
Operator Support Concepts for Tomahawk Strike
Management

Mark D. LoPresto, Ann F. Pollack, John Florence, Robert C. Ferguson, and Ian E. Feldberg

M Odeling and simulation play important roles in the exploration of future
system capabilities. Plans for the next generation of Tomahawk include a strike
management capability (the ability to control missiles after launch). The Laboratory
has developed strike management conceptual and functional prototypes that have
helped to refine system concepts and requirements, stimulate user feedback, and
provide an environment for early algorithm development. The functional prototype has
become a valuable tool for examining broader issues of weapon employment and has
been incorporated into a distributed interactive simulation environment to help refine
real-time control of precision strike weapons as system-level challenges grow in
complexity.

INTRODUCTION
As the technical direction agent for Tomahawk,

APL is helping the Navy to shape the direction of the
cruise missile program. One example of this effort is the
Battle Group Strike Warfare Coordination (BG STC)
initiative, which is intended to improve overall strike
effectiveness through better coordination of strike
warfare systems. Tomahawk, which constitutes the
u.S. Navy's long-range cruise missile arsenal, is the
in itial focus of this undertaking.

Originally conceived as a strategic system for deliv­
ering nuclear warheads, Tomahawk is now a conven­
tional weapon system appropriate for tactical environ­
ments. Tactical environments necessitate greater
responsiveness and adaptability to the dynamics of
strike warfare, since target priorities are likely to change
as battle damage accumulates and objectives shift. The
opposing force's defenses, once alerted, may be moved,
and new threats to the strike force may emerge to

challenge routes of attack. Timely awareness of strike
effectiveness and the ability to control how strike
operations unfold are therefore important objectives.
These objectives are prompting a change from the cur­
rent fire-and-forget employment mode for Tomahawk.

The Tomahawk Baseline Improvement Program
(TBIP) is developing capabilities for the next genera­
tion of Tomahawk to improve system response time and
enhance employment flexibility. The upgrade, sched­
uled to reach operation by the turn of the century, will
include two-way communications between missiles in
flight and command and control nodes, as shown in
Fig. 1. Communications from the missiles will provide
real-time health and status reports and battle damage
indications. Return communications will allow an op­
erator to divert, or flex, missiles to alternate targets
based on the effectiveness of previous missiles. It will
be possible to judge aimpoint damage using single-

148 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995)

Status reports
and battle damage

1l
~ indications

....... - ...

Unitary I \.
I ' \ .---\ Disperse

~ ..

Figure 1. Tomahawk Weapon System Baseline IV concept of operations. (GPS = Global Positioning System.)

frame video images from a missile's terminal-imaging
infrared seeker. (The term aimpoint in this article is
synonymous with aiming point.)

The two-way communications capability permits
real-time monitoring and control by a Tomahawk
Strike Coordinator (TSC) or a delegated representa­
tive. 1 If necessary, the TSC will be able to reallocate
resources by diverting missiles to alternate targets using
an en route flex command to maintain coverage of
critical targets, conserve missiles, and permit recovery
from missile casualties. Such functions have been
termed strike management.

Recognizing that proper utilization of such capabil­
ities is critical to their success, the Program Executive
Office for Cruise Missiles and Unmanned Aerial Vehi­
cles (PEO[CU]) began to define operator support con­
cepts through the BO STC initiative. A fundamental
objective was to demonstrate that the new capabilities
could be made manageable for operators. In response,
the Laboratory created a computer environment for
visualizing strike management through prototypes that
present the look and feel of potential capabilities. We

use the prototypes to obtain comments and suggestions
from prospective operators on interface design, usabil­
ity, and essential features. In addition, the computer
environment provides a context for algorithm formu­
lation. T o demonstrate system-level implications of
advanced strike and cruise missile concepts and capa­
bilities, the Laboratory is integrating the products of
this task into broader simulation environments.

DESIGNING PROTOTYPES
In software engineering, prototypes are especially

useful for solidifying requirements (by the procuring
agent), understanding design trade-offs (among the
technical community), and influencing system design
(by the eventual customer; in this case, the Fleet) .
Prototypes provide an avenue for uncovering and solv­
ing problems before schedule and cost become the main
determinants of development. Prototypes can be
evolved in four basic stages leading toward an opera­
tional system as follows:

1. Conceptual prototypes, which focus mainly on the
human-computer interface, show the look and feel of

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 149

M. D. Lo PRESTO ET AL.

the eventual system; such prototypes may be auto­
mated.

2. Functional prototypes provide the internal organiza­
tion (data structures and architecture) and incorpo­
rate candidate algorithms and processing behind the
interface to give the system limited functionality.

3. Fieldable prototypes provide the major functions of
the eventual system reliably enough to insert the
prototype into an exercise or operational environ­
ment for initial evaluation. Some operational benefit
is also obtained.

4. Operational prototypes provide virtually all func­
tions in a robust and reliable system that is often an
interim capability introduced in anticipation of fu­
ture delivery through a formal program.

Prototypes supply useful information throughout
their multistage development. They facilitate defini­
tion of technical characteristics through hands-on eval­
uation and permit user feedback before an investment
is made in full-scale development. Customers can val­
idate system requirements and usability by interacting
with prototypes that approximate the look and feel of
the eventual system. Questions arising from this process
help to refine system concepts further. A mature pro­
totype can serve as an interim solution that does not
require a lengthy acquisition process to remedy short­
falls in fielded capabilities.

This article describes the application of conceptual
and functional prototypes to Tomahawk strike manage­
ment. The conceptual prototype models the look of
operator support by simulating the content and presen­
tation format of key information on a typical strike
management display. The functional prototype conveys
the feel of operator support by enabling options for the
functional support layer behind displays (including data
structures, functional flow, algorithms, decision support
features, and controls for governing flow and applying
decisions) to be explored.

DEVELOPMENT PHILOSOPHY
Early prototypes have helped to mature Tomahawk

strike management concepts through a spiral develop­
ment cycle. Top-level requirements were written in a
system-level specification for the Tomahawk Weapon
System Baseline IV. We began designing the prototypes
by storyboarding ideas for strike management to pro­
duce a series of sample displays illustrating possible
operator support concepts. After review, the ideas were
transformed into an automated prototype that was
initially implemented and evolved on the Macintosh
and then progressed to the current 486-based system.
Throughout development, the team concentrated on
designing a flexible, easily extendable system. This
philosophy accommodated changing requirements and

allowed rapid modifications on the basis of sponsor and
user feedback.

Object-oriented techniques were used to implement
a flexible system that could readily be adapted and
expanded to represent new ideas and concepts. Object­
oriented techniques model the problem domain as a set
of objects and the relationships among them. Objects
are abstractions of things in the problem domain that
relate to the system's responsibilities. A class is a set of
objects that have a common structure and behavior. In
general, classes are static, and objects are particular
instances of classes.

The first advantage of object-oriented development
is design stability. Although specific requirements may
change, any Tomahawk strike management system will
have objects for representing missiles, shooters, mis­
sions, and others. Object-oriented development also
permits data encapsulation, since each object has an
associated set of attributes and actions. In this manner,
data are packaged or encapsulated with particular ob­
jects, thus helping to manage system complexity.

Object complexity evolves with the prototype. Ini­
tially, the prototype represented objects at a very high
level with few details, which provided an overall per­
spective useful for refining capabilities and identifying
new requirements. As the prototype unfolded, the ob­
jects afforded a framework for continued development,
since they could easily be added, deleted, or modified.

In addition to employing object-oriented tech­
niques, the development philosophy stressed code re­
use, which was particularly important in the interface
development. A commercial product (Symantec Think
C) was used to provide the basic user interface objects
on the Macintosh, such as windows, menus, and dia­
logue panels. Drawing on this existing code enabled the
team to concentrate on implementing Tomahawk
strike management objects. Code reuse allowed rapid
progress on the specific problem domain within a ge­
neric interface framework.

The aim of the architectural philosophy was to
achieve the flexibility and growth potential emphasized
in the software development philosophy through a
modular approach. Thus, the logical functions of the
prototype were separated into two elements: the strike
management display and the simulation driver. The
strike management display approximated the system
to be deployed, and the simulation driver provided
the inputs and responses for stimulating the human­
computer interface. In an operational system, real­
world inputs would replace the driver. To mirror this
discrete functionality in the prototype architecture,
separate processors were used for the two elements (Fig.
2). Interaction between the elements was through mes­
sages across a network. This architecture was designed
to enhance modularity and set the groundwork for de­
veloping an operational system.

150 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995)

Tomahawk strike management

TOMAHAWK STRIKE MANAGEMENT

prototype displays were firm
enough to permit work to begin on
the computer implementation of
the functional prototype.

The displays in the conceptual
prototype are simple and intuitive.
Graphics are used to convey infor­

Operator support prototypes Simulation driver
mation on a gross scale, and text
and tables are employed to orga­
nize and present fine details. The
geographic display presents the
top-level information required to
monitor the strike, allowing the
operator to retrieve more detailed
information if needed. A consis­
tent color scheme is used to
present essential strike informa­
tion. Green is used as a positive

• "Look" and "feel" of human-computer interface
• Demonstration of tactical support concepts
• Interaction with simulation driver

• Scenario definition and control
• Missile capabilities from launch to impact
• Simulation/stimulation to exercise concepts

of operation

Figure 2. Top-level hardware and functional architecture of the operating support environ­
ment.

CONCEPTUAL PROTOTYPE

The initial conceptual prototype consisted of a series
of computer screen viewgraphs illustrating operator dis­
plays for each of the anticipated strike management
functions. Figure 3 presents a sample display. Concept
refinement occurred through weekly meetings with the
Navy sponsor. After only a few such meetings, the

Show

STRIKE CLOCK

00987

00G51

indication (e.g., receipt of a missile
status message) and blue denotes

completion (i.e., the missile has reached the target).
Nonstandard conditions are presented in red and yel­
low, depending on the degree of urgency or effect on
the overall strike plan.

The conceptual prototype illustrates a hands-off
strike management style. As long as the strike proceeds
nominally, results are presented on the display in green
and blue. The TSC monitors progress but is not

Aimpoint Name Allocated Required MID Term Video

71 AA Amal Abo 2 None

Figure 3. Strike management display for the conceptual prototype. (MID = missile identification.)

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 151

M. O. Lo PRESTO ET AL

required to take action. Intervention is required only
when there is a deviation from the plan, causing a
yellow or red display warning to appear. Such anom­
alous conditions invoke system recommendations that
prompt action from the TSC. Suggested actions are
limited to a few well understood choices. This strike
management style reinforces a goal of the prototype
development effort: to demonstrate a straightforward
user interface.

FUNCTIONAL PROTOTYPE
The modular architecture of the prototype design

environment allows the functional components to
be developed in parallel with conceptual prototypes.
This modularity promotes rapid prototype develop­
ment. The functional prototype consists of the strike
management user interface for monitoring and control­
ling missiles and a simulation driver for generating
missile messages and responding to strike management
commands.

The Simulation Driver

The simulation driver is an important component in
the functional prototype. Without the driver, the util­
ity of the functional prototype would be limited to

File Edit Objects Options Simulation

providing the appearance of operator interfaces without
the feel. With the driver, the functional prototype
offers an environment that stimulates realistic response
from the operator support prototype.

Early driver development was based on the Toma­
hawk Object-oriented Trade-off Evaluation Model
(TOTEM), which APL created as a tool for exploring
advanced Tomahawk concepts. It included a graphical
user interface (GUI) that permitted parameters to be
modified easily for defining a scenario and analyzing
different options. With a GUI, the operator controls
the computer by manipulating icons on the computer
screen rather than entering text instructions on a com­
mand line. Such directly manipulatable, user-friendly
interfaces are familiar and intuitive for Macintosh,
DOS Windows, and X Windows users. Figure 4 illus­
trates a TOTEM scenario development screen. The
object-oriented domain model allowed the program to
be adjusted easily for exploring potential new capabil­
ities. Because of this inherent flexibility, TOTEM was
a logical starting point for the simulation driver and
served as the basic domain framework and interface to
build upon.

The primary functions of the simulation driver are
to stimulate the strike management system with repre­
sentative missile messages and to mimic the response
of missiles to strike management commands. Although

Tue 11:12 AM

Untitled 1 G!i

Figure 4. Scenario development screen for the Tomahawk Object-oriented Trade-off Evaluation Model (TOTEM).

152 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995)

the driver simulates missile actions from launch
to impact, the emphasis is on message exchange and
processing. All communication between the driver and
the strike management module is through message
passing. In the Macintosh-based prototype, messages
were passed over a network utilizing the Apple Pro­
gram-to-Program Communications Toolbox, Apple
Events, and the Apple Event Manager. Apple Events
uses Apple's message-passing protocol for program-to­
program communications. Apple Events provided a
built-in mechanism for exchanging data between the
strike management module and the driver, simulating
the transmission of messages between the Tomahawk
Strike Manager and missiles in flight. In the NEXT­
STEP version of the functional prototype, message
passing was achieved using Unix remote procedure
calls in a client-server architecture.

The driver is an event-stepped simulation with a
variable execution rate. Simulation events are inserted
into an event list in sequence of execution order.
Events are removed from the top of the event list at
the user-specified execution rate unless constrained by
the performance of the computing platform. The driver
manages event processing alongside user input han­
dling and display processing within the application,
allowing the user to alter the execution rate before or
during simulation.

Simulation events include missile events, threat
events, target events, and Global Positioning System
(GPS) events. Each missile is initialized with a launch
event. After the missile begins flight, a booster separa­
tion event is scheduled, and so on, through each se­
quential mission event. Anomalous missile events can
be generated at random, under user control, or based
on proximity and state of threats. These events allow
the strike management operator support prototype to
handle difficult scenarios.

Strike Management Operator Support

The strike management user interface for the func­
tional prototype was developed using Apple's Hyper­
card application program, which was then replaced by
SuperCard (from Silicon Beach). Hypercard and Su­
perCard, both of which support Apple Events, are in­
novative applications for programming on the Macin­
tosh. They supported the rapid growth cycle of the
prototypes with their graphical user interface develop­
ment and message-passing capabilities.

Hypercard and SuperCard work similarly, using
Macintosh's HyperTalk interpreted programming lan­
guage. The SuperCard environment was selected be­
cause of its color display support. Graphical entities on
the screen represent objects in the program that inter­
act through the exchange of messages. When an object
receives a message, it may perform some service, some-

TOMAHAWK STRIKE MANAGEMENT

times using data passed with the message. In addition,
the object may send out its own message or pass the
original message farther along a hierarchical message­
passing structure to be handled by the program or the
operating system.

Strike management interface development started
with the set of viewgraphs that constituted the concep­
tual prototype. The basic display was a geographic view
of the area of interest that served as the default window
when the program was started. This display inspired
new and expanded features, such as pop-up information
windows that remained open while the user clicked on
an object, pull-down menus for setting up and tailoring
the display, and special keyboard equivalents for com­
mon user actions.

The initial interface development phase, although
short, was probably the most productive. The features
of SuperCard made it easy to dispense with mundane
but potentially time-consuming tasks such as imple­
menting window management services and handling
mouse tracking and clicks. Instead, developers concen­
trated on introducing features relevant to Tomahawk
strike management. Attention focused on how strike
management would work, not just how it would look.

Four top-level strike management functions (strike
preview, strike monitoring, strike control, and strike
assessment) were drawn from the Tomahawk Weapons
System Baseline IV System Specification, the docu­
ment specifying the next generation of Tomahawk.
How these functions could be performed became ap­
parent through using the rudimentary strike manage­
ment display. The geographic display was well suited
to strike preview (simulating the strike before execu­
tion) and strike monitoring (viewing strike progress
during execution). The information necessary to sup­
port strike control (diverting missiles in flight) and
strike assessment (gauging strike success from reported
results), however, was not clearly presented on a geo­
graphic display. Early attempts at performing these
functions with the preliminary prototype led to addi­
tional displays to support these functions.

In the initial implementation, the strike control
function was triggered by a reported missile failure.
Strike plans require a specific number of missiles to be
allocated to each aimpoint. If a missile failure results
in the quantity of missiles allocated to an aimpoint
falling below the number required, a set of actions is
needed to recover from the failure. Recovery is accom­
plished by diverting missiles or launching backup mis­
siles, or by doing both, to restore complete aimpoint
coverage.

In the Macintosh version, the recovery from a mis­
sile failure was scripted; the system response was hard
coded and only made sense if a certain missile failed
before a certain point in the strike. The failure man­
ifested itself on the display through changes in the

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 153

M. D. LoPRESTO IT Ai.

colors of key objects (e.g., the missile icon turned from
green to red) and audible alerts. The failure appeared
to cause the system to calculate and rank possible re­
covery options.

It was difficult, however, to show recovery options
on the same geographic display that was indicating the
current state of the strike. A key concern was that the
TSC would confuse recommended actions with the
actual state. In tead, separate dialogue panels and alert
boxes were used to present recovery options unambig­
uously to the TSC, as shown in Fig. 5. In the Strike
Preview mode, the TSC can fai l a missile at will to
practice recovery procedures. When an actual strike is
being monitored, the failure has to be initiated at the
simulation driver and passed to the strike management
module via Apple Events.

The TSC performs strike assessment by interpreting
the missile status messages and viewing terminal imag­
ery (when available) for any battle damage indications.
Throughout the interface development, but in partic­
ular when considering strike as essment, it became
apparent that the real focus of the TSC should be
aimpoint coverage rather than individual missile health
and progress. The geographic display is not well suited

~1IQ2l!U ~ !lm:.lt fil..!.25< !:§!. ~

2

7!AB A.a! Abo

70AR Airport 3 3

72RC noD

60RB Latka

NeHt

Reject

[Reject All I

1

3

6

8

0
0
0
0
0
0

Ae. t

4
7

Hone

Hone

Hone:

Hone

71M
721£

7
5

71M
71M

to this aimpoint view of the strike. For example, aim­
point location on the geographic display does not
necessarily convey aimpoint priority. Consequently, in
addition to the geographic display, the prototype pro­
vides an aimpoint summary window that draws the
attention of the TSC to aimpoint coverage. The aim­
point summary consists of a table of prioritized aim­
points (as determined from the strike plan). For each
aimpoint, the table shows the missiles (by missile iden­
tification number) heading to that aimpoint, the quan­
tity of missiles required, and the number of currently
allocated missiles. The table also provides access to
terminal imagery when it arrives at the strike manage­
ment module.

Improving the Functional Prototype

The functional prototype, consisting of the integrat­
ed simulation driver and strike management user
interface, was demonstrated to the sponsor in July and
August 1993, just 4 months after the effort began.
On the basis of sponsor feedback, APL set out to build
a more robust prototype for demonstrating TBIP capa­
bilities to Navy operational personnel. We developed

3
4

15

U.
Launch Plotfor.

00651

Figure 5. Sample strike management display using SuperCard with a Macintosh. (Alloc = allocated, MSL = missile, Remt = Remote, DTED = Digital
Terrain Elevation Database, 10 = identification.)

154 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995)

the new prototype using an IBM­
compatible PC. The NEXTSTEP oper­
ating system was selected because it
provides an object-oriented graphical
user interface and supports develop­
ment of object-oriented applications.
The support structure includes sophis­
ticated tools for building graphical user
interfaces to programs incorporating
Objective C , which, like C++, is an
object-oriented programming language
that can execute standard C source
code.

The transition to NEXTSTEP was
relatively straightforward. Although
SuperCard is not an object-oriented de-
velopment environment, it exhibits
several characteristics of an object-
oriented system, such as encapsulation,
modularity, and message passing. Much
of the application structure developed
for SuperCard remained valid in the
NEXTSTEP version. The behavior of
key objects and their interactions with
other objects in the application were
well known. In short, the analysis and
much of the existing design directly
carried over to NEXTSTEP; most of
the revamping effort concentrated on
programming the interface. Figure 6
shows an example of the current strike
management user interface based on
the IBM PC.

-.
LCC20

[.

~UD TIf1I8UD RIIq

[] I"M I-~~ I·
I I I
I"AD

1 __ 1·

171M "~ Akport I'
I I I B InAC I_ I·
teeA8 Jl'- T·

Moe MSUD expPd

I· Ilt41 J.".
I 113 .. I
I· I I·· ..

I' 11744
17"

Ion
I 1·_ I
I ·~~ 12S47 I· ...

.::r. T X4I -r

TOMAHAWK STRIKE MANAGEMENT

Req Moe A'n/j tskPd estPIt l

z z 4 0.70 10.75 , , 6 0.&0 0.50

3 3 ~ D.86 0.88 , , 3 0.&0 0.50 , , , 0.30 0.50 JI

,ll"Ir ~!I ! I f:' _arm_
Image f'II9'eSS - 0416 0430 0446 0600 06

11ISII7I1 JAMI - ~~. ~ 11ISII7I· 1- -
I SlIm. 1- ·
I-'j- - '" . .. Sllml _ ·
1- IAPI ·
I~ IMO. -__ -rDOOl' j HV' --l -

The NEXTSTEP revision offered
the opportunity to incorporate a grow­
ing list of enhancements and alterna­
tive displays. Suggestions for improve­
ments, extensions, and new capabilities
frequently emerged from demonstra­
tions. Alternative (i.e., nongeographic)
displays for tracking missile progress
and the ability to fail any missile at any
point in the strike were two suggestions

Figure 6. Sample strike management display using NEXTSTEP with an IBM PC. (AimptlD
= aimpoint identification, MSLlD = missile identification, exp Pd = expected probability of
damage, RAP = reporting action point, Req = required, Alloc = allocated, Avail = available,
tskPd = task probability of damage, estPd = estimated probability of damage.)

high on the list of frequently requested capabilities.
These and other desired capabilities required develop­
ing decision aids for integration into the prototype.

Incorporating working decision aids into the proto­
type offers several advantages, such as prompt feedback
to help refine complicated heuristics, information for
use in determining data structure design (operator de­
cisions are quite complex and can require intricate data
structures), and the possibility of translating lessons
learned from early algorithm implementation directly
into the final product. In addition to lessons learned,
the software itself can be incorporated in the final
system. The Laboratory adhered to strict ANSI C stan-

dards when implementing the three decision aids intro­
duced into the prototype. These were developed using
a Macintosh Quadra 800 and subsequently ported to
the IBM PC for integration with the rest of the system.

The first decision aid, aimpoint coverage, computes
actions necessary to reallocate missiles to assure proper
coverage of all aimpoints. The algorithm is triggered
when the quantity of missiles designated for an aim­
point is less than the number required. This situation
can arise from a missile failure, a previous reallocation,
or an increase in required missiles based on an opera­
tor's assessment of previous damage. Each of these sit­
uations requires the system to consider different factors.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 155

M. D. Lo PRESTO ET AL.

In responding to a failure, the system must consider if
a backup missile should be launched or whether one of
the missiles en route can be redirected to cover the
failed missile's aimpoint. Clearly, a recovery solution
that conserves resources is desirable (i.e., a solution
using the minimum number of backup missiles). If an
aimpoint is not sufficiently damaged, missiles headed
toward lower-priority aimpoints may need to be redi­
rected, depending on timing constraints. This action
can deprive other aimpoints of coverage and set a
cascade of missile redirections in motion. Eventually,
backup missiles may need to be launched to cover an
aimpoint, including the original underdamaged aim­
point.

The aimpoint coverage algorithm assists the opera­
tor in reaching a decision by enumerating all of the
appropriate responses to the given situation. Each re­
sponse is ranked using a series of heuristics and present­
ed to the operator for consideration. The implemented
heuristics are simple but effective in ranking solutions
and include the following:

1. A failure recovery solution in which no backup mis­
siles are launched is better than a solution in which
backup launches are required (conserve resources).

2. A failure recovery solution requiring few missile
diversions is better than a solution requiring many
diversions (minimize the req uired number of realloca­
tion moves).

3. A failure recovery solution requiring that a missile be
diverted from a low-priority aimpoint is better than a
solution in which a missile is diverted from a higher­
priority aimpoint (divert missiles from low-priority
aimpoints) .

The aimpoint coverage algorithm is being expanded
to reallocate missiles in response to positive damage
assessments. In this case, to maximize the probability
of meeting strike objectives, the system will seek to
redirect missiles still flying to the destroyed aimpoint,
which will eliminate the need to consider launching
backup missiles. A key issue is how to redistribute the
extra missiles. Some possibilities are to divert all extra
missiles to the highest-priority aimpoint available, to
distribute missiles evenly across all remaining available
aimpoints, or to redistribute missiles based on a weight­
ed priority of remaining available aimpoints (e.g., di­
vert two missiles to the highest-remaining-priority aim­
point and one to the remaining second-highest-priority
aimpoint).

Although the aimpoint coverage algorithm works
well for the limited scenario used to demonstrate the
prototype, the number of missiles and diversion and
backup options in an operational system can be several
orders of magnitude greater. In an operational environ­
ment, any practical algorithm may need to be able
to generate and rank many possible solutions.

The Laboratory is investigating other methods, such as
genetic algorithms* and fuzzy logic, t for the next gen­
eration of aimpoint coverage algorithms.

The second decision aid, strike effectiveness, allows
an operator to monitor the progress of a strike using the
probability of target damage as a measure of overall
strike effectiveness. By monitoring the strike progress,
corrective actions can be made to compensate for those
areas of the strike that are not meeting objectives. For
example, if the current probability of damage to a given
target is below the specified level (perhaps owing to
failures or diverted missiles) , the user can divert anoth­
er missile from a lower-priority aimpoint to compen­
sate. The conditional probability of damage to an aim­
point is calculated on the basis of the expected level
of damage to an aimpoint from a single missile and the
number of missiles going to a given aimpoint. The
expected level of damage from a single missile is mission
dependent and is calculated before strike execution.

The strike effectiveness algorithm dynamically com­
putes the conditional probability of damage for each
aimpoint as the strike progresses. For example, if a
missile fails, the algorithm updates the conditional
probability of damage values for all aimpoints. The
updated values are presented to the operator for eval­
uation using the now familiar color scheme. Values that
meet or exceed tasking are shown in green, nonzero
values below the specified damage level are shown in
yellow, and null values are shown in red. A null value
will occur when no missiles are headed to an aimpoint.
This decision aid allows the operator to evaluate a
strike's effectiveness quickly during execution.

The third decision aid, hit probability, computes the
probability that a Tomahawk will hit designated struc­
tures in the target area. It is designed for both collateral
damage evaluation and target hit maximization. The
algorithm accepts as input a series of disjoint, simple
polygons specified by their vertices. These polygons
represent buildings and other structures in the target
area as viewed from above. The algorithm also accepts
as input the parameters of a bivariate normal probabil­
ity distribution, which denote a missile's most likely
termination point and containment ellipses in two di­
mensions. To compute the probability of hit, the algo­
rithm approximates the integral of the distribution
function over the series of input polygons. The distri­
bution function will generally be highly dependent on
a missile's run-in heading and dive angle. Using the
probabilities computed by the algorithm, an operator
can determine the best run-in heading and dive angle

* G enetic algorithms are heuristic search algorithms based on mecha­
nisms of evolution and natural selection. For further information,
see the article by Best and Sanders on genetic algorithms in this
issue.

t Fuzzy logic is a mathematical approach for simulating human-like
reasoning and control. Consult Ref. 2 for further information.

156 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995)

for a missile going to a specified aimpoint to minimize
the probability of collateral damage and maximize the
probability of hitting the desired target. The Laboratory
is developing a general algorithm for computing the hit
probability that uses more sophisticated parallelepi­
peds, instead of polygons, to model the target area.

The three decision aids developed for the functional
prototype provide the operator with vital assistance in
controlling and monitoring strike progress. Both the
aimpoint coverage and strike effectiveness aids have
been integrated with the prototype. An independent
program implements the hit probability algorithm.
Eventually the hit probability decision aid will be in­
corporated into the functional prototype and may con­
tinue to be developed as a stand-alone system for use
with the current Tomahawk arsenal.

These decision aids set the foundation for additional
refinements that will allow a deeper exploration of
operator support concepts. For example, we expanded
the degree of operator control over the flex capability
to permit examination of the level of control appropri­
ate across a range of operational conditions. The initial
control method for the aimpoint coverage decision aid
used positive control in which the functional prototype
computed and recommended actions but did not exe­
cute without explicit operator approval. A manual
control capability to allow the TSC to divert any
missile to any alternate mission available to that missile
has been added (see the middle window in Fig. 6).
Under manual control, the system does not provide any
recommendations; it merely issues missile commands
according to the direction of the operator.

Progressively more automatic control modes will
also be introduced. In passive control, the prototype
will compute and recommend strike actions and then
automatically carry out the highest-ranking action
unless overruled by the operator. This level of control
might be appropriate for recovery options to high­
priority aimpoints or when the missile is close to the
branch point between two missions.

The final level of control is automatic control. In
this mode, the strike management prototype will con­
tinuously evaluate and execute strike actions to opti­
mize some measure of effectiveness without any oper­
ator intervention. One such optimization might be to
minimize the mean square error between tasked and
expected probability of damage, weighted by aimpoint
priority (i .e., for each aimpoint i), as follows:

min E{w(i) [PDE(i) - PDT(i)FJ ,

where

PDE(i) is the probability of damage expected at
aimpoint i,

PDT(i) is the probability of damage tasked at
aimpoint i,

TOM AHA WK STRIKE MANAGEMENT

w(i) is a weighting factor based on the priority of
aimpoint i, and

E is the expectation operator.

The same method of control would not have to
govern all scenarios. A strike control doctrine could
invoke various methods of control for different situa­
tions. For example, control by negation might apply to
recovery from missile failure, whereas positive control
would apply to all other situations. Reallocation situ­
ations, other than missile failure, might arise through
assessments by the TSC. The operator might decide to
flex all missiles away from an aimpoint on the basis of
damage seen in missile imagery. The prototype would
compute flex actions to redistribute missiles to remain­
ing aimpoints. Under positive control, the TSC would
then select the option to execute.

Both the Macintosh and NEXTSTEP strike manage­
ment prototypes process a limited scenario incorporat­
ing relatively few TBIP missiles, launch platforms, and
targets. The three decision aids were developed to
support this limited scenario. Nonetheless, these algo­
rithms, as noted earlier, may provide a basis for devising
and implementing expanded capabilities that will ac­
count for the full range of operational functions and
considerations (e.g., a modified aimpoint coverage al­
gorithm will need to account for large strikes consisting
of a mix of current generation missiles and advanced
TBIP missiles).

The expansion of strike control capabilities in the
prototype will enable our sponsors to address other
challenges facing future Tomahawk employment. Com­
ponents of the functional prototype are being integrated
into a demonstration of Tomahawk satellite communi­
cations to be conducted at the Laboratory during 1995.
The demonstration will show two-way communications
between strike management and missiles represented by
the simulation driver. An important objective of this
demonstration is to define techniques for dynamically
assigning missile communication schedules that are
fully coordinated with the strike management's percep­
tions. Also, through Independent Research and Devel­
opment funding, APL has developed Phase I of the
Precision Integrated Strike Concept Evaluation Suite
(PISCES) to connect various Tomahawk-related simu­
lations resident at the Laboratory into a distributed
simulation capability. Although currently internal to
APL, PISCES adheres to Distributed Interactive Simu­
lation standards and protocols to allow future examina­
tion of strike management in more complex operations.
The Laboratory is also preparing the strike management
prototype for a more operationally representative assess­
ment of usability and operational utility. Prospective
operators will employ the prototype to manage more
realistic and complex strike scenarios to confirm useful

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 157

M. D. Lo PRESTO ET AL.

support concepts, suggest enhancements, and identify
missing capabilities.

prospective operators have verified the potential ben­
efits of the proposed new Tomahawk strike manage­
ment functions and helped to identify and prioritize
additional capabilities. Several features, such as the
hit probability algorithm and the missile progress dis­
play, that could be of use in the current Tomahawk
system have been identified during these demonstra­
tions. The development of prototypes as part of the BG
STC initiative has assisted the PEO(CU) not only in
solidifying the strike management concept but also in
adapting it for near-term initiatives such as the Tom­
ahawk In-Flight Position Reporting System, a tracking
system to be installed in some operational Tomahawk
missiles.

Some aspects of the functional prototype may also
benefit current Tomahawk employment. The strike
summary window at the bottom of Fig. 6 includes a
timeline to compare planned missile time of flight with
reported progress. The timeline begins at the planned
time of launch and ends at the projected time the
missile will reach the target. Such a display will help
decision makers evaluate coordination of launches and
arrivals. This display could be extended to provide a
strike planning tool for developing launch sequence
plans.

CONCLUSION REFERENCES

The prototype development effort has shown that
strike management can be straightforward if operators
are provided with the proper tools. Demonstrations to

1 Tomahawk Land Atu.u:k Missile (TLAM CID) Employment Manual, Naval
Warfare Publication 3-03.1, Naval Doctrine Command, Norfolk, VA (1994).

2Quaranta, T. F., "Fuzzy Systems for Simulating Human-Like Reasoning and
Control," Johns Hopkins APL Tech. Dig. 16(1), 43-58 (1995) .

THE AUTHORS

/ ,

158

MARK D. LoPRESTO received a B.S. degree in systems engineering from
the U.S. Naval Academy in 1982 and an M.S. in electrical engineering from
The Johns Hopkins University in 1989. He joined APL in 1987 after 5 years
as a Surface Warfare Officer in the Navy and is a Senior Staff engineer in
the Surface and Strike Warfare Systems Engineering Group of the Fleet
Systems Department. In 1991, Mr. LoPresto assumed his current position as
technical lead for the Battle Group Strike Warfare Coordination initiative
of the Navy's Tomahawk program. His recent efforts have involved
developing functional prototypes, including Tomahawk Strike Management,
for use in the Tomahawk Baseline Improvement Program. In addition, he
has been supporting an Independent Research and Development project to
provide a distributed simulation capability for evaluating advanced precision
strike concepts. His e-mail address is Mark.LoPresto@jhuapl.edu.

ANN F. POLLACK received a B.E.s. in electrical engineering and an
M.S.E. in computer science from The Johns Hopkins University in 1988.
She joined APL in 1988 and is a Senior Staff engineer in the Surface and
Strike Warfare Systems Engineering Group. Ms. Pollack has worked
primarily in the Tomahawk program, performing a variety of systems
engineering tasks. Most recently she has served as the lead engineer for
Tomahawk deconfliction (eliminating conflict between Tomahawk missiles
in flight). She has continued her education, earning an M.S. in electrical
engineering from The Johns Hopkins University in 1991, and is currently
pursuing a Ph.D. in computer science from the University of Maryland,
Baltimore County. Her e-mail address is Ann.Pollack@jhuapl.edu.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995)

TOMAHAWK STRIKE MANAGEMENT

JOHN FLORENCE received a B.S. in mathematics from West Chester State
University of Pennsylvania in 1966, an M.S. in operations research from
George Washington University in 1972, and an M.S. in computer science
from The Johns Hopkins University in 1987. Before coming to the
Laboratory, Mr. Florence developed simulation models for the U.S. Army
and numerous private businesses. He joined APL in 1985 and is a Senior
Staff mathematician in the Surface and Strike Warfare Systems Engineering
Group who has specialized in software engineering, simulation, modeling,
and analysis. His current efforts include developing object-oriented simula­
tions to support prototype development and distributed simulation capabili­
ties at APL. His e-mail address is John.Florence@jhuapl.edu.

ROBERT C. FERGUSON received a B.S. in electrical engineering from
Cornell University in 1984 and an M.S. in electrical engineering from
Purdue University in 1985. He joined APL in 1986 as a member of the
Strategic Systems Department, where he contributed to Trident II missile
accuracy analysis. In 1989, he became a member of the Fleet Systems
Department and contributed to the Aegis and Tomahawk programs by
developing correlator/tracker algorithms for the Aegis Anti-Air Warfare
Correlator/Tracker and performing system analysis for the Tomahawk
Baseline Improvement Program. Currently, Mr. Ferguson is participating in
Tomahawk deconfliction analysis and data fusion efforts for the E-2C
program. His e-mail address is Robert.Ferguson@jhuapl.edu.

IAN E. FELDBERG received a B.S. in electrical engineering and computer
science and an M.S. in computer science from The Johns Hopkins
University in 1984 and 1987, respectively. Mr. Feldberg joined APL in 1984
and is a Senior Staff engineer in the Surface and Strike Warfare Systems
Engineering Group. He has contributed to a variety of software projects,
including computer animation for simulation, machine vision and machine
learning research, and biomedical research. He became a member of the
Fleet Systems Department in 1993, primarily in support of the Tomahawk
program, and has served as the principal software engineer for the
Tomahawk Terminal Fratricide Visualization. Mr. Feldberg is the principal
software engineer for Tomahawk strike management proto typing efforts as
well as technical consultant for the Synthetic Environment Workstation, an
Independent Research and Development project coordinated through the
Research Center. Mr. Feldberg is pursuing a doctorate in computer science
with specialization in machine learning and synthetic environments. His
e-mail address is Ian.Feldberg@jhuapl.edu.

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 159

