
Using Genetics-Based Learning Methods to Improve 
Simulation Model Fidelity 

Lloyd A. Best and Robert D. Sanders 

S imulations offer a cost-effective alternative for modeling the complex behavior of 
objects. But achieving high fidelity can be difficult, especially without a skilled 
tactician to recommend parametric settings that cause the object to move within the 
desired kinematic motion. The added expense for an expert's time, however, may be 
too high for proof-of-principle projects on shoestring budgets. In addition, the 
underlying principles governing quasi-opt imal object behavior are harder to extract for 
simulations requiring model parameters with search spaces having more than three 
dimensions. This problem represents a natural knowledge extraction bottleneck, as the 
human expert must think in four dimensions and beyond to locate areas within the 
model's parametric search space where quasi-optimal simulation performance will 
occur. To maintain cost-effectiveness and simulation fidelity, a simulation optimization 
tool employing th e simple genetic algorithm can be used to adaptively peruse an 
arbitrary, complex domain space formed by a set of model parameters to provide quasi­
optimal simulation performance. 

INTRODUCTION 
Genetic Learning for ORBIS Simulations (GLOS) 

is a simulation tool integrated into the background 
mode of the Object-oriented Rule-Based Interactive 
System (ORBIS), an expert system development tool 
used to create complex simulations. Funded by an FY 
1994 Independent Research and Development project 
at APL, GLOS allows the user to define an arbitrary, 
complex, multiparametric search space representing 
simulation parameters that would normally be adjusted 
by hand. GLOS then employs the simple genetic algo­
rithm (SGA) to explore the parametric space, finding 
quasi -optimal settings for the user. The goal of this 

project was to determine if GLOS could attain im­
provements in these parameters comparable to those 
achieved by a skilled operator, but in significantly less 
time. Results based on using a validated ORBIS sim­
ulation as a test bed indicate that GLOS is robust and 
fast, and can offer high-fidelity solutions to complex 
problems. 

WHAT IS ORBIS? 
ORBIS is an expert system development tool de­

signed to create a variety of dynamic simulation 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 123 



L. A. BEST AND R. D. SANDERS 

environments. 1 It allows for the placement of dynamic 
entities (represented as objects) within a synthetic 
environment to interactively analyze complex behav­
ior (represented as rule sets) played out in terms of 
tactical doctrine and logic. Along with evaluation of 
operational guidance, ORBIS simulations have been 
used for advanced technology utility assessments, cost 
and effectiveness analyses, and distributed simulations 
on the Defense Simulation Internet. 

An ORBIS simulation can run in two modes: 
interactive and background. During an interactive 
session, the user can apply a powerful capability 
called dynamic editing, a feature that allows "on­
the-fly" editing of rule sets and object parameters in 
the middle of an interactive simulation run. When 
used in conjunction with a time-restore capability, 
this feature allows the operator to see the effect 
of "what if" considerations on the outcome of 
object interactions. In the background mode, Monte 
Carlo simulation runs are used to gather statistics, 
defined in terms of measures of effectiveness, to 
analyze the impact and effectiveness of tactical guide­
lines or the physical components of model object 
behavior. 

However, to obtain high-fidelity model behavior, 
simulation developers must often run several back­
ground trials to locate optimal settings for parametric 
values associated with the rule bases and objects used 
in the simulation. This technique of exploring simu­
lation parameters is frequently the only recourse for 
optimizing simulation-based control strategies and sys­
tem designs, and is not cost-effective for simulation 
development for two reasons. First, an expert operator 
is required to supply the necessary skill and intuition 
to adjust the simulation model parameters, adding cost 
to software development. Second, a complex model 
can have an exhaustive, poorly understood, multipara­
metric search space where manual manipulation of 
parametric settings cannot produce quasi -optimal 
model behavior. 

HOW DOES GLOS WORK? 

The learning functionality of GLOS is based on the 
application of the principles of natural selection and 
genetics embodied in the SGA. Theoretically and 
empirically proven as an optimization strategy, the 
SGA provides a robust search over complex problem 
domain spaces. In this section we highlight the basics 
of genetic algorithm theory to give the reader a back­
ground for understanding how GLOS works. Srinivas 
and Patnaik,2 Goldberg,3 and Davis4 are excellent 
sources for readers interested in a more comprehensive 
study of genetic algorithms. 

Natural Systems 

Genetic algorithms were introduced by HollandS in 
the early 1970s as computer programs that retain the 
mechanisms of natural systems. In nature, all species 
compete for limited resources (food, water, shelter) in 
order to survive. Successful competition is essential for 
survival. The traits that determine success or failure are 
manifested in the species through its genetic makeup. 
The base unit of this genetic makeup is composed of 
genes, which contribute certain features to the species 
(e.g., eye color, skin pigment, muscle tone, etc.). Col­
lections of these genes form structures called chromo­
somes, which are the "blueprint" to how the species 
survives or adapts to its competitive environment. 
Success in reacting to the environment determines the 
fitness of the chromosome. 

The most common manifestations of evolution are 
adaptive changes in the species itself, which increase 
its chances of survival. These changes necessitate 
changes in genetic makeup. In natural systems, "surviv­
al of the fittest" in a species is affected as genes of the 
more adaptive individuals survive and the weaker in­
dividuals die out. Evolution occurs naturally, as only 
the fitter survive to combine their more adaptive genes 
with others of the same species that also have survived 
because of more adaptive genes. The process of recom­
bining genes during mating is called crossover of the 
genetic material. The whole mating process itself is 
called reproduction, as a new generation of species is 
created with a higher level of fitness than the parents. 
Therefore, the main observation from natural systems 
is that the crossover of genes of fitter individuals 
during reproduction leads to survival of the fittest 
among gene features. 

Although natural systems use crossover as the main 
mechanism for evolving adaptive individuals, a second­
ary mechanism called mutation may manifest itself. 
Occasionally reproduction and crossover can result in 
the loss of certain useful genetic material. Mutation 
helps prevent the loss of potentially valuable genetic 
material that can get "weeded" out by the primary 
operators. It also introduces additional variation into 
the system. 

The Simple Genetic Algorithm 

The SGA operates on a set of potential solutions, 
called a population, to an optimization problem. Rath-

,er than a sequential search that would peruse the 
domain space one solution at a time, the SGA conducts 
a parallel search by maintaining many possible solu­
tions. It uses an objective function to evaluate each 
solution within the current population. These values 
naturally will vary depending on the optimization 

124 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



problem. Therefore, to maintain uniformity over var­
ious problem domains, a fitness function is used to 
normalize the objective function to a range from ° to 1, giving the solution's worth as a possible solution. 
Genetic learning occurs as the best chromosomes of the 
current population are selected and the information 
encoded within their structures is interchanged to form 
a new population of solutions with potentially higher 
fitness. 

The basic elements of the SGA's genetics-based 
search technique are presented in Fig. 1. The process­
ing begins at generation ° with an initial population 
randomly seeded with potential solutions. The fitness 
function is applied to each member of the population 
to determine each solution's fitness values. The pop­
ulation is next checked for convergence. Although the 
criteria indicating convergence will vary, the following 
typically apply: 

• A particular best population fitness has been achieved, 
exceeding some predefined value. 

• The difference between the population average fit­
ness and the best population fitness approaches a 
predefined threshold value. 

• The best population fitness value has been held for a 
predefined number of generations. 

• The population contains multiple copies of only a few 
unique solutions. 

Generation T = 0 

Generation 
T= T + 1 

Figure 1. The simple genetic algorithm (SGA) processing cycle 
begins with a randomly seeded initial population and then com­
putes each member's fitness to determine its worth as a solution 
to the optimization problem. When the fitness of the current 
population does not satisfy the predefined criteria, the SGA uses 
genetic operators to create a new population of potentially 
fitter solutions by interchanging the better notions on solving 
the optimization problem that are suggested by the fitter solu­
tions. (T denotes one generation.) 

GENETICS-BASED LEARNING METHODS 

When convergence has not occurred, the SGA uses 
genetic operators to recombine the information encod­
ed in the best chromosomes to form the new population 
for the next generation. The cycle of evaluating pop­
ulation fitnesses and forming new populations contin­
ues until the convergence criteria are satisfied. This 
parallel search distinguished SGAs from point-to-point 
optimization methods, which can locate false peaks in 
multimodal search spaces. 

Maintaining the proper population size is vital for 
the SGA to perform optimally. Populations that are 
too small cause the genetic algorithm to converge 
too quickly upon a solution, with a high probability 
of ending the search on a false peak. Populations that 
are too large cause the SGA to perform poorly, result­
ing in long waiting times for significant improvement 
in fitness of the solutions as processing proceeds from 
population to population. GLOS uses the genetic al­
gorithm theory offered by Goldberg6 to recommend 
the optimal population size for optimizing a set of 
parameters. 

Each solution held within an SGA population is 
analogous to the chromosomes comprising the genetic 
makeup of a species within a natural system. Recall that 
the genes of the chromosome express a specific charac­
teristic or trait for an individual of that species; there­
fore, GLOS adopts this scheme by representing each 
parameter of a simulation model as a gene. The range 
of parametric settings allowed for a particular param­
eter constitutes the traits of the gene. A collection of 
genes forms a chromosome and represents one possible 
solution to the multiparametric search space defined 
for the simulation model. 

The Encoding Scheme 

The traditional SGA works with an encoding of the 
parametric set for the problem being optimized, not the 
parameters themselves. In general, genetic algorithms 
require that the natural parametric set of the optimi­
zation problem be encoded as a finite-length string 
defined over some finite alphabet. Specifically, the 
SGA encodes each solution as strings of bits from a 
binary alphabet (0, 1). The concept of the encoding 
mechanism allows genetic algorithms to maintain their 
robustness among a wide range of optimization prob­
lems by tailoring the algorithm to meet the specific 
need of the problem, not vice versa. 

There is no generic encoding mechanism for all 
problem types, since the mechanism is highly depen­
dent on the nature of the problem. Therefore, GLOS 
adopts the traditional genetic algorithm encoding 
scheme recommended for encoding multiparametric 
optimization problems dealing with real parametric 
values. This method is called concatenated, multi­
parameter, mapped, fixed-point coding. Basically, the 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 125 



L. A. BEST AND R. D. SANDERS 

method maps binary strings of length lover the interval 
specified by [Urnin, Urnax] , where Urnin and Urnax are the 
minimum and maximum values, respectively, for the 
parameter. Equation 1 gives the precision for the 
mapped coding: 

U rnax - U rnin 
7r = 1 • 

2 -1 (1) 

GLOS allows the user to specify the (Urnin , UrnaJ 
and the precision values; therefore, the encoding 
mechanism concerns itself only with the length l of the 
binary string needed to map the possible traits or values 
for each parameter. The string length needed for each 
parameter is easily determined by solving for l in Eq. 
1 and obtaining Eq. 2: 

I = log, (U m~ - ~ min H" J 
(2) 

loge 2 

The boxed insert demonstrates the encoding scheme 
adopted for GLOS. 

The Fitness Function 

Many optimization schemes require auxiliary in­
formation to perform properly. For example, gradient 
techniques require derivatives for peak climbing, and 
other local search procedures such as the greedy tech­
niques of combinatorial optimization require access to 
most, if not all, tabular parameters. By contrast, the 
SGA is blind because it requires no auxiliary informa­
tion, only the payoff values associated with the individ­
ual strings generated by the encoding scheme. These 
individual values are defined by the objective function. 
The fitness function is then used to normalize the 
objective values so that they are bound within the 
interval [0, 1]. 

Consider, for example, the optimization problem of 
maximizing the function f(x) = x2 on the integer 
interval [0, 31]. Using the previously described encod­
ing scheme with Urn in = 0, Urnax = 31, and precision = 1, 
the parametric space (0,31) can be mapped linearly to 

GLOS ENCODING MECHANISM: AN EXAMPLE 

126 

Step 1. Consider the following multiparametric set that is to be optimized. 

Parameter 

x 
y 

Minimum 

5 
10 

Maximum 

20 
30 

Precision 

5 
10 

Step 2. Find the binary string length needed to map each parameter of the set using 
Eq. 2 (see text). 

Parameter x 

loge (20 -5 + 5) 
Length = 5 

loge 2 

Length = 2 

Parameter y 

10 (30-10+10) 
ge 10 

Length = -~~---~ 
1oge 2 

Length = 2 

Step 3. Map binary strings to the list of possible values for each parameter, refining precision 
for those parameters that cannot be mapped linearly. Note that parameter x fits, 
but precision for parameter y is readjusted using Eq. 1 (see text). 

Parameter x mapping Parameter y mapping 

00 -7 5 } 5 00 -7 10.00 } 6.67 
01 -7 10 } 5 01 -7 16.67 } 6.67 
10 -7 15 } 5 10 -7 23.33 } 6.67 
11 -7 20 11 -7 30.00 

Step 4. Multiparametric encoding is a concatenation of each of the individual parametric 
encodings. 

Example string: 1001111 

x y 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



the set of 5-bit binary strings (00000,11111), respec­
tively. The next task will be to attach objective values 
for each string. A possible method would be to convert 
each binary string to a decimal equivalent using base 
2 arithmetic and then square the results; e.g., the binary 
string 10101 decodes to 21 0.24 + 0.23 + 1.22 + 
0.2 1 + 1·2°). This result squared (441) will be the ob­
jective value for 10101. Once the objective value is 
computed, the fitness function would normalize that 
value. For the current optimization problem, a possible 
fitness function would be to divide the objective value 
by an arbitrary, large positive value (e.g., 961) that 
would be certain to bound the fitness within the 
interval [0, 1]. 

The Selection Mechanism 

The SGA must model the survival of the fittest 
mechanism observed in natural systems. Simply stated, 
the SGA must select solutions within a population in 
such a way that reproduction result in fitter olutions 
surviving and weaker solutions dying out. The SGA 
uses a "roulette wheel" selection scheme. Each binary 
string in the population is allocated a sector or slot on 
the wheel, with the angle subtended by the sector at 
the center of the wheel equaling 27r(fi /1), where 1 is 
the sum of all the string fitnesses and fi is the fitness 
of the ith binary string. The SGA selects a binary string 
for reproduction if a randomly generated number in the 
range of 0 to 27r falls in the sector corresponding to the 
string. Figure 2 shows the construction of a roulette 
wheel for a population of binary strings and fitness 
values. This selection technique accomplishes "surviv­
al of the fittest," as the fitter (less fit) strings are as­
signed larger (smaller) sectors on the wheel, resulting 
in larger (smaller) probabilities of being selected. 

Genetic Operators 

After roulette wheel selection picks a pair of parent 
strings that will contribute genes to the next popula­
tion, the SGA applies the genetic operators, called 
crossover and mutation, to produce one pair 
of offspring. Crossover, the most critical 

Example 
population 

Roulette 
wheel 

GENETICS-BASED LEARN ING METHODS 

String Fitness 

01101 0.176 
11000 0.599 
01000 0.067 
10011 0.376 

Total 1218 

Percentage 
of total 

14.4 
49.2 

5.5 
30.9 

100.0 

Figure 2. Example of constructing a roulette wheel. When the 
fitnesses of each population member are computed, the prob­
ability that each member will be selected to contribute offspring 
to the next generation is determined. This probability is ex­
pressed as the population member's fitness divided by the 
population's total fitness. The roulette wheel is weighted corre­
sponding to each member's probability of being selected. 

operator. Although the SGA uses a single-point cross­
over, multiple-point (i.e., two cross sites or more) cross­
over operators have been suggested by Cavicchio7 and 
Frantz.8 They must be used with caution, however, as 
DeJong9 has discovered that performance increasingly 
degrades with the increased number of cross points. 

After crossover, the SGA applies the mutation 
operator to both binary strings on a bit-by-bit basis, 
where the mutation of one bit does not affect the 
probability of mutation of another bit. The SGA ac­
complishes the mutation process by flipping the value 
of the bit, i.e., changing 0 to 1 or 1 to O. Figure 4 

operator, recombines the genetic material of 
the parent strings when a randomly gener­
ated number i greater than the probability 
of crossover (pJ, where 0 ~ Pc ~ 1. This 
technique proceeds as follows. Given two 
binary string of length l, a cross site is ran­
domly selected from 1 to l - 1. The cross 
site may assume any of the l - 1 possible 
values with equal probability. The portions 
of the two strings beyond the crossover 
point are exchanged to form two new 
points. Figure 3 demonstrates the crossover 

Before crossover: cross site is 
randomly selected at position 3. 

After crossover: two offspring are 
formed for the next population. 

A1 A2 001 • • 
B 1 11m 11 •• 1 ••• B2 __ ~~...;...;~ 

Figure 3. The SGA applies crossover to two binary strings, selected as 
parents, by first randomly selecting a cross site where both parents are 
separated, forming four substrings. The SGA then proceeds to form two new 
offspring by interchanging the genetic information represented within each 
parent's substring. 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 127 



L. A. BEST A D R. D. ANDERS 

Before mutation: apply to each bit 
with equal probability. 

After mutation: only bit 3 falls within 
mutation probability. 

stemming from calculus, is not the motiva­
tion of natural systems. For more humanlike 
optimization tools, the goal is improvement, 
that is, getting to some good, "satisfying" 
level of performance quickly. A1 100110101 1 A2 I 00 l!} 1 0 1 0 11 

Genetic algorithms do sort out interesting 

Figure 4. The SGA applies mutation to a binary string on a bit-by-bit basis. If 
the bit falls within the probability of mutation, its value is inverted. 

areas of a complex search space quickly, but 
they are weak and do not provide the guar­
antees of more convergent procedures. Thus, 
they can converge to near-optimal or quasi­

demonstrates mutation. Mutation of a bit will occur 
only if a randomly generated number is greater than the 
probability of mutation Pm' where 0 ~ Pm ~ 1. 

Optimal selection of Pm and Pc remains an open 
issue, but two distinct parametric sets have emerged. 
One set has a small population size (30) with relatively 
large crossover (Pc = 0.9) and mutation (Pm = 0.01) 
probabilities. The other set has a large population size 
(100) with smaller crossover (Pc = 0.6) and mutation 
(Pm = 0.001) probabilities.2 

Population Replacement Scheme 

The proce s of election and genetic operation con­
tinues until enough offspring are generated to replace 
the parent population. The SGA traditionally uses a 
nonoverlapping replacement scheme, where the en­
tire population is replaced each generation. Many sub­
sequent genetic algorithms apply overlapping tech­
niques where only a portion of the population is 
selectively replaced. It is possible, for example, to keep 
one or more population members for several genera­
tions, as long as those individuals sustain a better 
fitness than the rest of the population. In addition, 
since maintaining the proper population size is critical 
to optimal convergence behavior, other nontradition­
al methods adaptively vary the population size to give 
the best convergence. GLOS applies some of these 
useful strategie by using an elitist principle, where 
one or more copie of the best solution of the parent 
population are always placed in the offspring popula­
tion. GLOS also computes the optimal population size 
and maintains thi constant size throughout the 
processing. 

The SGA and Optimization 

The following discussion focuses on why the SGA 
works and what to expect for convergence performance 
on optimization problems. 

Optimal versus Near-Optimal Performance 

Goldber~ note that, when judging optimization 
procedures, the common focus is solely on conver­
gence (i.e., does the method reach an optimum). In­
terim performance is entirely forgotten. This emphasis, 

optimal results. However, more convergent procedures 
are typically applicable to only a narrow class of prob­
lems. Genetic algorithms are extremely global in appli­
cation and can be used where more convergent 
methods dare not tread. To help offset premature con­
vergence, GLOS maintains the optimal population size 
and also employs fitness scaling to help prevent the 
dominance of false peaks within the population. 

Why Does the SGA Work So Well? 

HollandS captures the essence of SGA mechanics 
with the schema theory. The SGA takes advantage of 
parallel search by asking "In what way are the fittest 
binary strings similar?" To answer this question, the 
idea of the schema is proposed. A schema (plural sche­
mata) is simply a similarity template describing a subset 
of strings with similarities at certain positions. The 
SGA defines a schema over the alphabet (0, 1, *), 
where * matches either a 0 or 1. The number of fixed 
positions of the schema is its order, and the distance 
between the outermost fixed positions of the schema 
is the defining length. For example, the schema * 111 * 
describes a subset with four members (01110, 01111, 
11110, 11111) and has an order of 3 and a defining 
length of 2. The schema also has an associated fitness 
computed by taking the average fitness of the binary 
strings that it represents. 

The concept of schemata is important because 
the SGA's search for optimal strings is a simultaneous 
competition among schemata to increase their instan­
ces within the population. The optimal string is viewed 
as a juxtaposition of schemata with short defining 
length and high fitness values. Such schemata are 
appropriately called building blocks. The notion that 
strings with high fitness values can be located by sam­
pling building blocks with high fitness values and 
combining the building blocks effectively is called the 
building block hypothesis. 

SYSTEMS ARCHITECTURE 
As shown in Fig. 5, the systems architecture of 

GLOS has three main components: the User Interface 
Module, the Learning Module, and the Process Parsing 
Module. The primary interaction the user has with 

128 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



GlOS 
User InterfaCe 

Module 

GlOS 
learning 
Module 

Process Parsing GLOS I 
Module 

I 

Figure 5. GLOS systems architecture. The User Interface Module 
provides a friendly environment for setting up an ORBIS simulation for 
optimization by the Learning Module. The Process Parsing Module 
provides a speedy execution of each processing cycle by evaluating 
each population in parallel , rather than sequentially. 

GLOS is the User Interface Module, which allows the 
user to create the input files that GLOS requires and 
to start or terminate a genetic learning session. It has 
been integrated into the existing ORBIS "background 
mode" menu system. The Process Parsing Module is the 
key to execution speedup for GLOS. The traditional 
SGA sequentially processes each potential solution 
within a population. GLOS, on the other hand, distrib­
utes solution evaluation over several central processing 
units so that subsets of the current population are 
processed simultaneously in parallel. When all solu­
tions in a population have been evaluated, control 
is passed back to the Learning Module. The SGA is 
implemented entirely within this module. Its major 
tasks are to apply genetic operators to the current 
population, compute vital statistics related to the pro­
cessing of the current population, and generate a pop­
ulation for the next processing cycle. The Learning 
Module also interacts with the Process Parsing Module 
to start evaluation of solutions of the next population 
and produces the output files for each generation. 

OUTPUT FILES 
Each generation, GLOS creates four output files that 

summarize the genetic learning results from the start of 
the session to the generation currently being processed. 
The learning graph file presents graphically the best­
solution fitness and the average population fitness 
versus the generation number in which each occurred. 
As shown in Fig. 6, the file gives a high-level view of 
the learning progress of the session. On a generation­
by-generation basis, the user can monitor the discovery 
of solutions of better fitnesses, leading up to a conver­
gence of the best-solution and average fitnesses. 

The best-solutions file (Fig. 7) lists two types of 
information: the best solution held for the current 

GENETICS-BASED LEARNING METHODS 

0.3218 0.4445 0.5672 0.6899 0.8127 0.9354 
1---------1---------1---------1---------1---------1 

11 A B 
1---------1---------1---------1---------1---------1 

21 A B 
1---------1---------1---------1---------1---------1 

31 A B 
1---------1---------1---------1---------1---------1 

41 A B 
1---------1--------1---------1---------1---------1 

51 A B 
I---------I---------I---------I---------i---------I 

61 A B 
1---------1---------1---------1---------1---------1 

71 A · B 
1---------1---------1---------1---------1---------1 

81 A B 
1---------1---------1---------1---------1---------1 

91 A B 
1---------1---------1---------1---------1---------1 

101 C 
1---------1---------1---------1---------1---------1 

111 C 
1---------1---------1---------1---------1---------1 

0.3218 0.4445 0.5672 0.6899 0.8127 0.9354 

*Notel: Each mark (-) is 0.0123 fitness pts. 

*Note 2: A = Average Population Fitness Value. 
B = Best Population Fitness Value. 
C = Convergence of Average and Best Fitnesses 

Within 0.0123 pts. 

Figure 6. The GLOS learning graph file is used to monitor conver­
gence on a best solution, which occurs when the population's average 
fitness differs from the best solution's fitness by a predefined threshold. 
GLOS terminates processing at convergence. 

generation and the best solutions of previous genera­
tions when those solutions were held for more than one 
generation. Basically, the file is used to see how GLOS 
is converging on a single best solution or a set of best 
solutions. A set of best solutions can occur when the 
parametric search space is multi modal. A current best 
solution held for at least 10 generations is a good in­
dication of convergence. 

The population file contains a complete listing of 
the population held for the last generation processed. 
This file lists the number of occurrences or copies for 
each member maintained in the current population. 
For each member the minimum, maximum, and aver­
age fitnesses are also maintained. A population is con­
sidered converged when there are many copies of a few 
members in the current population. 

The last file created by GLOS is the checkpoint file, 
which is used to save the last population processed. It 
can be used to restart a future learning session from the 
point that the current session ended. 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 129 



L. A. BEST AND R. D. SANDERS 

Current Best Solution 

Generations Held: 5 
Fitness: 0.9354 
-------------------------------------------------
+++ COURSE 90.0 DEGREES 

+++ SPEED 10.0 KNOTS 

+++ DEPTH 135.0 FEET 

Previous Best Solution: 1 

Generations Held: 3 
Fitness: 0.7759 

+++ COURSE 45.0 DEGREES 

+++ SPEED 8.0 KNOTS 

+++ DEPTH 200.0 FEET 

Previous Best Solution: 2 

Generations Held: 3 
Fitness: 0.7021 

+++ COURSE 35.0 DEGREES 

+++ SPEED 9.0 KNOTS 

+++ DEPTH 300.0 FEET 

END OF LISTING ===== 

Figure 7. The GLOS best-solutions file is used to monitor the 
parametric set that gives the best solution and the parametric sets 
that were held as previous best solutions. GLOS also keeps track 
of the number of cycles that each parametric set was held as the 
best solution. 

EV ALUATING GLOS PERFORMANCE 
ORBIS was used by the cost and operational effec­

tiveness analysis study team organized for the Naval 
Submarine Offboard Mine Search System (SOMSS) 
program. 10 At a mission assessment level, ORBIS 
provided support for the Milestone 1 decision for the 
Naval Acquisition Review Board. One cost factor in­
volved in using ORBIS for the SOMSS assessment was 
the sensitivity analysis of parameters associated with 
the simulation model for planning safe paths through 
a mined region. 

Several background mode trials were needed to 
locate optimal settings for parametric values associat­
ed with the path-planning model of the simulation. 

Consequently, additional cost was incurred by requir­
ing a tactician to supply the intuition necessary 
to adjust those parameters. Therefore, this path­
planning model was selected as a test-bed simulation 
to evaluate GLOS performance. Our primary goal was 
to test the skill of GLOS in selecting parametric set­
tings that were "tweaked" by the tactician, that is, to 
determine if GLOS could offer the same intuition 
needed to replicate the tactician's results. 

Selecting the Model Parameters to Learn 

The SOMSS simulation involves an unmanned 
underwater vehicle (UUV), acting as an escort vehicle, 
that plots a safe path for a nuclear-powered attack 
submarine (SSN-688) to follow as they transit in tan­
dem through a mined area. Figure 8 shows the general 
desired behavior. The path-planning model allows the 
UUV to plan a safe path around all detections encoun­
tered without violating a safe area defined around the 
mine. The model itself is composed of seven main 
parameters, listed in Table 1, which must be adjusted 
for a particular minefield pattern to produce high­
fidelity behavior for the UUV. 

Setting Up the Test Case Minefield 

To evaluate GLOS skill to optimize over this para­
metric set, we selected a test case minefield identical 
to those used in the SOMSS simulation analysis. As 
shown in Fig. 9, the SSN -688/UUV transit was to 
begin randomly on a starting line and terminate ran­
domly on an ending line. Two minefields were used­
a line of mines with fixed positions interposed on a field 
of randomly placed false contacts called nonmine 
bottom objects or NOMBOS. To replicate the training 
patterns used by the tactician, each member of a GLOS 
population was trained with a simulation having a 

Mine 

Safe 
standoff 

uuv 

SSN-688 

Figure 8. The GLOS simulation test bed is a path-planning 
model governing the motion of an unmanned underwater vehicle 
(UUV) to plan a path that keeps itself and an SSN-688 safe as 
they transit a minefield in tandem. 

130 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



GENETICS-BASED LEARNING METHODS 

Table 1. Selected parametric set. 

Parameter Determines 

Mine safe distance 

Tum diameter 

Maximum tum angle 

Test point distance 

Exit count 

How close to the mine any point on the path can be 

How tight the turns within the path should be 

What the maximum tum allowed within a path is 

How many points along the path are needed 

How many attempts to find a path are made 

Arc step 

Safe backtrace distance 

How much curvature within the path is needed 

How far to back away from a mine to plan safely 

/10 
NOMBOS II 

field 
barrier I 

I 
I 

Ending line 

o o o 
o 

01 
I 

I 
I Mine 

,- 0 - 0 - -Ol~ ~~~rier 
I 000 I I 
l _______ -.! I 

o 0 I 

o o o I 
I 

L _ _ ________ J 

Starting line 

Figure 9. The test case minefield for the first evaluation is a 
fixed line of mines (closed circles) imposed on a randomly 
generated field of non mine bottom objects (NOMBOS, open 
circles). 

different starting location, ending location, and config­
uration ofNOMBOS, with the same fixed line of mines 
interposed on it. This configuration forces GLOS to 
readjust parameters so that the UUV navigates success­
fully in the presence of a fixed line of mines, where the 
pattern or geometry of the NOMBOS field below the 
mine line always varies. 

Performance Evaluation 

GLOS must initially know the search space as well 
as the learning goal. Table 2 defines the search space 
by specifying the allowable values for each parameter. 
To compound the difficulty for GLOS we selected 
reasonable ranges for each parameter in such quantities 
that the search space became combinatorially explo­
sive. Notice that this search space has 65,536 possible 
solutions calculated by taking the product of the 

number of possible values for each parameter of the 
parametric set. 

GLOS next needs to know the user's learning goal, 
which allows it to distinguish between good and bad 
decisions. For our test, a learning goal similar to the one 
used for the SOMSS analysis was used. The learning 
goal is threefold: 

1. Allow the SSN-688 to spend as little time as possible 
in the minefield. The best metric for this is to keep the 
simulation time as short as possible. 

2. Allow the SSN-688 to maintain at least a 450-yd 
standoff from any detected mine or NOMBOS de­
tected. The metric for this is the closest point of 
approach to any detection. 

3. When the UUV detects enough mines within the 
mine line and determines that a line of mines indeed 
exists, it should avoid or skirt the mine line while 
maintaining at least 450 yd from both corner mines. 
The metric for this is the closest point of approach to 
any corner mine. 

Results of the GLOS Skill Test 

GLOS was run for four generations, maintaining a 
constant population size of 17 potential solutions 
for each generation, with Pc = 0.9 and Pm = 0.01. The 

Table 2. Search space. 

Parameter 

Mine safe distance (yd) 

Tum diameter (yd) 

Maximum tum angle (deg) 

Test point distance (yd) 

Exit count 

Arc step (deg) 

Safe backtrace distance (yd) 

Value 

600 to 1300 x 100 

200 to 500 x 100 

30 to 45 x 5 

100 to 250 x 50 

600 to 1200 x 200 

30 to 45 x 5 

600 to 1300 x 100 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 131 



L. A. BEST AND R. D. SA DERS 

parametric settings favored by GLOS are shown in 
Table 3 along with those of the SOMSS tactician. 
These settings are similar, but how did we compare in 
terms of simulation performance? Table 4 shows the 
average test case performance over 100 simulation runs 
using closest points of approach and simulation times 
as metrics of evaluation. The benefit seen here is that 
GLOS has the power to learn very quickly, needing 
only to consider about 0.1 % of the solution space. 
GLOS is cost-effective: it can reproduce comparable 
performance in a learning session lasting only a few 
hours rather than the many weeks needed by the 
SOMSS tactician using a trial and error approach. 
Figures 10 and 11 show examples of paths planned by 
both approaches. 

WHY USE GLOS? 
We present here a simple scenario to demonstrate 

how GLOS can be used efficiently. Suppose that the 
sponsor of the SOMSS cost and effectiveness analysis 
requests that ORBIS be extended to prove by concept 
that the SSN-688 with UUV escort could be used to 
penetrate a densely packed mined area, not a fixed 
mine line against false bottom detections. The sponsor 
needs a rapidly proto typed simulation, but we cannot 
afford a tactician to train the path-planning model, 
there is not enough time to tweak the model param­
eters for high-fidelity behavior, and a tactician is not 

Table 3. Recommended parametric settings for GLOS 
skill test. 

Parameter SOMSS tactician GLOS 

Mine safe distance (yd) 1300 1300 

Tum diameter (yd) 400 400 

Maximum tum angle (deg) 45 45 

Test point distance (yd) 200 150 

Exit count 850 800 

Arc step (deg) 45 45 

Safe backtrace distance (yd) 900 800 

available. The sponsor has two alternatives: (1) extend 
the use of the parametric set obtained from the pre­
vious study or (2) use GLOS to recommend some good 
values that give us a safe transit within a quick sim­
ulation time. 

Setting Up the Test Case Minefield 

Figure 12 shows the densely packed test case mine­
field that the SSN -688 with UUV escort is to penetrate 
safely. The SSN-688 transit will begin randomly on a 
starting line and will terminate randomly on an ending 
line. Mines are randomly placed within the minefield 
barrier. Each member of a GLOS population will be 
trained with a simulation that has a different starting 
and ending location as well as a different configuration 
of randomly place mines within the minefield. These 
factors force GLOS to readjust parameters so that the 
UUV navigates successfully within a minefield, whose 
pattern or geometry always varies. 

Performance Evaluation 

The same search space defined in Table 2 is used again, 
and the learning goals are modified slightly to read: 

1. Allow the SSN-688 to spend as little time as possible 
in the minefield. The best metric for this is to keep the 
simulation time as short as possible. 

2. Allow the SSN-688 to maintain at least a SOO-yard 
standoff from any detected mine. The metric for this 
is the closest point of approach to any detection. 

Results of the GLOS Simulation Speed-Up Test 

GLOS was run for 14 generations, maintaining a 
constant population size of 17 potential solutions for 
each generation, with Pc = 0.9 and Pm = 0.01. The para­
metric settings favored by GLOS are shown in Table 
S along with those of the SOMSS tactician repeated 
from Table 3. Test case performance was again taken 
over 100 simulation runs using closest points of ap­
proach and simulation times as metrics. 

Table 6 shows performance results obtained by 
GLOS for the last learning session. The benefit of 
using GLOS as an alternative to just reusing the old 

Table 4. Simulation performance for GLOS skill test. 

132 

Learning goal 

Percentage of runs for which SSN -688 
maintained a 450-yd standoff from a 
comer mine and a detected mine 

Average simulation time (h) 

SOMSS tactician GLOS 

75 76 

2:32:07 2:26:08 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



Figure 10. Simulation behavior using SOMSS tactician parameters 
shows the UUV operating with desired motion as it plans a safe path 
to keep itself and its host vehicle (the SSN-688) from coming too close 
to any mines (denoted as CT s) and non mi ne bottom objects (NOM BOS). 
The red and magenta dots along the safe path following the UUV 
represent points that the SSN-688 follows to ensure that it is safely 
following the path. 

Table 5. Recommended parametric settings for GLOS 
simulation speed-up test. 

Parameter SOMSS tactician GLOS 

Mine safe distance (yd) 1300 800 
Turn diameter (yd) 400 400 
Maximum turn angle (deg) 45 45 
Test point distance (yd) 200 100 
Exit count 850 600 
Arc step (deg) 45 30 
Safe backtrace distance (yd) 900 800 

parameters can be seen. The cost of using GLOS is 

about 8 h in computer resource time (which was ac­

tually run overnight after everyone had gone home). 

Even if a tactician had been available, the development 

GENETICS-BASED LEARNING METHODS 

Figure 11. GLOS was used to recommend parametric settings to 
allow the UUV to operate in a motion similar to that obseNed for the 
SOMSS tactician. The simulation was run using the identical minefield 
configurations used by the tactician. The behavior obseNed from the 
GLOS-recommended parameters resulted in a similar desirable mo­
tion, allowing the UUV to plan a safe path around all mines (denoted 
as CTs) and nonmine bottom objects (NOMBOS). Again, the red 
and magenta dots along the safe path following the UUV represent 
points that the SSN-688 follows to ensure that it is safely following 
the path. 

Ending line 

1--------- -- 1 

Barrier ~: ~ Mines 

1 1 
1 ____________ J 

I I 
Starting line 

Figure 12. The test case minefield for the second evaluation is a 
configuration of mines randomly placed within a barrier. The UUV 
will begin at a randomly selected starting location, then plan a safe 
path to a randomly selected ending location. 

cost would probably have exceeded 8 h for an expert 

to be able to adjust the parameters of this extremely 

large search space. Figures 13 and 14 show penetra­

tion paths that were generated by simply reusing 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 133 



L. A. BEST AND R. D. SANDERS 

Table 6. Simulation performance for GLOS simulation speed-up test. 

Learning goal 

Percentage of runs for which SSN-688 
maintained a 500-yd standoff from a 
detected mine 

Average simulation time (h ) 

Figure 13. Simulation behavior observed when the original SOMSS 
tactician's parameters were reused. Notice that the UUV does plan a 
safe path around the encountered mines (denoted as VOLUME). 
Could GLOS be used to recommend some good parametric settings to 
get better performance? 

the old tact ical parametric set and by using GLOS, 
respec t i ve 1 y. 

CONCLUSION 
We do not suggest in this article that artificial in­

telligence tools such as GLOS should replace the ex­
pert tactician; rather, GLOS can be used to augment 
the expert's resources. That is, an expert's time can be 

SOMSS tact ician GLOS 

75 84 
3:18:44 2:23:43 

Figure 14. GLOS was run over an 8-h learning session to recommend 
some good parametric settings. The behavior observed from using 
these GLOS parameters resulted in a more desirable motion and 
allowed the UUV to plan a safe path around all mines (denoted as 
VOLUME). 

more efficiently allocated to perform more demanding 
tasks, while a tool such as GLOS can be applied in less 
critical areas where it simply is not cost-effective to use 
the expert. 

GLOS has much to offer the user in terms of ORBIS 
simulation development and speedup. It gives the user 
a tool to quickly locate areas within a complex, arbi­
trary, multiparametric search space that can provide 
high-fidelity simulation performance. The authors 
hope future users find it helpful. 

134 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 



GENETICS-BASED LEARNING METHODS 

REFERENCES 

1 Evans, R. B. , and Sanders, R. D., "ORBIS: A Tool for Simulation 
Development," in Proc. Summer Simulation Conf., San Diego, CA (JuI1 994). 

2Srinivas, M., and Patnaik, L. M., "Genetic Algorithms: A Survey," Computer 
27(6) , 17-26 (1994). 

3 Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine 
Learning, Addison-Wesley, Reading, MA (1989). 

6Goldberg, D. E. , Optimal Initial Population Size for Binary-Coded Genetic 
Algorithms , Report 85001 , The Clearinghouse for Genetic Algorithms, 
University of Alabama (Nov 1985) . 

7 Cavicchio, D. J., Adaptive Search Using Simulated Evolution, Ph.D. Thesis, 
University of Michigan, Ann Arbor (1970). 

8 Frantz, D. R., Non-Linearities in Genetic Adaptive Search, Ph.D. Thesis, 
University of Michigan, Ann Arbor (1972) . 

4 Davis, L. , Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York 
(1991). 

5 Holland, J. H. , Adaptation in Natural and Artificial Sys tems , University of 
Michigan Press, Ann Arbor (1975) . 

9 DeJong, K. A. , An Analysis of the Behavior of a Class of Genetic Adaptive 
Systems, Ph.D. Thesis, University of Michigan, Ann Arbor (1975) . 

lOBenedict, J. R. , "Countering Mines in Littorals-Operational and Technical 
Implications for U.S. Submarines," in Proc . Submarine Technology Symp. at 
jHU/APL, Laurel, MD (1994). 

THE AUTHORS 

LLOYD A. BEST received B.S. and M.S. degrees in electrical engineering 
from North Carolina Agricultural & Technical State University in 1988 
and 1991, respectively. He is a software engineer in the Advanced Combat 
Information Technologies Group of APL's Submarine Technology Depart­
ment and a member of the Associate Professional Staff. Since joining APL 
in 1991, Mr. Best has worked on FBI fingerprint recognition, rocket 
plume simulation, verification and validation techniques for expert 
systems, object-oriented computer simulation development, and machine 
learning applications involving genetic algorithms. His e-mail address is 
Lloyd.Best@jhuapl.edu. 

ROBERT D. SANDERS received a B.S. degree from Tulane University in 
1982 and an M.S. degree from The Johns Hopkins University G.W.c. 
Whiting School of Engineering in 1992, both in computer science. From 
1982 to 1987, he served in the Navy's nuclear submarine community, 
leaving as a lieutenant. Mr. Sanders then worked at the David Taylor 
Research Center, where he developed and verified thresholds for the 
Trident submarine monitoring subsystem. In 1991, he joined APL's 
Advanced Combat Information Technologies Group and is currently 
involved in a variety of ORBIS-based simulation efforts. He is a member 
of the Senior Professional Staff and specializes in computer simulations, 
tactics analysis, and technology assessments. His e-mail address is 
Robert.Sanders@jhuapl.edu. 

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 16, NUMBER 2 (1995) 135 


