorithm, by
definition, must always be less than or equal to the
number of single-return alerts that feed the algorithm.

 Beyond this simple concept of data reduction, the
MRAL algorithm adds a dimension to classification.
Whereas MRAL is not a classifier, the additional infor-
mation it generates, through grouping spatially consis-
tent returns, provides measurable attributes unavailable
from any single return. When harnessed by an operator
or a computer, the multireturn information may bolster
the system’s ability to prioritize the search and classify
the target.

THE MRAL ALGORITHM

Association Criteria
A set of returns associates to form a contact when

it has consistent bistatic range times and bearings.
Figure 3 illustrates this concept. The bistatic range time
is the travel time of sound from the source to the target
to the sonobuoy. (With the source and sonobuoy po-
sitions acting as focal points, the bistatic range is a
time-of-arrival ellipse that defines all possible reflector
points). A group of returns associates with a point if all
the returns define 1) bistatic range times within a bi-
static range tolerance DT of the bistatic range time
implied by the point, and 2) bearings within a bearing
tolerance Db of the bearing to the point. This two-
parameter criterion allows for separate treatment of
independent errors in bearing and time.

ances DT and Db
in time and bea
approach, perfec
returns to associ
position, regardl
sufficiently large 
the algorithm ca
mation at all. Th
fect bearing mea
surements. The i
either the bearin
the overall error

Algorithm Desi
The MRAL i

time, bearing, be
on signal-to-nois
gorithm, detectin
ordered by an in
cludes the posit
sonobuoy i, and 

As Fig. 4 illus
erates sample p
(Xm, Yn), m = 1,
resolution, d, and
M and N. The a
tions to be qua
Ideally, a reflecto
with its nearest 
is set as small as p
loading the comp
the points as ref
searches for retur
bearing. An alt
combinations of 

Goal
• Reduce data
• Increase information

ScreenersDetector

Auto
spatial

correlation
Auto

spatial
correlation

Auto
spatial

correlation
Auto

spatial
correlation

Acoustic display

Pings

Real time Updates after each
ping

MRAL
algorithm

Geographical
display

Figure 2.  Spatial data correlation applies after application of a classifier that screens
individual detections.
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The MRAL approach is prefer-
able to clustering the bearing el-
lipse intersections defined by each
return. Inherent in each bearing-
ellipse intersection is the error in
both the bearing and time, which
manifests itself differently as a
function of the source-to-target-to-
sonobuoy geometry. Because of
this, a fixed proximity tolerance for
associating bearing ellipse intersec-
tions is not ideal. A proximity tol-
erance variable with geometry,
however, adds complexity to the al-
gorithm. The time and bearing un-
certainties of a reflector’s return are
independent of the reflector’s posi-
tion. Avoiding the nonlinear trans-
formation of time and bearing to a
Cartesian coordinate allows MRAL
to operate with association toler-
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Figure 3.  Illustration of the concept that for a return to associate
with a point, it must carry a bearing and time consistent with those
of the sample point. Here, the measured bearing is within Db of the
bearing from the sonobuoy to the point, and the measured arrival
time is within DT of the time it takes sound to travel from the source
to the point to the sonobuoy.
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Figure 4.  The search area is quantized into sample points evenly
spaced by d.
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the residual error of their implied localization point
proved less efficient and more complex.

Before the search for consistent returns begins, two
steps take place to make the search more efficient. First,
many of the sample points can never associate with any
returns. To prevent association testing for NM points,
the MRAL algorithm applies a simple prescreening test
to tag each point with an “on” or “off ” status. The
default status is “off ”; however, if a point falls within
a box with diagonal corners, defined by the endpoints
of an elliptical arc, subtended by the bearing tolerance
for a return (expanded to the nearest sample points),
then the status is switched to “on.” Figure 5  illustrates
how the box of sample points is defined. Only points
with an “on” status are considered for association
testing.

The second step before the search involves reorga-
nizing the input to be accessible by ping p, ping’s
sonobuoy q, and time bin b. (The ping’s sonobuoy q is
an index that identifies one of the  sonobuoys moni-
tored for a ping. The same sonobuoy can be monitored
on different pings and therefore may use a different
index q depending on the ping.) To understand how
this reorganization improves efficiency, we first recog-
nize that there are at most P · B unique source-
sonobuoy pairs (given P pings consisting of B moni-
tored sonobuoys per ping), which implies that there are
at most P · B unique expected bistatic range times for
a given sample point. To test if any returns from a
specific source-sonobuoy pair are consistent with a
point, the algorithm only needs to compute a single
expected arrival time. The expected arrival time for a
given point (m, n) and a given source–sonobuoy pair
(p, q) needs to be compared to all the returns from the
source–sonobuoy pair. The majority of these returns,
however, are far outside the expected arrival time
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Figure 5.  MRAL flags points in and on the solid box (shown in
green) as “on.” After all returns are tested, points still “off” cannot
be consistent with any return and are excluded from association
testing.
NS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 1 (1997)



IMPULSIVE ECHO RANGING SONAR
window implied by the point. If we pare down the
testing to include only returns that are close to the
bistatic range time, we can eliminate even more redun-
dant calculations. The solution is to map returns from
a particular source–sonobuoy pair into time bins of
width 2DT. Efficiency is increased by testing only those
returns within the time bin that contains the predicted
arrival time t. Because we do not know in advance
where within a bin t will fall, all returns are also
mapped to their nearest bin. The fact that the bins
have a width of 2DT guarantees that all returns not
mapped into the bin containing t will be farther than
DT from t.

After the algorithm applies sample point screening
and reorganizes the returns, the contact search proceeds
by cycling through the sample points. For each sample
point tagged with an “on” status, each source-sonobuoy
pair is considered in turn. For each source-sonobuoy
pair and sample point, the algorithm defines an expect-
ed bistatic range time to the point with

t = (rsp + rbi)/c , (1)

where rsp is the source-to-point range, rbi is the
sonobuoy-to-point range, c is the speed of sound in
water, p is ping, and i is sonobuoy. As Fig. 6 illustrates,
for a given point and source–sonobuoy pair, the algo-
rithm determines a bin index,

b = INT(t/2DT) + 1 , (2)

and cycles through all returns within the bin. (The INT
function truncates its argument.) The algorithm com-
pares each return time t to the bistatic range time t.
The return is consistent in bistatic range time if

Gt = |t 2 t| < DT . (3)

Subsequent bearing consistency checks are conditioned
on successful cases of bistatic range time consistency
and are executed less frequently.

When a return is consistent in bistatic range time,
the algorithm then determines if the return is also
consistent in bearing. This process proceeds in two
steps. First, a coarse bearing test computes which of
eight possible 45° sectors contains the sonobuoy-to-
point bearing, and checks if the return’s measured
bearing is within the sector or just outside the sector
by no more than Dbk. The bearing tolerance is indexed
by k since the bearing accuracy depends on a return’s
signal-to-noise ratio, which is different for each return.
An eight-element look-up table provides the sector
containing the sample point’s (x, y) position. The table
is accessed by the three-bit value,
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bit1 = {x · y > 0} ,

bit2 = {x > 0} ,

bit3 = {|x| > |y|} , (4)

which quickly determines the 45° sector containing the
sample point. As an example, if (bit1, bit2, bit3) =
(1, 1, 1), the sample point is in the lower 45° sector of
the first quadrant. This first step finds the majority of
returns to be inconsistent in bearing.

For those returns roughly consistent in bearing, a
second bearing test computes the actual bearing to the
sample point via an arctangent function (a time-
consuming task for the aircraft’s tactical computer). If
the return’s bearing is within Dbk of the actual bearing
to the point, the return is  considered to be consistent
in bearing. If we define Gb as the angular difference
between the sample point bearing and the return’s bear-
ing, then bearing consistency occurs when

Gb < Dbk . (5)

Because the return is also consistent in range (other-
wise the bearing test is never executed), the return is
consistent with the sample point.

Figure 6. Two returns mapped to bin b are within DT of t, where t
is the expected travel time of sound energy from the source to the
sample point to the sonobuoy. If each return is consistent in time,
subsequent testing will verify if either is consistent in bearing.
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For each return found consistent with the sample
point, the MRAL algorithm temporarily stores the
return’s index k. After all source–sonobuoy pairs are
considered, all of the returns temporarily stored for the
point under consideration constitute a “candidate con-
tact.” Stored with the candidate contact are its size
(number of returns), position (sample point indices m
and n), and consistency parameter (some Gt or Gb). For
a multireturn contact, there are multiple measures of
Gt—one for each return. The return least consistent
with the point (with the greatest Gt) defines the con-
sistency parameter for a multireturn contact. For single-
return contacts, Gb defines the consistency parameter.

The candidate contact is stored in a contact list if
it is not a subset of any currently stored contact. For
example, a candidate contact with returns k P {7, 19,
97} is a subset of a stored contact with returns  k P {7,
19, 22, 97} and is not added to the contact list. Con-
versely, if the algorithm adds a candidate contact to the
list, any previously stored contacts that are subsets of
the new contact are removed. The example in Fig. 7
illustrates a geometric interpretation of the logic. The
figure shows the segments of elliptical arcs subtended
by the bearing tolerance for each return. Each arc
segment is labeled with its return index k. The pre-
sumption for Fig. 7 is that returns k = 7, k = 19, and

k = 97 are consiste
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Figure 7. MRAL finds all three returns labeled k = 7, k = 19, and k = 97 consistent with points
1, 2, and 3. Candidate contacts formed for points 2 and 3 are dropped in favor of the contact
at point 2, which is also consistent with return k = 22.
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sections and Gb geometrically repre-
s of a single return’s bearing to a

ontact in the list of contacts is a
r, some may intersect, i.e., share re-

turns. After the algorithm tests all
sample points in the search area,
the contact list is modified a final
time to eliminate any intersec-
tions. Figure 8 shows how a single
return might exist in more than
one contact. As shown in the fig-
ure, return k = 22 may have origi-
nated from a reflector near point 2
or near point 4. The algorithm
forces a choice and puts the return
into the contact with the most re-
turns. By defining the size of a con-
tact by its number of returns, algo-
rithmically, the scheme starts with
the largest contacts (then second
largest, then third largest, etc.) and
removes returns shared by any
smaller contacts. The choice is ran-
dom for equal-sized contacts.

The forced-choice logic reduces
the total number of contacts as
smaller contacts lose their returns
to larger ones. Also, as an operator
selects different contacts from a
geographical display, a return is
never repeated. Simulation results
indicate that the forced-choice
logic also reduces the probabil-
ity of false association. A false
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Figure 8.  Given the return k = 15 added to the situation depicted
in Fig. 7, the candidate contact at point 4 is not a subset of the
contact at point 2 and gets added to the contact list. After the initial
search for contacts is complete, returns in multiple contacts are
forced into the contact that can hold the most returns.  Return 22
is therefore forced to reside in contact 2.

association occurs when a return from one reflector
associates with returns from another reflector. The
probability can be parameterized by the spacing be-
tween the two reflectors, and the forced-choice logic
improves performance at all spacings.

Automatic Target Recognition
As suggested earlier, the joint information in a set

of spatially consistent returns provides measurable clues
for target recognition, which are unavailable from any
single return. When harnessed by an operator or a
computer, the multireturn information may bolster the
system’s ability to prioritize the search and classify the
target. For the operator, a target-like detection that is
difficult to classify alone may more readily be dismissed
if it aurally and visually correlates with a number of
more distinct clutter events. In addition, contact po-
sition information on a geographical display reveals
existing clutter patches. This information enables op-
erators to prioritize their searches.

 For the computer, a number of measurable multi-
return features exist that an automated classifier might
use to screen or rank returns. Examples of these features
include the following:

• Median score (MRAL score)
• Greatest time (ping) separation between returns in a

contact
• Number of returns in a contact
• Local contact density

The MRAL score is the only multireturn feature
currently used. The algorithm that screens energy de-
tections prior to MRAL ranks each return with a score.
The MRAL algorithm is therefore able to rank a con-
tact with the median score of all returns within the
contact. This ranking is referred to as the MRAL score.

2
4

k = 7

k = 22

k = 15k = 97
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Contact 4 = k ¶ {15, 22}

Contact 2 = k ¶ {7, 19, 22, 97}

Remove from
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Much like an operator might cope better with a target-
like clutter return when examined with other spatially
correlated returns, the median likelihood measure as-
sists the computer by harnessing multiple confidence
measures. Other multireturn feature measures of poten-
tial value capitalize on the fact that, unlike many
bottom features, the submarine is a moving, point-like
reflector with a specific scattering pattern. Bottom
reflectors do not move and detections may persist over
many pings. If a contact has returns from pings spaced
widely in time, the measured time separation may pro-
vide a useful classification clue. In addition, the scat-
tering strength of a bottom feature, unlike that for a
target, might produce a large number of returns, even
over a few pings. Finally, if clutter sources exist in
clutter patches, the MRAL algorithm is likely to gen-
erate areas dense in contacts, and a local contact den-
sity measure may serve as a useful clue. The field testing
of the MRAL algorithm conducted off the coast of New
Jersey is described in the boxed insert.

FUTURE WORK
The MRAL algorithm is incomplete without spec-

ification of the bistatic range time tolerance DT and the
bearing tolerance Dbk. Current tasking involves simu-
lation analysis dedicated to establishing an operating
point for DT and Dbk with Dbk = ask, where a is a scale
factor and sk is the standard deviation of the bearing
error for a return. Choosing a DT and an a that are too
large increases the probability of associating returns
from different reflectors and lowers the resolution of the
system. Choosing a DT and an a that are too small
increases the probability of not associating returns orig-
inating from the same reflector. The operating point
that best balances the probability of false association
with the probability of missed association depends on
the sample point resolution and the system errors.

In terms of enhanced target recognition, APL plans
to research and develop automated classification algo-
rithms that exploit MRAL-enabled multireturn feature
measures. After the collected data are better under-
stood, multidetection feature measurements may add a
new dimension to IEER automated classification cur-
rently restricted to environmentally dependent signal
waveform clues.
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Sample MRAL test results from the Hudson Canyon: (a) Contact
positions generated from five pings of data collected on three
sonobuoys. Contacts are color coded to indicate the number of
returns in the contact and are labeled with identification numbers.
(b) Time-of-arrival ellipses and notional bearings for returns
associated with Contact 30 (target) and Contact 25 (clutter).

SAMPLE MRAL ALGORITHM TEST RESULTS
Sample results from a test conducted in the Hudson Canyon

off the coast of New Jersey are shown in part (a) of the figure.
The target is the ex-USS Salmon (SS 573) moored to the ocean
floor. The geographical display is for research and development
rather than operator use. On the display, contacts are num-
bered, and the color coding indicates the size of the contact.
Returns collected across five pings from three closely spaced
sonobuoys provide the input to MRAL. Contact 30 is the target
contact. The target contact is defined with a large number of
returns because the geometry of the test was geared to produce
a large number of target detections. However, the value of
MRAL is linked more to the association of clutter events.

The results indicate that a significant fraction of the clutter
returns map to a few distinct points. A return’s arrival time
provides ranging information that geometrically determines a
time-of-arrival ellipse with the source and sonobuoy positions
acting as the focal points. MRAL combines the arrival times
with bearing measurements to map returns to one of a finite
number of equally spaced points in the search area. Part (b) of
the figure shows the time-of-arrival ellipses and bearings for
Contact 30 (target) and Contact 25 (clutter) overlaid on the
MRAL sample points from a portion of the search area.

The MRAL algorithm is sufficiently general to be incorpo-
rated by any active multisensor sonar system. Measures of
bearing and time are treated independently to naturally map
the measurements into a single Cartesian reference system.
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