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M Odeling and simulation play important roles in the exploration of future 
system capabilities. Plans for the next generation of Tomahawk include a strike 
management capability (the ability to control missiles after launch). The Laboratory 
has developed strike management conceptual and functional prototypes that have 
helped to refine system concepts and requirements, stimulate user feedback, and 
provide an environment for early algorithm development. The functional prototype has 
become a valuable tool for examining broader issues of weapon employment and has 
been incorporated into a distributed interactive simulation environment to help refine 
real-time control of precision strike weapons as system-level challenges grow in 
complexity. 

INTRODUCTION 
As the technical direction agent for Tomahawk, 

APL is helping the Navy to shape the direction of the 
cruise missile program. One example of this effort is the 
Battle Group Strike Warfare Coordination (BG STC) 
initiative, which is intended to improve overall strike 
effectiveness through better coordination of strike 
warfare systems. Tomahawk, which constitutes the 
u.S. Navy's long-range cruise missile arsenal, is the 
in itial focus of this undertaking. 

Originally conceived as a strategic system for deliv­
ering nuclear warheads, Tomahawk is now a conven­
tional weapon system appropriate for tactical environ­
ments. Tactical environments necessitate greater 
responsiveness and adaptability to the dynamics of 
strike warfare, since target priorities are likely to change 
as battle damage accumulates and objectives shift. The 
opposing force's defenses, once alerted, may be moved, 
and new threats to the strike force may emerge to 

challenge routes of attack. Timely awareness of strike 
effectiveness and the ability to control how strike 
operations unfold are therefore important objectives. 
These objectives are prompting a change from the cur­
rent fire-and-forget employment mode for Tomahawk. 

The Tomahawk Baseline Improvement Program 
(TBIP) is developing capabilities for the next genera­
tion of Tomahawk to improve system response time and 
enhance employment flexibility. The upgrade, sched­
uled to reach operation by the turn of the century, will 
include two-way communications between missiles in 
flight and command and control nodes, as shown in 
Fig. 1. Communications from the missiles will provide 
real-time health and status reports and battle damage 
indications. Return communications will allow an op­
erator to divert, or flex, missiles to alternate targets 
based on the effectiveness of previous missiles. It will 
be possible to judge aimpoint damage using single-
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Figure 1. Tomahawk Weapon System Baseline IV concept of operations. (GPS = Global Positioning System.) 

frame video images from a missile's terminal-imaging 
infrared seeker. (The term aimpoint in this article is 
synonymous with aiming point.) 

The two-way communications capability permits 
real-time monitoring and control by a Tomahawk 
Strike Coordinator (TSC) or a delegated representa­
tive. 1 If necessary, the TSC will be able to reallocate 
resources by diverting missiles to alternate targets using 
an en route flex command to maintain coverage of 
critical targets, conserve missiles, and permit recovery 
from missile casualties. Such functions have been 
termed strike management. 

Recognizing that proper utilization of such capabil­
ities is critical to their success, the Program Executive 
Office for Cruise Missiles and Unmanned Aerial Vehi­
cles (PEO[CU]) began to define operator support con­
cepts through the BO STC initiative. A fundamental 
objective was to demonstrate that the new capabilities 
could be made manageable for operators. In response, 
the Laboratory created a computer environment for 
visualizing strike management through prototypes that 
present the look and feel of potential capabilities. We 

use the prototypes to obtain comments and suggestions 
from prospective operators on interface design, usabil­
ity, and essential features. In addition, the computer 
environment provides a context for algorithm formu­
lation. T o demonstrate system-level implications of 
advanced strike and cruise missile concepts and capa­
bilities, the Laboratory is integrating the products of 
this task into broader simulation environments. 

DESIGNING PROTOTYPES 
In software engineering, prototypes are especially 

useful for solidifying requirements (by the procuring 
agent), understanding design trade-offs (among the 
technical community), and influencing system design 
(by the eventual customer; in this case, the Fleet) . 
Prototypes provide an avenue for uncovering and solv­
ing problems before schedule and cost become the main 
determinants of development. Prototypes can be 
evolved in four basic stages leading toward an opera­
tional system as follows: 

1. Conceptual prototypes, which focus mainly on the 
human-computer interface, show the look and feel of 
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the eventual system; such prototypes may be auto­
mated. 

2. Functional prototypes provide the internal organiza­
tion (data structures and architecture) and incorpo­
rate candidate algorithms and processing behind the 
interface to give the system limited functionality. 

3. Fieldable prototypes provide the major functions of 
the eventual system reliably enough to insert the 
prototype into an exercise or operational environ­
ment for initial evaluation. Some operational benefit 
is also obtained. 

4. Operational prototypes provide virtually all func­
tions in a robust and reliable system that is often an 
interim capability introduced in anticipation of fu­
ture delivery through a formal program. 

Prototypes supply useful information throughout 
their multistage development. They facilitate defini­
tion of technical characteristics through hands-on eval­
uation and permit user feedback before an investment 
is made in full-scale development. Customers can val­
idate system requirements and usability by interacting 
with prototypes that approximate the look and feel of 
the eventual system. Questions arising from this process 
help to refine system concepts further. A mature pro­
totype can serve as an interim solution that does not 
require a lengthy acquisition process to remedy short­
falls in fielded capabilities. 

This article describes the application of conceptual 
and functional prototypes to Tomahawk strike manage­
ment. The conceptual prototype models the look of 
operator support by simulating the content and presen­
tation format of key information on a typical strike 
management display. The functional prototype conveys 
the feel of operator support by enabling options for the 
functional support layer behind displays (including data 
structures, functional flow, algorithms, decision support 
features, and controls for governing flow and applying 
decisions) to be explored. 

DEVELOPMENT PHILOSOPHY 
Early prototypes have helped to mature Tomahawk 

strike management concepts through a spiral develop­
ment cycle. Top-level requirements were written in a 
system-level specification for the Tomahawk Weapon 
System Baseline IV. We began designing the prototypes 
by storyboarding ideas for strike management to pro­
duce a series of sample displays illustrating possible 
operator support concepts. After review, the ideas were 
transformed into an automated prototype that was 
initially implemented and evolved on the Macintosh 
and then progressed to the current 486-based system. 
Throughout development, the team concentrated on 
designing a flexible, easily extendable system. This 
philosophy accommodated changing requirements and 

allowed rapid modifications on the basis of sponsor and 
user feedback. 

Object-oriented techniques were used to implement 
a flexible system that could readily be adapted and 
expanded to represent new ideas and concepts. Object­
oriented techniques model the problem domain as a set 
of objects and the relationships among them. Objects 
are abstractions of things in the problem domain that 
relate to the system's responsibilities. A class is a set of 
objects that have a common structure and behavior. In 
general, classes are static, and objects are particular 
instances of classes. 

The first advantage of object-oriented development 
is design stability. Although specific requirements may 
change, any Tomahawk strike management system will 
have objects for representing missiles, shooters, mis­
sions, and others. Object-oriented development also 
permits data encapsulation, since each object has an 
associated set of attributes and actions. In this manner, 
data are packaged or encapsulated with particular ob­
jects, thus helping to manage system complexity. 

Object complexity evolves with the prototype. Ini­
tially, the prototype represented objects at a very high 
level with few details, which provided an overall per­
spective useful for refining capabilities and identifying 
new requirements. As the prototype unfolded, the ob­
jects afforded a framework for continued development, 
since they could easily be added, deleted, or modified. 

In addition to employing object-oriented tech­
niques, the development philosophy stressed code re­
use, which was particularly important in the interface 
development. A commercial product (Symantec Think 
C) was used to provide the basic user interface objects 
on the Macintosh, such as windows, menus, and dia­
logue panels. Drawing on this existing code enabled the 
team to concentrate on implementing Tomahawk 
strike management objects. Code reuse allowed rapid 
progress on the specific problem domain within a ge­
neric interface framework. 

The aim of the architectural philosophy was to 
achieve the flexibility and growth potential emphasized 
in the software development philosophy through a 
modular approach. Thus, the logical functions of the 
prototype were separated into two elements: the strike 
management display and the simulation driver. The 
strike management display approximated the system 
to be deployed, and the simulation driver provided 
the inputs and responses for stimulating the human­
computer interface. In an operational system, real­
world inputs would replace the driver. To mirror this 
discrete functionality in the prototype architecture, 
separate processors were used for the two elements (Fig. 
2). Interaction between the elements was through mes­
sages across a network. This architecture was designed 
to enhance modularity and set the groundwork for de­
veloping an operational system. 
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prototype displays were firm 
enough to permit work to begin on 
the computer implementation of 
the functional prototype. 

The displays in the conceptual 
prototype are simple and intuitive. 
Graphics are used to convey infor­

Operator support prototypes Simulation driver 
mation on a gross scale, and text 
and tables are employed to orga­
nize and present fine details. The 
geographic display presents the 
top-level information required to 
monitor the strike, allowing the 
operator to retrieve more detailed 
information if needed. A consis­
tent color scheme is used to 
present essential strike informa­
tion. Green is used as a positive 

• "Look" and "feel" of human-computer interface 
• Demonstration of tactical support concepts 
• Interaction with simulation driver 

• Scenario definition and control 
• Missile capabilities from launch to impact 
• Simulation/stimulation to exercise concepts 

of operation 

Figure 2. Top-level hardware and functional architecture of the operating support environ­
ment. 

CONCEPTUAL PROTOTYPE 

The initial conceptual prototype consisted of a series 
of computer screen viewgraphs illustrating operator dis­
plays for each of the anticipated strike management 
functions. Figure 3 presents a sample display. Concept 
refinement occurred through weekly meetings with the 
Navy sponsor. After only a few such meetings, the 

Show 

STRIKE CLOCK 

00987 

00G51 

indication (e.g., receipt of a missile 
status message) and blue denotes 

completion (i.e., the missile has reached the target). 
Nonstandard conditions are presented in red and yel­
low, depending on the degree of urgency or effect on 
the overall strike plan. 

The conceptual prototype illustrates a hands-off 
strike management style. As long as the strike proceeds 
nominally, results are presented on the display in green 
and blue. The TSC monitors progress but is not 

Aimpoint Name Allocated Required MID Term Video 

71 AA Amal Abo 2 None 

Figure 3. Strike management display for the conceptual prototype. (MID = missile identification.) 
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required to take action. Intervention is required only 
when there is a deviation from the plan, causing a 
yellow or red display warning to appear. Such anom­
alous conditions invoke system recommendations that 
prompt action from the TSC. Suggested actions are 
limited to a few well understood choices. This strike 
management style reinforces a goal of the prototype 
development effort: to demonstrate a straightforward 
user interface. 

FUNCTIONAL PROTOTYPE 
The modular architecture of the prototype design 

environment allows the functional components to 
be developed in parallel with conceptual prototypes. 
This modularity promotes rapid prototype develop­
ment. The functional prototype consists of the strike 
management user interface for monitoring and control­
ling missiles and a simulation driver for generating 
missile messages and responding to strike management 
commands. 

The Simulation Driver 

The simulation driver is an important component in 
the functional prototype. Without the driver, the util­
ity of the functional prototype would be limited to 

File Edit Objects Options Simulation 

providing the appearance of operator interfaces without 
the feel. With the driver, the functional prototype 
offers an environment that stimulates realistic response 
from the operator support prototype. 

Early driver development was based on the Toma­
hawk Object-oriented Trade-off Evaluation Model 
(TOTEM), which APL created as a tool for exploring 
advanced Tomahawk concepts. It included a graphical 
user interface (GUI) that permitted parameters to be 
modified easily for defining a scenario and analyzing 
different options. With a GUI, the operator controls 
the computer by manipulating icons on the computer 
screen rather than entering text instructions on a com­
mand line. Such directly manipulatable, user-friendly 
interfaces are familiar and intuitive for Macintosh, 
DOS Windows, and X Windows users. Figure 4 illus­
trates a TOTEM scenario development screen. The 
object-oriented domain model allowed the program to 
be adjusted easily for exploring potential new capabil­
ities. Because of this inherent flexibility, TOTEM was 
a logical starting point for the simulation driver and 
served as the basic domain framework and interface to 
build upon. 

The primary functions of the simulation driver are 
to stimulate the strike management system with repre­
sentative missile messages and to mimic the response 
of missiles to strike management commands. Although 

Tue 11:12 AM 

Untitled 1 G!i 

Figure 4. Scenario development screen for the Tomahawk Object-oriented Trade-off Evaluation Model (TOTEM). 
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the driver simulates missile actions from launch 
to impact, the emphasis is on message exchange and 
processing. All communication between the driver and 
the strike management module is through message 
passing. In the Macintosh-based prototype, messages 
were passed over a network utilizing the Apple Pro­
gram-to-Program Communications Toolbox, Apple 
Events, and the Apple Event Manager. Apple Events 
uses Apple's message-passing protocol for program-to­
program communications. Apple Events provided a 
built-in mechanism for exchanging data between the 
strike management module and the driver, simulating 
the transmission of messages between the Tomahawk 
Strike Manager and missiles in flight. In the NEXT­
STEP version of the functional prototype, message 
passing was achieved using Unix remote procedure 
calls in a client-server architecture. 

The driver is an event-stepped simulation with a 
variable execution rate. Simulation events are inserted 
into an event list in sequence of execution order. 
Events are removed from the top of the event list at 
the user-specified execution rate unless constrained by 
the performance of the computing platform. The driver 
manages event processing alongside user input han­
dling and display processing within the application, 
allowing the user to alter the execution rate before or 
during simulation. 

Simulation events include missile events, threat 
events, target events, and Global Positioning System 
(GPS) events. Each missile is initialized with a launch 
event. After the missile begins flight, a booster separa­
tion event is scheduled, and so on, through each se­
quential mission event. Anomalous missile events can 
be generated at random, under user control, or based 
on proximity and state of threats. These events allow 
the strike management operator support prototype to 
handle difficult scenarios. 

Strike Management Operator Support 

The strike management user interface for the func­
tional prototype was developed using Apple's Hyper­
card application program, which was then replaced by 
SuperCard (from Silicon Beach). Hypercard and Su­
perCard, both of which support Apple Events, are in­
novative applications for programming on the Macin­
tosh. They supported the rapid growth cycle of the 
prototypes with their graphical user interface develop­
ment and message-passing capabilities. 

Hypercard and SuperCard work similarly, using 
Macintosh's HyperTalk interpreted programming lan­
guage. The SuperCard environment was selected be­
cause of its color display support. Graphical entities on 
the screen represent objects in the program that inter­
act through the exchange of messages. When an object 
receives a message, it may perform some service, some-
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times using data passed with the message. In addition, 
the object may send out its own message or pass the 
original message farther along a hierarchical message­
passing structure to be handled by the program or the 
operating system. 

Strike management interface development started 
with the set of viewgraphs that constituted the concep­
tual prototype. The basic display was a geographic view 
of the area of interest that served as the default window 
when the program was started. This display inspired 
new and expanded features, such as pop-up information 
windows that remained open while the user clicked on 
an object, pull-down menus for setting up and tailoring 
the display, and special keyboard equivalents for com­
mon user actions. 

The initial interface development phase, although 
short, was probably the most productive. The features 
of SuperCard made it easy to dispense with mundane 
but potentially time-consuming tasks such as imple­
menting window management services and handling 
mouse tracking and clicks. Instead, developers concen­
trated on introducing features relevant to Tomahawk 
strike management. Attention focused on how strike 
management would work, not just how it would look. 

Four top-level strike management functions (strike 
preview, strike monitoring, strike control, and strike 
assessment) were drawn from the Tomahawk Weapons 
System Baseline IV System Specification, the docu­
ment specifying the next generation of Tomahawk. 
How these functions could be performed became ap­
parent through using the rudimentary strike manage­
ment display. The geographic display was well suited 
to strike preview (simulating the strike before execu­
tion) and strike monitoring (viewing strike progress 
during execution). The information necessary to sup­
port strike control (diverting missiles in flight) and 
strike assessment (gauging strike success from reported 
results), however, was not clearly presented on a geo­
graphic display. Early attempts at performing these 
functions with the preliminary prototype led to addi­
tional displays to support these functions. 

In the initial implementation, the strike control 
function was triggered by a reported missile failure. 
Strike plans require a specific number of missiles to be 
allocated to each aimpoint. If a missile failure results 
in the quantity of missiles allocated to an aimpoint 
falling below the number required, a set of actions is 
needed to recover from the failure. Recovery is accom­
plished by diverting missiles or launching backup mis­
siles, or by doing both, to restore complete aimpoint 
coverage. 

In the Macintosh version, the recovery from a mis­
sile failure was scripted; the system response was hard 
coded and only made sense if a certain missile failed 
before a certain point in the strike. The failure man­
ifested itself on the display through changes in the 
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colors of key objects (e.g., the missile icon turned from 
green to red) and audible alerts. The failure appeared 
to cause the system to calculate and rank possible re­
covery options. 

It was difficult, however, to show recovery options 
on the same geographic display that was indicating the 
current state of the strike. A key concern was that the 
TSC would confuse recommended actions with the 
actual state. In tead, separate dialogue panels and alert 
boxes were used to present recovery options unambig­
uously to the TSC, as shown in Fig. 5. In the Strike 
Preview mode, the TSC can fai l a missile at will to 
practice recovery procedures. When an actual strike is 
being monitored, the failure has to be initiated at the 
simulation driver and passed to the strike management 
module via Apple Events. 

The TSC performs strike assessment by interpreting 
the missile status messages and viewing terminal imag­
ery (when available) for any battle damage indications. 
Throughout the interface development, but in partic­
ular when considering strike as essment, it became 
apparent that the real focus of the TSC should be 
aimpoint coverage rather than individual missile health 
and progress. The geographic display is not well suited 
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to this aimpoint view of the strike. For example, aim­
point location on the geographic display does not 
necessarily convey aimpoint priority. Consequently, in 
addition to the geographic display, the prototype pro­
vides an aimpoint summary window that draws the 
attention of the TSC to aimpoint coverage. The aim­
point summary consists of a table of prioritized aim­
points (as determined from the strike plan). For each 
aimpoint, the table shows the missiles (by missile iden­
tification number) heading to that aimpoint, the quan­
tity of missiles required, and the number of currently 
allocated missiles. The table also provides access to 
terminal imagery when it arrives at the strike manage­
ment module. 

Improving the Functional Prototype 

The functional prototype, consisting of the integrat­
ed simulation driver and strike management user 
interface, was demonstrated to the sponsor in July and 
August 1993, just 4 months after the effort began. 
On the basis of sponsor feedback, APL set out to build 
a more robust prototype for demonstrating TBIP capa­
bilities to Navy operational personnel. We developed 
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Figure 5. Sample strike management display using SuperCard with a Macintosh. (Alloc = allocated, MSL = missile, Remt = Remote, DTED = Digital 
Terrain Elevation Database, 10 = identification.) 
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the new prototype using an IBM­
compatible PC. The NEXTSTEP oper­
ating system was selected because it 
provides an object-oriented graphical 
user interface and supports develop­
ment of object-oriented applications. 
The support structure includes sophis­
ticated tools for building graphical user 
interfaces to programs incorporating 
Objective C , which, like C++, is an 
object-oriented programming language 
that can execute standard C source 
code. 

The transition to NEXTSTEP was 
relatively straightforward. Although 
SuperCard is not an object-oriented de-
velopment environment, it exhibits 
several characteristics of an object-
oriented system, such as encapsulation, 
modularity, and message passing. Much 
of the application structure developed 
for SuperCard remained valid in the 
NEXTSTEP version. The behavior of 
key objects and their interactions with 
other objects in the application were 
well known. In short, the analysis and 
much of the existing design directly 
carried over to NEXTSTEP; most of 
the revamping effort concentrated on 
programming the interface. Figure 6 
shows an example of the current strike 
management user interface based on 
the IBM PC. 

-. 
LCC20 

[. 

~UD TIf1I8UD RIIq 

[] I"M I-~~ I· 
I I I 
I"AD 

1 __ 1· 

171M "~ Akport I' 
I I I B InAC I_ I· 
teeA8 Jl'- T· 

Moe MSUD expPd 

I· Ilt41 J.". 
I 113 .. I 
I· I .... I·· .. 

I' 11744 
17" 

Ion 
I 1·_ I 
I ·~~ 12S47 I· ... 

.::r. T X4I -r .... 

TOMAHAWK STRIKE MANAGEMENT 

Req Moe A'n/j tskPd estPIt l 

z z 4 0.70 10.75 , , 6 0.&0 0.50 

3 3 ~ D.86 0.88 , , 3 0.&0 0.50 , , , 0.30 0.50 JI 

,ll"Ir ~!I ! I f:' _arm_ 
Image f'II9'eSS - 0416 0430 0446 0600 06 

11ISII7I1 JAMI - ~~. ~ 11ISII7I· 1- - .... 
I SlIm. 1- · ... .... .. 
I-'j- - '" . .. Sllml _ · .... 
1- IAPI · .. ... 
I~ IMO. -__ -rDOOl' j HV' --l -

The NEXTSTEP revision offered 
the opportunity to incorporate a grow­
ing list of enhancements and alterna­
tive displays. Suggestions for improve­
ments, extensions, and new capabilities 
frequently emerged from demonstra­
tions. Alternative (i.e., nongeographic) 
displays for tracking missile progress 
and the ability to fail any missile at any 
point in the strike were two suggestions 

Figure 6. Sample strike management display using NEXTSTEP with an IBM PC. (AimptlD 
= aimpoint identification, MSLlD = missile identification, exp Pd = expected probability of 
damage, RAP = reporting action point, Req = required, Alloc = allocated, Avail = available, 
tskPd = task probability of damage, estPd = estimated probability of damage.) 

high on the list of frequently requested capabilities. 
These and other desired capabilities required develop­
ing decision aids for integration into the prototype. 

Incorporating working decision aids into the proto­
type offers several advantages, such as prompt feedback 
to help refine complicated heuristics, information for 
use in determining data structure design (operator de­
cisions are quite complex and can require intricate data 
structures), and the possibility of translating lessons 
learned from early algorithm implementation directly 
into the final product. In addition to lessons learned, 
the software itself can be incorporated in the final 
system. The Laboratory adhered to strict ANSI C stan-

dards when implementing the three decision aids intro­
duced into the prototype. These were developed using 
a Macintosh Quadra 800 and subsequently ported to 
the IBM PC for integration with the rest of the system. 

The first decision aid, aimpoint coverage, computes 
actions necessary to reallocate missiles to assure proper 
coverage of all aimpoints. The algorithm is triggered 
when the quantity of missiles designated for an aim­
point is less than the number required. This situation 
can arise from a missile failure, a previous reallocation, 
or an increase in required missiles based on an opera­
tor's assessment of previous damage. Each of these sit­
uations requires the system to consider different factors. 
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In responding to a failure, the system must consider if 
a backup missile should be launched or whether one of 
the missiles en route can be redirected to cover the 
failed missile's aimpoint. Clearly, a recovery solution 
that conserves resources is desirable (i.e., a solution 
using the minimum number of backup missiles). If an 
aimpoint is not sufficiently damaged, missiles headed 
toward lower-priority aimpoints may need to be redi­
rected, depending on timing constraints. This action 
can deprive other aimpoints of coverage and set a 
cascade of missile redirections in motion. Eventually, 
backup missiles may need to be launched to cover an 
aimpoint, including the original underdamaged aim­
point. 

The aimpoint coverage algorithm assists the opera­
tor in reaching a decision by enumerating all of the 
appropriate responses to the given situation. Each re­
sponse is ranked using a series of heuristics and present­
ed to the operator for consideration. The implemented 
heuristics are simple but effective in ranking solutions 
and include the following: 

1. A failure recovery solution in which no backup mis­
siles are launched is better than a solution in which 
backup launches are required (conserve resources). 

2. A failure recovery solution requiring few missile 
diversions is better than a solution requiring many 
diversions (minimize the req uired number of realloca­
tion moves). 

3. A failure recovery solution requiring that a missile be 
diverted from a low-priority aimpoint is better than a 
solution in which a missile is diverted from a higher­
priority aimpoint (divert missiles from low-priority 
aimpoints) . 

The aimpoint coverage algorithm is being expanded 
to reallocate missiles in response to positive damage 
assessments. In this case, to maximize the probability 
of meeting strike objectives, the system will seek to 
redirect missiles still flying to the destroyed aimpoint, 
which will eliminate the need to consider launching 
backup missiles. A key issue is how to redistribute the 
extra missiles. Some possibilities are to divert all extra 
missiles to the highest-priority aimpoint available, to 
distribute missiles evenly across all remaining available 
aimpoints, or to redistribute missiles based on a weight­
ed priority of remaining available aimpoints (e.g., di­
vert two missiles to the highest-remaining-priority aim­
point and one to the remaining second-highest-priority 
aimpoint). 

Although the aimpoint coverage algorithm works 
well for the limited scenario used to demonstrate the 
prototype, the number of missiles and diversion and 
backup options in an operational system can be several 
orders of magnitude greater. In an operational environ­
ment, any practical algorithm may need to be able 
to generate and rank many possible solutions. 

The Laboratory is investigating other methods, such as 
genetic algorithms* and fuzzy logic, t for the next gen­
eration of aimpoint coverage algorithms. 

The second decision aid, strike effectiveness, allows 
an operator to monitor the progress of a strike using the 
probability of target damage as a measure of overall 
strike effectiveness. By monitoring the strike progress, 
corrective actions can be made to compensate for those 
areas of the strike that are not meeting objectives. For 
example, if the current probability of damage to a given 
target is below the specified level (perhaps owing to 
failures or diverted missiles) , the user can divert anoth­
er missile from a lower-priority aimpoint to compen­
sate. The conditional probability of damage to an aim­
point is calculated on the basis of the expected level 
of damage to an aimpoint from a single missile and the 
number of missiles going to a given aimpoint. The 
expected level of damage from a single missile is mission 
dependent and is calculated before strike execution. 

The strike effectiveness algorithm dynamically com­
putes the conditional probability of damage for each 
aimpoint as the strike progresses. For example, if a 
missile fails, the algorithm updates the conditional 
probability of damage values for all aimpoints. The 
updated values are presented to the operator for eval­
uation using the now familiar color scheme. Values that 
meet or exceed tasking are shown in green, nonzero 
values below the specified damage level are shown in 
yellow, and null values are shown in red. A null value 
will occur when no missiles are headed to an aimpoint. 
This decision aid allows the operator to evaluate a 
strike's effectiveness quickly during execution. 

The third decision aid, hit probability, computes the 
probability that a Tomahawk will hit designated struc­
tures in the target area. It is designed for both collateral 
damage evaluation and target hit maximization. The 
algorithm accepts as input a series of disjoint, simple 
polygons specified by their vertices. These polygons 
represent buildings and other structures in the target 
area as viewed from above. The algorithm also accepts 
as input the parameters of a bivariate normal probabil­
ity distribution, which denote a missile's most likely 
termination point and containment ellipses in two di­
mensions. To compute the probability of hit, the algo­
rithm approximates the integral of the distribution 
function over the series of input polygons. The distri­
bution function will generally be highly dependent on 
a missile's run-in heading and dive angle. Using the 
probabilities computed by the algorithm, an operator 
can determine the best run-in heading and dive angle 

* G enetic algorithms are heuristic search algorithms based on mecha­
nisms of evolution and natural selection. For further information, 
see the article by Best and Sanders on genetic algorithms in this 
issue. 

t Fuzzy logic is a mathematical approach for simulating human-like 
reasoning and control. Consult Ref. 2 for further information. 
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for a missile going to a specified aimpoint to minimize 
the probability of collateral damage and maximize the 
probability of hitting the desired target. The Laboratory 
is developing a general algorithm for computing the hit 
probability that uses more sophisticated parallelepi­
peds, instead of polygons, to model the target area. 

The three decision aids developed for the functional 
prototype provide the operator with vital assistance in 
controlling and monitoring strike progress. Both the 
aimpoint coverage and strike effectiveness aids have 
been integrated with the prototype. An independent 
program implements the hit probability algorithm. 
Eventually the hit probability decision aid will be in­
corporated into the functional prototype and may con­
tinue to be developed as a stand-alone system for use 
with the current Tomahawk arsenal. 

These decision aids set the foundation for additional 
refinements that will allow a deeper exploration of 
operator support concepts. For example, we expanded 
the degree of operator control over the flex capability 
to permit examination of the level of control appropri­
ate across a range of operational conditions. The initial 
control method for the aimpoint coverage decision aid 
used positive control in which the functional prototype 
computed and recommended actions but did not exe­
cute without explicit operator approval. A manual 
control capability to allow the TSC to divert any 
missile to any alternate mission available to that missile 
has been added (see the middle window in Fig. 6). 
Under manual control, the system does not provide any 
recommendations; it merely issues missile commands 
according to the direction of the operator. 

Progressively more automatic control modes will 
also be introduced. In passive control, the prototype 
will compute and recommend strike actions and then 
automatically carry out the highest-ranking action 
unless overruled by the operator. This level of control 
might be appropriate for recovery options to high­
priority aimpoints or when the missile is close to the 
branch point between two missions. 

The final level of control is automatic control. In 
this mode, the strike management prototype will con­
tinuously evaluate and execute strike actions to opti­
mize some measure of effectiveness without any oper­
ator intervention. One such optimization might be to 
minimize the mean square error between tasked and 
expected probability of damage, weighted by aimpoint 
priority (i .e., for each aimpoint i), as follows: 

min E{w(i) [PDE(i) - PDT(i)FJ , 

where 

PDE(i) is the probability of damage expected at 
aimpoint i, 

PDT(i) is the probability of damage tasked at 
aimpoint i, 

TOM AHA WK STRIKE MANAGEMENT 

w(i) is a weighting factor based on the priority of 
aimpoint i, and 

E is the expectation operator. 

The same method of control would not have to 
govern all scenarios. A strike control doctrine could 
invoke various methods of control for different situa­
tions. For example, control by negation might apply to 
recovery from missile failure, whereas positive control 
would apply to all other situations. Reallocation situ­
ations, other than missile failure, might arise through 
assessments by the TSC. The operator might decide to 
flex all missiles away from an aimpoint on the basis of 
damage seen in missile imagery. The prototype would 
compute flex actions to redistribute missiles to remain­
ing aimpoints. Under positive control, the TSC would 
then select the option to execute. 

Both the Macintosh and NEXTSTEP strike manage­
ment prototypes process a limited scenario incorporat­
ing relatively few TBIP missiles, launch platforms, and 
targets. The three decision aids were developed to 
support this limited scenario. Nonetheless, these algo­
rithms, as noted earlier, may provide a basis for devising 
and implementing expanded capabilities that will ac­
count for the full range of operational functions and 
considerations (e.g., a modified aimpoint coverage al­
gorithm will need to account for large strikes consisting 
of a mix of current generation missiles and advanced 
TBIP missiles). 

The expansion of strike control capabilities in the 
prototype will enable our sponsors to address other 
challenges facing future Tomahawk employment. Com­
ponents of the functional prototype are being integrated 
into a demonstration of Tomahawk satellite communi­
cations to be conducted at the Laboratory during 1995. 
The demonstration will show two-way communications 
between strike management and missiles represented by 
the simulation driver. An important objective of this 
demonstration is to define techniques for dynamically 
assigning missile communication schedules that are 
fully coordinated with the strike management's percep­
tions. Also, through Independent Research and Devel­
opment funding, APL has developed Phase I of the 
Precision Integrated Strike Concept Evaluation Suite 
(PISCES) to connect various Tomahawk-related simu­
lations resident at the Laboratory into a distributed 
simulation capability. Although currently internal to 
APL, PISCES adheres to Distributed Interactive Simu­
lation standards and protocols to allow future examina­
tion of strike management in more complex operations. 
The Laboratory is also preparing the strike management 
prototype for a more operationally representative assess­
ment of usability and operational utility. Prospective 
operators will employ the prototype to manage more 
realistic and complex strike scenarios to confirm useful 
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support concepts, suggest enhancements, and identify 
missing capabilities. 

prospective operators have verified the potential ben­
efits of the proposed new Tomahawk strike manage­
ment functions and helped to identify and prioritize 
additional capabilities. Several features, such as the 
hit probability algorithm and the missile progress dis­
play, that could be of use in the current Tomahawk 
system have been identified during these demonstra­
tions. The development of prototypes as part of the BG 
STC initiative has assisted the PEO(CU) not only in 
solidifying the strike management concept but also in 
adapting it for near-term initiatives such as the Tom­
ahawk In-Flight Position Reporting System, a tracking 
system to be installed in some operational Tomahawk 
missiles. 

Some aspects of the functional prototype may also 
benefit current Tomahawk employment. The strike 
summary window at the bottom of Fig. 6 includes a 
timeline to compare planned missile time of flight with 
reported progress. The timeline begins at the planned 
time of launch and ends at the projected time the 
missile will reach the target. Such a display will help 
decision makers evaluate coordination of launches and 
arrivals. This display could be extended to provide a 
strike planning tool for developing launch sequence 
plans. 

CONCLUSION REFERENCES 

The prototype development effort has shown that 
strike management can be straightforward if operators 
are provided with the proper tools. Demonstrations to 
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