BASIC RESEARCH

Recent Developments in Quantum Optics

James D. Franson

he quantum theory of light predicts many interesting effects that may seem
counterintuitive or even impossible from a classical point of view. Several effects of
this kind have been investigated at the Applied Physics Laboratory, including a new
kind of interferometry, the cancellation of dispersion between two distant media, and
a new type of phase associated with the electromagnetic field. Some practical
applications of these effects will be considered, including a fully operational system for
secure communications based on the quantum mechanical uncertainty principle.

INTRODUCTION

Maxwell’s equations are usually adequate for most
engineering applications, since quantum mechanical
effects might be expected to become important only
when dealing with weak electromagnetic fields con-
taining one or two photons. Recent work in quantum
optics has led to the discovery of several new phenomena
that may have practical applications, some of which
will be described here. These effects rely on the quan-
tum mechanical properties of individual photons and
cannot be understood on the basis of Maxwell’s equations.

[t is now apparent, however, that quantum mechan-
ics can also play an important role in high-intensity
electromagnetic fields containing an arbitrarily large
number of photons.! For example, some of the non-
classical results that will be described apply to the electric
and magnetic fields produced in a transformer or elec-
tric motor. Future developments in quantum optics and
related fields may eventually require greater reliance on
a “quantum-engineering” approach to the design of
practical systems.

This article will provide an overview of several re-
cent developments in quantum optics at the Applied
Physics Laboratory. No attempt will be made to provide
a complete theoretical discussion of the origin of these
effects. Instead, several examples will be given to illus-
trate some of the nonclassical properties of light and of

electric and magnetic fields in general. These examples
include a new kind of interferometry, the cancellation
of the dispersion experienced by two distant optical
pulses, and a new type of phase associated with the
electromagnetic field. A fully operational system for
secure communications based on the quantum mechan-
ical uncertainty principle will also be described.

QUANTUM MEASUREMENTS

Quantum mechanics often gives very nonclassical
results when two particles or systems are initially al-
lowed to interact with each other so as to become
correlated but are then separated by a large distance.
A subsequent measurement of the properties of one of
the particles will instantaneously change the state of
the other distant particle. This process is known as the
collapse or reduction of the quantum mechanical state
of a system.

The collapse of the state of a system can be illustrat-
ed by considering two photons emitted from a common
source in such a way that their polarizations are iden-
tical but unknown. The quantum mechanical state of
this system will be denoted by | ¥> and has the form

W >=lx >lx, >+ly >y, >. (1)
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Here, |x;> and |y;> denote an x or y polarization for
photon 1, and a similar notation is used for the polar-
ization of photon 2. Each term in corresponds to
a probability amplitude whose square gives the proba-
bility of obtaining either the x or y polarizations. Unlike
classical probabilities, all of the probability amplitudes
corresponding to a given outcome must be added first
and then squared to determine the total probability of
an event.

It can be shown that the polarizations of the two
photons are also totally correlated in any other coor-
dinate frame, for example, the x',y' coordinate frame:

[ >=lx >x) >+]y >y, >. (2)

Suppose that we measure the polarization of photon 1
and find that it was polarized along the x axis. Since
we now know that photon 1 was not polarized in the
vy direction, the second term in Eq. 1 is reduced to zero
and the quantum mechanical state of the system im-
mediately becomes

(¥ > Llx >lx, >. (3)

This changes the description of photon 2 as well, and
we see that a measurement made on one particle can
instantly change the state of a distant particle in this way.

One might suspect that such a process would violate
the principles of special relativity. Einstein, Podolsky,
and Rosen® did criticize this aspect of the quantum
theory in a famous paper written in 1935. However,
classical probability theory would also require a similar
readjustment of the probabilities associated with pho-
ton 2 if some information is obtained about the state
of photon 1, since their properties are strongly corre-
lated. As a result, Einstein’s objections to the quantum
theory were generally considered to be only a matter
of interpretation or philosophy for many years.

That situation changed in 1964, when John Bell®
showed that any classical interpretation of such an
experiment would require the instantaneous transfer of
information from one location to another. The polariza-
tions of the two photons must be measured along two
randomly chosen axes, x and x', differing by an angle
6 as shown in[Fig. 1.JAccording to quantum mechanics,
the probability that both of the photons will be found
to have the x or x' polarizations is proportional to cos*6.
Bell showed that any classical theory in which the
particles cannot exchange any information faster than
the speed of light can at best give a linear dependence
near @ = O with a sharp angle as illustrated in|Fig. 2.|The
random choice of measurement axes rules out the
possibility that the photons were simply emitted with
those particular polarizations. A large number of exper-
iments® of this kind have given excellent agreement
with the quantum theory predictions. (For a review, see

Ref. 6.)

Figure 1. Measurement of the polarizations of two distant pho-
tons along two randomly chosen axes differing by an angle 6.

Probability

Quantum theory

0

Figure 2. Probability that the measured polarizations of two
photons will lie along two randomly chosen axes differing by an
angle 6. The red line represents the prediction of gquantum mechan-
ics, whereas the black line corresponds to the maximum correla-
tion in any classical theory in which information cannot be transmit-
ted faster than the speed of light.

The fundamental difference between the classical
and quantum mechanical predictions can be shown to
be due to the cross products in the square of the sum
of the relevant probability amplitudes. These cross
products produce a nonclassical form of interference
that depends on the relative phase between the various
probability amplitudes.

Although a classical interpretation of these correla-
tions would require an instantaneous transfer of infor-
mation, that is not the quantum mechanical interpretation.
Nor is it possible to transmit useful messages faster than
the speed of light because there is no way to control
or modulate the choice of polarization of photon 1,
which is chosen at random at the time it is measured.
Roughly speaking, photon 2 somehow receives this
information instantaneously (from a classical view-
point), but no messages can be transmitted since there
can be no external control over the process.
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TWO-PHOTON INTERFEROMETRY

For many years, Bell’s results were only known to
apply to systems with two degrees of freedom, such as
the polarizations of two photons or the spins of two
electrons. The author recently extended these ideas to
other systems and showed that two distant interferom-
eters can exhibit very similar correlations.""

To see how this situation can occur, consider a light
source that creates two photons at the same time, as
shown in The two photons travel in opposite
directions over an arbitrarily large distance, after which
they encounter two identical interferometers. A beam
splitter in each interferometer allows the photons to
travel along a longer or a shorter path through the
interferometers, and a second beam splitter allows the
photons to travel toward one of two sets of detectors.
The difference in the lengths of the two paths is chosen
to be much larger than the coherence length of the two
photons, so that no interference at all would be ex-
pected classically. As a result, each photon has a 50/50
chance of being detected in either the primed or
unprimed detector.

Now suppose that photon 1 chose to propagate
toward detector D;, as indicated by an output pulse
from that detector. For reasons that will be explained
shortly, this information immediately reduces the state
of photon 2 in such a way that photon 2 will be detected
in the corresponding detector D, and not in D,'. Total
correlation between the chosen detectors (primed ver-
sus unprimed) is observed, provided that the sum of the
interferometer phase settings is zero (0; = —6,), whereas
measurements made with other phase settings give a
correlation proportional to cos*[(8; + 6,)/2]. Just as in
Bell’s original proof, the latter result is inconsistent
with any classical theory in which information cannot
be transmitted at velocities greater than the speed of
light, since 6, and 6, can be randomly chosen after the
photons have been emitted. A more detailed discussion
of this experiment and related topics can be found in
a recent issue of Scientific American.’

To understand how a two-photon interferometer can
produce these correlations, it is necessary to consider

0 b1
ﬁ '“
Bit0 Dj D;  BItO
Bit1 Dy’ D" Bit1

Figure 3. A two-photon interferometer exhibiting nonclassical
correlations between the output ports chosen by photons y, and
7,, as indicated by single-photon detectors D,, D', D,, and D,'.
Phase shifts 6, and 6, are introduced into the longer path through
each interferometer.

the creation of photon pairs, which are formed by using
a nonlinear crystal capable of splitting individual pho-
tons from an ultraviolet laser beam into two secondary
photons, as illustrated in[Fig. 4.]In the quantum theory,
the energy of a photon is proportional to its angular
frequency w, and its momentum is proportional to its
wave vector k, so that conservation of energy and
momentum require that w; + w, = wy and k; + k; = k.
Here, wy and kg are the angular frequency and wave
vector of the initial laser photons. The key feature of
this process is that the two photons are created at
precisely the same time, but that time is totally uncer-
tain.” This situation is thus analogous to Eq. 1, where
two photons have the same but unknown polarization.

The unknown time at which the pair of photons was
emitted implies that a final detection event can occur
in more than one way, and the corresponding probability
amplitudes must be summed and then squared. A pair
of photons could have reached the detectors in three
ways: (1) both may have taken the longer path, (2) both
may have taken the shorter path, or (3) one may have
taken the shorter path while the other took the longer
path. The total probability amplitude A, for such a pro-
cess can thus be written in the following form:

A = A +ei[(01+02)+(w1+wz)AT]AH
t SS

4 elltvoTIA 10 +08TI (4)

Here, A represents the probability amplitude that
both photons took the shorter path, Ay is the proba-
bility amplitude that both took the longer paths, and
Ay and A, are the corresponding probability amplitudes
that one photon took the longer path while the other
took the shorter path. Ay differs from Ay by a phase
factor that includes the phase shifts §; and 6, inserted
into the longer paths, as well as the terms w;AT and
w, AT due to the difference in propagation times AT
along the longer and shorter paths.

If high-speed electronics are used to select only those
events in which both photons are detected at the same
time, then both photons must have taken the longer

Crystal

ky
Figure 4. Individual photons from an ultraviolet laser being split

into two secondary photons while conserving energy and momen-
tum in the process.
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path through the interferometers or both must have
taken the shorter paths, since the two photons were
emitted at the same time. The probability amplitudes A}
and Ay cannot contribute to the final outcome in this

case and must be eliminated froThe total prob-

ability amplitude for coincident events then reduces to
A=A +ei[(01+01)+(“1+w2)AT]AH (5)
t SS *

From conservation of energy, the phase factor
(w; + wy)AT is just woAT and produces a constant
phase offset; if that were not the case, the large spread
in the frequency of the two photons would destroy the
interference pattern as it does classically.®

The total probability P. of a coincident event is
proportional to the square of the probability amplitude
of Eq. 5, which can be reduced to

20by +6,0

P. =ncos EZ—H (6)

Here, 7 is a constant related to the detection efficiencies
of the two detectors, and the constant phase factor of
woAT has been omitted. Once again, this nonclassical
result is due to interference between the probability
amplitudes for the short—short and long—long processes,
each of which leads to the same final outcome.
Several laboratories!®!? performed two-photon ex-
periments of this kind shortly after the publication of
the author’s theoretical predictions. Perhaps not sur-
prisingly, some experts expressed considerable doubt as
to the existence of such an effect. The first experimen-
tal results'® were obtained by Ray Chiao’s group at the
University of California at Berkeley. Some of their data
are shown in Fig. 5, which has been reproduced from
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Figure 5.  Results from a two-photon interferometer experiment

performed by Ray Chiao’s group at the University of California at
Berkeley, showing interference in the two-photon coincidence
counting rate but not in the single photon rates. The units corre-
spond to the number of events of each type obtained in a 10-s
interval. (Reprinted from Ref. 12 by permission.)

RECENT DEVELOPMENTS IN QUANTUM OPTICS

Ref. 12. The roughly straight line near the top of the
figure corresponds to the rate at which single photons
were counted in one of the detectors as a function of
the phase difference between the two interferometers;
this result shows no interference due to the extremely
short coherence length of the photons. However, the
rate at which pairs of coincident photons were detected
showed a pronounced interference pattern consistent
with the theory.

The author’s main interest in these experiments is
the question of what happens if the two interferometers
are moved farther and farther apart. According to the
quantum theory, the separation makes no difference.
However, for some alternative theories, the interfer-
ence pattern may be degraded or vanish altogether with
increasing separation. An experiment was performed at
APL" in which the two interferometers were separated
by an optical path length of 100 m. Nonclassical inter-
ference effects consistent with the quantum theory
predictions were also observed in that case and were
independent of the separation of the interferometers.
Follow-on experiments involving interferometers sep-
arated by several kilometers of optical fiber are current-
ly in progress at APL as well as at other laboratories
around the world.

NONLOCAL CANCELLATION OF
DISPERSION

These nonclassical effects can be understood in
more detail by considering the Fourier transform of the
electric field in a beam of light. First consider the
Fourier transform of a classical electric field at location
r;, which can be expressed as

E(r,0)=% cklei(klxl_“’l‘) + cEe‘i(klxl_wlt) )
kl

where the ¢, are the Fourier coefficients and ¢ is time.
(For simplicity, we are considering a plane wave and a
single polarization here.) It follows from Eq. 7 that the
product of the electric fields at two locations r; and r,
is given by

E(r,t)E(r,,t) =

T 3 e elbxtha-@rad Lo (g)
1 2

%2

where c.c. denotes the complex conjugate terms. It
seems apparent that the product of two classical fields
must contain all of the terms corresponding to each pair
of Fourier coefficients in each field, as represented by
Cklckz.

A very different result is obtained, however, when
the electric field is treated quantum mechanically.
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Then the electric field becomes an operator'*!'* and the

Fourier expansion of is replaced by

E(rl,t): >

ky

(18

ikp-an) 4 4 —i(klxl—wlt)]
l( b

(9)

where @, and ak are operators that annihilate and cre-
ate a photon respectlvely (Some constants of no in-
terest here have been omitted.) The state of the field
created by the nonlinear crystal of for example,
can be written as
- P
|\I’>—%cklaklat%_k1 [0>. (10)
This equation corresponds to the creation of photon
pairs whose wave vectors sum to ky as required by
conservation of momentum. The average product of

the fields at two locations can then be shown to have
the form

if (kyxg +hoxy ) =(wy +a7 )] +cc
.C.,

<E@,0E@,0)>=S e (11)
ky

where k, = ky — k;. This result differs from the classical
result of in that the product of two quantum
mechanical fields need not contain the cross product of
every pair of Fourier coefficients that appears in the
individual fields. Instead, only those coefficients whose
frequencies add up to wy appear in the product of the two
fields. This cannot occur classically, as can be seen from
Eq. 8, which explains the origin of most of the nonclas-
sical effects of interest here. Two systems whose quantum
mechanical state cannot be written as the product of the
states of the individual systems are often referred to as
“entangled.” The polarization state of the two photons in
is entangled in this sense, as is the state in Eq. 10.

A further example of the kind of nonclassical effects
that can result from the entanglement of quantum
states is illustrated inHere, two short optical
pulses are propagating in opposite directions in two
dispersive media, such as two optical fibers. Classically,
each of the two pulses will broaden by an amount that
depends only on the dispersive properties of the medi-
um through which each is traveling; it seems obvious
that the broadening of a pulse cannot depend on the
properties of a distant medium through which it is not
propagating.

That is not the case in quantum optics, however,
where the author has shown!” that the dispersive prop-
erties of one medium can be made to cancel out those
of another medium in such a way that neither pulse is
broadened. To see how this surprising result is obtained,
we need to write the magnitude of the wave vector k
in each medium as a function of the frequency w using
a Taylor series expansion:

—coo)2 +....(12)

ky(w)) =k + oo —wg) + B (e
A similar expression is used for k,. Here, ko, o, and
8; are constants, and it will be assumed that the band-
width is sufficiently small that the higher-order terms
can be neglected. If we consider the case in which 3,=
—B3; and substitute Eq. 12 into then it can be seen
that the effects of the dispersion coefficient 3, in one
medium are canceled by those of 8, in the other medium
in such a way that the dispersion has no effect on the
product of the two fields and the photons remain coin-
cident at all times. Effects of this kind are referred to as
being nonlocal, since the behavior of the two pulses
cannot be determined from their local environments.

This effect has also been demonstrated experimen-
tally'® and could conceivably be of practical use in
overcoming the effects of dispersion in optical commu-
nications systems.

DYNAMIC PHASE OF THE
ELECTROMAGNETIC FIELD

The phase of the electromagnetic field plays an
important role in such applications as interferometry,
heterodyne and homodyne detection, and communica-
tion via phase modulation. The author recently
showed? that there is a new type of phase associated
with the electromagnetic field that is totally unrelated
to the classical phase normally measured. It is referred
to as the dynamic phase of the field since it vanishes
in the limit of slowly varying currents.

One of the general principles of quantum mechanics
is that it must agree with classical physics in some
suitable limiting case. The most nearly classical state
of the field is referred to as a “coherent state” and can

be written in the following form:"*
0 ip\n
_ i), —at)2 2 (ae'®)'|n>
¥ > ="y = (13)
n=0 An!

Here, « is a real number, ¢ is an arbitrary phase angle,
and the state of the field containing exactly n photons
is designated by In>. It is well known that a beam of
light produced by a laser is described by such a coherent
state. The electric and magnetic fields produced by a
macroscopic current distribution, such as those in a
transformer or electric motor, are also described by a
coherent state.” Thus, a quantum mechanical study of
what might be thought of as classical fields would
proceed starting from Eq. 13.

The classical phase of the field can be shown to be
the phase factor ¢, since the electric field operator in
changes the number of photons by +1 and the
corresponding states differ by a phase factor of .
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the kind which human ingenuity
may not, by proper application,
resolve.” Subsequent generations

= ~ w

Figure 6. Dispersion of two classical optical pulses emitted by a source and propagating
in two dispersive media. In quantum optics, the dispersion experienced by one photon can

be canceled by that experienced by a distant photon.

However, in addition to ¢, the author recently showed
the necessity of including an additional phase factor of

e in This new phase factor is governed by the

equation

L
ay_1 IR

¢ A ’

(14)

DO | —

where j and A are the current density and vector
potential, respectively, and # is Planck’s constant divid-
ed by 2.

This is a very interesting result since an electron
moving in an external magnetic field undergoes a phase
shift given by the same formula but without the factor
of 1/2. For an electron, such a phase shift can be mea-
sured using a superconducting quantum interference
device, which currently provides the most accurate
method available for measuring weak magnetic fields.
Equation 14 shows that the electromagnetic field has
a similar phase shift associated with it, aside from
the intriguing factor of 1/2. An experiment is now
being planned in Germany to investigate this new kind
of phase phenomenon (personal communication,
E Hasselbach, University of Tubingen, 1 Mar 1995).

One of the most interesting features of this result is
that it applies to the “classical” high-intensity fields
that are produced in electromagnets, solenoids, trans-
formers, and so forth. The existence of the nonzero
value of y even in these types of situations illustrates
the fact that the quantum mechanical properties of the
electric and magnetic fields are not limited to weak
fields containing only one or two photons, as might
have been imagined. In fact, the author has recently
generalized the theory of two-photon interferometry to
show that similar, nonlocal correlations can occur for
high-intensity fields containing arbitrarily large numbers
of photons.!

QUANTUM CRYPTOGRAPHY

In a story entitled “The Gold Bug,” Edgar Allan Poe
describes an adventure involving buried treasure and a
secret code. Having broken the code and found the
treasure, the hero of the story states, “It may be doubted
whether human ingenuity can construct an enigma of

- ~ - of spies, traitors, and powerful com-
puters for code breaking have am-
ply demonstrated Poe’s foresight.
Quantum cryptography!’ is a
new method for secret communica-
tions whose security is guaranteed
by the laws of nature. Most meth-
ods of cryptography require that a secret key or code
be transported from one location to another so that it
can be used to encrypt or decode subsequent messages,
which creates an opportunity for the secret key to be
divulged to potential enemies. This problem can be
eliminated by using the two-photon interferometer of

to establish a secret code at two different loca-

tions without having to transmit any information in the
usual sense.

To see how this can be done, suppose that detectors
D, and D; are taken to represent a bit zero, and detec-
tors D;" and D,’ are taken to represent a bit one. If a
series of photon pairs are transmitted with 6, = —6,,
then the choice of output ports is totally correlated and
a random but common series of zeros and ones will be
generated nonlocally at each location. This series of
zeros and ones can then be used as the secret key to
encrypt and decode data transmitted over an open
communications line in the usual way. The uncertainty
principle of quantum mechanics ensures that any eaves-
dropper will unavoidably degrade the correlations be-
tween the photons in an observable manner, as will be
discussed in more detail shortly.

Quantum cryptography based on two-photon inter-
ferometry has been investigated by the author and his
colleagues as well as by Rarity, Owens, and Tapster'® in
Great Britain. We have obtained better results, how-
ever, using a similar technique!” based on the polariza-
tions of single photons, as illustrated in Fig. 7. If the

Figure 7. Two coordinate frames rotated by 45° and used for the
measurement of the linear polarizations of single photons.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 4 (1995) 329



J. D. FRANSON

polarization of a single photon is measured in the x,y
coordinate frame, then it will be found to be polarized
along either the x or y axis; a single photon must
emerge in either one or the other of the two output
ports of a birefringent polarization analyzer. This is an
inherently quantum mechanical effect since a measure-
ment of the polarization of a classical beam of light can
give a continuous range of values.

In our prototype system,'* a secret key is gener-
ated in the following way: Two computers indepen-
dently choose either the primed or unprimed
coordinate frames of at random. Computer 1 then
transmits a single photon with a randomly chosen
polarization in its coordinate frame (i.e., x, v, x’, or y’
polarization.) After computer 2 has measured the po-
larization of the photon in its coordinate frame, the two
computers openly compare their choice of coordinate
frames but do not disclose the polarizations transmitted
or received. All events in which the computers chose
different coordinate frames are simply ignored, in
which case the polarizations transmitted and received
will be totally correlated in the remaining events. If an
x or x" polarization is taken to represent a bit 0 and a
y or y’ polarization is taken to represent a bit 1, then
a sequence of operations of this kind will establish a
common series of random bits that can be used as before
to encode and decode messages transmitted over an
open communications line.

The security of this approach is due to the fact that
an eavesdropper does not know the correct coordinate
frame and will choose the wrong one 50% of the time.
If the eavesdropper simply absorbs the photon, then
that event will be ignored by the two computers. The
best that a potential eavesdropper can do is to emit a
“substitute” photon toward computer 2 with the same
polarization as he obtained from his measurement on
the original photon. But if the original photon had an
x polarization, for example, and the eavesdropper made
his measurement in the x’,y’ coordinate frame, then
the state of polarization of the photon will necessarily
be changed. As a result, an eavesdropper unavoidably
introduces an error into 25% of the polarizations as
measured by computer 2, which can easily be used to
detect the presence of any attempted eavesdropping.
The uncertainty introduced into the polarization of a
photon by a measurement made in another coordinate
frame is a simple example of the uncertainty principle
of quantum mechanics.

A fully operational system?®>** for quantum cryptog-
raphy is shown in The main difficulty in a
practical system of this kind is the fact that the trans-
mission of a single photon through an optical fiber will
produce a time-dependent change in its state of polar-
ization due to birefringence and other factors. A feed-
back loop compensates for this change in polarization
by varying the voltages applied to several Pockels cells,

Coincidence
pulse

Laser I
A
Lens

Attenuating filter

v

Gian—Thompson polarizer

'

Pockels cell A—45°

'

Pockels cell B—0°

.« 1-km optical fiber

Fiber
coupler

Pockels cell D—22.5°

v

Wollaston prism

v !
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No. 1 No. 2
Coincidence I
——> FEn > Computer
Figure 8. Block diagram of an operational system for quantum

cryptography, including a feedback loop to compensate for time-
dependent changes in the state of polarization of single photons
propagating in an optical fiber.

which are birefringent crystals whose retardation de-
pends on the applied voltage. The two computers au-
tomatically determine the required voltages to transmit
an x, y, x’, or y' photon from computer 1 to computer
2. A third Pockels cell can be used to rotate the plane
of polarization by 45°, which allows computer 2 to
measure the polarization in either the x,y or x’,y’ co-

ordinate frame using a fixed polarization analizer. A

photograph of the apparatus is shown in [Fig. 9,[and a

more detailed description of the system can be found

in Ref. 23.
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This system currently allows secure communications
between two personal computers at a data rate of 5 kHz.
Brief messages can be transmitted from one computer
to the other in a fraction of a second Higher
data transmission rates will be obtained in the future
using custom-made electronics to replace the logic
functions currently implemented inside the computers.
Any incorrect bits are identified using a secure method
of parity checks; no errors have been observed in over
a billion bits of secret information transmitted in this
way. The system currently operates over 1 km of optical
fiber; larger ranges can be obtained by operating at a
more optimal wavelength. The
possibility of a global system of this
kind using a system of ground sta-
tions and satellites is also being in-
vestigated.

QUANTUM
COMPUTING

Some of the more recent con-
ventional cryptography systems do
not require the distribution of a
secret key. Known as public key
systems, these methods rely on the
assumed difficulty in factoring large
integers. Peter Shor’* recently
showed, however, that large num-
bers can be factored very efficiently
using a quantum computer, which
may eventually compromise the se-
curity of public key systems.

Quantum computing is based on
a system of quantum logic elements that have no clas-
sical counterpart. Perhaps the simplest example is the
NOT function, which simply converts a TRUE input
into a FALSE output, and conversely. Because quantum
computing deals with probability amplitudes rather
than with probabilities, it is possible to construct a logic
element known as the square root of NOT. When
applied twice, this logic element gives the same result
as the classical NOT. But if it is applied only once, the
square root of NOT produces a nonclassical operation
that can be combined with other nonclassical logic
elements to perform computations in a way that would
be impossible classically.

Quantum computing has the potential to revolu-
tionize computer science and is currently the subject of
considerable research. Most of the investigations to
date have been theoretical in nature, but several lab-
oratories are now beginning experimental investiga-
tions as well. Quantum optics is expected to play a
major role in the development of this new technology,
and some of the effects described in this article are
being considered for future applications of this kind.

experiment.

RECENT DEVELOPMENTS IN QUANTUM OPTICS

SUMMARY

Quantum optics predicts a variety of effects that may
seem counterintuitive or even impossible from a clas-
sical point of view. However implausible these phe-
nomena may seem, the results of experiments clearly
show that such effects do exist. It is hoped that further
research on these topics will eventually lead to a broader
range of practical applications for inherently quantum
mechanical effects.

Figure 9. Photograph of the quantum cryptography laboratory at APL. The prototype system
based on single-photon polarizations can be seen on the left-hand side of the optical table. The
laser beams and other equipment on the right-hand side are part of a two-photon interferometer

Type in a message:

Quantum Cryptography is GREAT !

Encrypted message:
—$204{I! N 5°LR ¢ =i g[6+h{-! ALE-3QuM&P

Decoded message:

Quantum Cryptography is GREAT !

Figure 10. Transmission of a secure message from computer 1 (top)
to computer 2 (bottom). The encrypted message was transmitted over
an open communications line along with the decoded message.
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