
JOHN SADOWSKY 

THE CONTINUOUS WAVELET TRANSFORM: A TOOL 
FOR SIGNAL INVESTIGATION AND UNDERSTANDING 

In this article, the continuous wavelet transform is introduced as a signal processing tool for 
investigating time-varying frequency spectrum characteristics of nonstationary signals. The transform is 
discussed within the context of Fourier methods and the general problem of time-frequency representation 
and is compared with the more traditional Gabor method of windowed Fourier transforms. To take full 
advantage of the potential benefit of wavelet characterization, a computer algorithm for generating wavelet 
images from data is needed. Such an efficient algorithm, the algorithme a trous, was invented and 
published several years ago by an important group of engineering researchers. A detailed derivation and 
analysis of their algorithm is presented. 

INTRODUCTION 
Five to 10 years ago, the theory of wavelets caught the 

imagination of researchers in harmonic analysis, signal 
and image processing, and applied science as the new 
methodology, promising to usurp the throne occupied by 
Fourier analy is and solve the problems that have con­
founded cla sical analysts for hundreds of years. Five 
years ago I met with Dr. Howard Resnikoff, president of 
Aware, Inc. , and an early advocate of the potential of 
wavelets. He declared that some of the most important 
problems in applied mathematics were being solved by 
a group of French mathematicians and scientists using 
new tool for analyzing signals in new types of basis 
functions. He advi ed us to learn about wavelets if we 
wished to remain on the cutting edge of signal and image 
processing. Dr. Resnikoff is a well-respected scholar in 
applied mathematics and signal processing, so his level 
of enthusia m conveyed a sense that yet another major 
breakthrough in science was occurring. 

Wavelet analysis is indeed an important development 
in mathematics, science, and engineering. Rather than 
replacing Fourier methods, however, it complements and 
extends the e cla sical approache , solving problems for 
which Fourier analysis is unsuited and failing in cases for 
which Fourier analysis is ideal. One cannot design wave­
let bases and analyze the wavelet transform without sig­
nificant use of Fourier methods. 

Moreover, the roots of wavelet analysis reach back 
almost 100 years. They can be found in a variety of 
sciences, from quantum mechanics and Brownian motion 
to the mathematical works of Littlewood and Paley in the 
1930s, Gabor in the 1940s, and Calderon in the late 
1950s. Meyer I presents an excellent, though terse, over­
view of the history of wavelet analysis. 

Wavelet analysis is an essential addition to the toolbox 
of researcher and developers in the field of signal 
processing. Important and exciting new systems planned 
at the Laboratory could benefit greatly from wavelet­
based proce ors. Applications of wavelet technology at 
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APL include essential defense needs (e.g., signal intelli­
gence, smart weapons, command and control, and com­
munications systems), space and oceanographic data 
analysis , biomedical systems (e.g., medical imaging 
systems, speech and visual processing systems, and 
biological sensor monitoring), and basic science research 
and development. 

This article is the first in a erie planned for the fohns 
Hopkins APL Technical Digest to introduce and explore 
this growing and fascinating field. This first article begins 
with the definition of wavelets, the wavelet transform, and 
bases of wavelets and then derives an algorithm for the 
continuous wavelet transform (CWT). The second article 
will examine data processed with the algorithm to inves­
tigate how the signal parameters and characteristics are 
manifest in the complex surface of a wavelet transform. 
Future articles will explore the atomic decomposition of 
signals and images with respect to wavelet bases and 
frames and the application of wavelet technologies to 
signal analysis , signal and image compression, and pat­
tern recognition; computational algorithms for such ap­
plications; and the use of wavelet-based processing in 
APL systems and problems. 

WHAT IS A WAVELET? 
There are several approaches to understanding the 

nature of wavelet analysis. These different approaches­
actually, different perspectives of the arne overall con­
cept-reflect different taste, styles, and areas of appli­
cation among researchers (see Refs. 1-4 for varied point 
of view). One pos ible approach is from the viewpont of 
time-frequency representations of nonstationary and 
wideband signals. Consider a mu ical composition, for 
example. Our emotional and intellectual response to 
music results from the time variation of the frequency 
spectrum of the music-different notes are played at dif­
ferent times. A Fourier transformation of a piece of music 
does not directly represent this time variation of spectrum. 
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The frequencies present in the music are certainly visible 
in a Fourier transformation, but the time-dependence 
seems to be lost. 

Of course, the time-dependence cannot actually be lost 
because an inverse Fourier transform of the spectrum will 
re-create the piece of music. (I am making the mathema­
tician 's assumption that the music is of infinite duration 
and that the spectrum is complete, from -00 to 00 in both 
cases.) The time variation is contained in the phase of the 
Fourier spectrum, however, in a way that is inconsistent 
with the way that musicians create music. The Fourier 
spectrum contains frequencies that are not present in the 
piece of music but rather at phases such that coherent 
superposition of frequencies causes the proper amount of 
destructive interference to cancel notes not present at 
specific times. It is as if musicians were specifically 
playing notes not in the score, phased so as to cancel out 
some notes to produce proper durations of other notes. 

Music, however, occurs because musicians play notes 
to be heard at specific times and for specific durations. 
These notes and times of performance are well repesented 
in the musical score (Fig. 1). Here, the horizontal axis 
represents time and the vertical staff indicates frequency 
(notes) to be played at specific times. Durations are in­
dicated by the types of notes (quarter, half, whole, etc.), 
times of absence of frequencies for specific instruments 
are indicated by rests, and amplitudes of frequncies are 
indicated by notations for crescendos, diminuendos, and 
other dynamic markings (such as piano and forte). The 
score is a good representation of the music in time (hor­
izontal) and frequency (vertical). A problem in time­
frequency representation is to design a signal processing 
system that will produce the score from the music. 

Wavelet theory offers a novel approach to this problem 
and, as such, can be seen as an extension and enhance­
ment of the Gabor windowed Fourier transform method 
for time-frequency representation (see, for example, 
Meyer' and Daubechies2

) . In the Gabor method, we 
define a finite-duration window wet) as shown in Fig. 2. 
By translating this window in time and multiplying it by 
the signal set), we obtain a chunk of the signal over a 
particular small piece of time. If the window is nonzero 
between - T12 and T12 , for example, then the product 
s(t)w(t - to) is an approximation to the signal in the time 
interval from to - T12 to to + T12. That is, the product 
selects a portion of the signal of duration T centered at 
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Figure 1. Example of an effective time­
frequency representation , a musical score. 

Window of duration T 
centered at to 

to - TI2 to to + TI2 

Portion of time series 
restricted by the window 

1 

Figure 2. Restriction of the time duration of a time series with a 
Gabor window (Gaussian) . 

time to. The Gabor windowed Fourier transform is then 
defined to be the Fourier transform of this windowed 
signal: 

1 foo -iwf G(w, to) = ~ s(t)w * (t - to)e dt, 
,, 27r -00 

where * denotes the complex conjugate. Although the 
window often is real, we have written the Gabor transform 
in its more general form. Also, we will denote signals, that 
is, functions of the time variable t, with lowercase Latin 
and Greek letters and the Fourier transforms of signals with 
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uppercase Latin and Greek letters. Thus, for example, the 
Fourier transform of the signal fit) is 

1 foo h -iwtd F(w) = r;:;- J (t)e t 
\j 271" -00 

The frequency variable in the Fourier transform is in units 
of radians per second, for consistency with the wavelets 
literature, and i denotes -1. 

This transform is a time-frequency representation as 
well as a function of time to and frequency w, and provides 
an approximation to the frequency content of the signal 
over a small time interval about time to. If the window 
is well concentrated in time and frequency, as is the case, 
for instance, with a Gaussian window, then this time­
frequency representation is reasonable for some applica­
tions. It has limitations, however. For example, resolution 
in frequency is a function of the duration of the window; 
the longer the window duration, the finer the frequency 
resolution. Conversely, increasing the window duration will 
smear a rapidly changing time variation in the spectrum. 

One can recast the definition of the Gabor transform 
as a filtering, or convolution, of the signal with the trans­
lated window, ww(t ) = w (_t)e-

iwt
. This filtering kernel is 

the Gabor window translated in frequency via modulation 
by the factor e -

iwt
. Frequency translation is affected by the 

number of wavelengths within the window (Fig. 3). 
The wavelet transform is also built from a window 

function called the mother wavelet t/;. The mother wavelet 
usually satisfies some admissibility condition, such as a 
requirement that f~oo t/;(t) dt = 0, and any finite energy 
function satisfying the admissibility condition can be 
used as a mother wavelet. This admissibility condition 
implies that the mother wavelet has some oscillations; it 
must be negative in places to compensate for the places 
in which it is positive, so that the wavelet integrates to 
O. To be useful, the mother wavelet is usually nonzero 
only on a finite interval, or decreases rapidly (at least 
quadratically) for t approaching -00 and 00. 

Figure 3. Translation of a window 
in frequency via modulation. 
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Translation to 
low frequency 

If '!r(w) were to denote the Fourier transform of the 
mother wavelet, then one sees directly from the definition 
of the Fourier transform that '!reO) = f:'oo t/;(t) dt. Thus, 
from the admissibility condition, one has '!reO) = 0; that 
is, the mother wavelet, viewed as a filter, notches out the 
DC term of a signal. A standard example of a mother 
wavelet is t/;(t) = (1 - (2 )e-t212

, the "Mexican Hat" func­
tion, illustrated in Fig. 4a. One can see that the wavelet 
is low-pass in the time domain. We compute the Fourier 
transform of the Mexican Hat function, '!r(w) = "le-w

2
12, 

and illustrate this function also in Fig. 4b. As is seen, this 
function is band-pass in the frequency domain. These are 
characteristics of useful mother wavelets. 

We can now define the CWT. Suppose that t/;(t) is a 
mother wavelet, meeting the admissibility condition, and 
that set) is a finite energy signal. The CWT of set) is the 
function of two variables, a> 0 and b, defmed by 

1 f oo (t-b) W(a, b) -Fa. - 00 s(t)t/;* -a- dt . 

Like the Gabor transform, the CWT can be viewed as 
a filtering of the signal by a dilated version of the mother 
wavelet, defined and denoted by t/;a(t) = 1/ -J(i t/;(-tla). 
Unlike the filter in the Gabor case, however, the frequen­
cy translation is effected by dilation and contraction 
rather than by modulation. Figure 5 illustrates the dilate<iI 
wavelets for different values of the so-called scaling 
variable a. As can be seen, for a > 1, the dilated wavelet 
expands in time; for a < 1, the dilated wavelet contracts 
in time. Regarding the wavelet as a sort of window in 
time, the window width adjusts, depending on scale, 
widening for large-scale (low-frequency) information 
and narrowing for small-scale (high-frequency) content. 

The CWT is a time-frequency, or more correctly, a 
time-scale representation. To demonstrate this, we derive 
a "frequency domain" formulation of the CWT as follows. 
Substitutipg the inverse Fourier transforms s.ct) = 1/.J2i 
f~oo S(w)elwtdw and t/;(t) = 1/.J2i f~oo '!r(v)e1/ltdv into the 

Gaussian window 

Translation to 
high frequency 
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(a) 
t{t(t) 

(b) 'lr(w) 

w 

Figure 4. The Mexican Hat wavelet an~ its Fourier transform. 
(a) Mexican Hat function , t{t(t) = (1 - t 2)e-t /2. (b) Fourier transform 
of the Mexican Hat function , ir(w) = w2e-w

2
/2. 

formula for W(a, b), integrating the resulting Dirac 0-
function, and simplifying, one obtains 

W(a, b) = -Jaf~oo S(w)'lr * (aw)e
iwb 

dw. 

We see that the CWT can be viewed as a frequency­
domain filtering of the signal by the dilated filter 
.JCi 'J! (aw) . Figure 6 illustrates this dilation filter (in the 
frequency domain) for the Mexican Hat wavelet. As can 
be seen, the large-scale case, a » 1, has the filter com­
pressed to small-bandwidth (fine-resolution), low­
frequency parts of the spectrum; the small-scale case, 
a « 1, has the filter expanded to wide-bandwidth (coarser­
resolution), high-frequency parts of the spectrum. Scale 
has the relationship to frequency that one would expect, 
and the frequency resolution of the CWT adjusts such 
that the ratio of frequency resolution to frequency is 
constant. Not only is this frequency-dependent resolution 
consistent with the performance of visual and auditory 
systems, but it also permits an efficient computation of 
a range of frequencies, without the need to set a fixed, 
high resolution and compute redundant information when 
lower resolution would suffice. 

The preceding paragraph describes the zoom-in prop­
erty of the CWT. A wavelet transform zooms in on the 
fine detail and zooms out on the coarser trends of a signal. 
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W(a, b) 

Decrease scale, 
a=0.3 / 
W(a, b) /' \

l nCr~a!~~~ale , 

W(a,b) 

Figure 5. Frequency translation of the Mexican Hat function via 
scaling (dilation): time domain. 

Decrease scale,J 
a= 0.3 
W(a, b) 

W(a, b) 

\ Increase scale, 
a= 3.0 
W(a, b) 

Figure 6. Frequency translation of the Mexican Hat function via 
scaling (dilation): frequency domain . 

This property distinguishes the CWT from the Gabor 
transform, for which the frequency resolution is preset 
and is independent of the detail or coarseness of the parts 
of the signal being analyzed. In addition, this frequency­
dependent resolution is the basis for the application of 
wavelet analysis to multiresolution decomposition, that 
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is, decomposition of signals and images that represent a 
range of different resolution scales. Multiresolution de­
composition with wavelets will be a topic in a future 
article about the discrete wavelet transform. 

The CWT produce a complex-valued surface, as it is 
a function of two variables, a and b. Following conven­
tion, the b axis (time) is drawn horizontally and the a axis 
(scale, or frequency) is drawn vertically. Because the 
variable a is po itive, the a axis is actually a ray. We draw 
the a axis oriented downward, so that smaller values of 
a, corresponding to higher frequencies , are above larger 
values of a, corresponding to lower frequencies (Fig. 7). 
Some researchers prefer to represent the scale axis log­
arithmically, in which case the log(a) axis extends be­
tween -00 and 00. In thi case, the orientation of the axis 
remain downward for increasing values of a. 

To understand the CWT surface, consider local influ­
ences on the surface from the signal and local parts of 

(a) 
(0,0) 

the signal that affect the surface.s In particular, we wish 
to identify the region of the CWT surface that is influ­
enced by the value of the signal at a particular time to and 
the particular time intervals of the signal that contribute 
to a specific point (ao, bo) in the CWT surface. 

Assume that the mother wavelet has support which is 
an interval A; that is, 1/!(t) is zero for t not in A. From 
the time-domain definition of the CWT, one can see that, 
if we fix the variable a and b, then the integral is com­
puted over the interval aA + b. Thus, for time to to be of 
influence one must have to - aq :s; b :s; to - ap, where the 
interval A has endpoints p and q. Where the interval is 
centered about the origin, for example, this describes a 
cone in the ab plane with vertex at the point to on the b 
axis, as is shown in Fig. 7b. 

Similarly, the point (ao, bo) in the CWT surface is 
influenced by signal values at times in the interval 
aoA + boo This can be illustrated with an upward cone 

+b 

Negative 

+b 

Positive 
Increasing a 

Linear scale variable Logarithmic scale variable 

Figure 7. Representation ofthe CWT sur­
face. (a) The coordinate axes for image 
representations of the CWT. (b) Cone of 
influence of a time point of the signal on 
the surface. (c) Cone of influence of a point 
on the surface on an interval in time. 
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~ length of the wavelet 
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Width = ao x support 
length of the wavelet 
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with vertex to (Fig. 7b) , where the interval on the b axis 
in the cone represents the time interval of the signal that 
affects the point in the CWT surface. 

Grossmann et al. 5 suggest a method for representing 
the complex values of the surface without having to draw 
separate real and imaginary surfaces or amplitude and 
phase surfaces. In their method, complex amplitude is 
represented by color from a lookup table, and phase is 
represented by a density of black dots overdrawn on the 
colors, from no black dots (phase 0) to total saturation 
(phase 27r). 

As a small modification to this approach, we reverse 
the roles of the dot density and color. Each pixel can be 
expanded to a 4 X 4 alTay of subpixels or dots. Normal­
ized amplitude is represented as the number of subpixels 
that are colored in the surface, from zero (for an ampli­
tude of 0 or sufficiently small) to all 16 (for an amplitude 
of 1 or sufficiently high). The particular subpixels to color 
are selected randomly. Thus, amplitude is reflected in the 
surface by sparseness to saturation of color. The phase is 
color-coded using a lookup table. Figure 8 is an example 
of a CWT surface generated from actual data from an 
interrnittant process, which illustrates this concept. 

The rest of this article reviews the mathematical basis 
for the CWT algorithm used to generate the surface in 
Fig. 8. 

ALGORITHM FOR THE CONTINUOUS 
WAVELET TRANSFORM 

In this section we derive an algorithm for computing 
the CWT. The approach follows closely the derivation 
and data flow diagrams of Holschneider et al. 6 with added 

(a) 

Q) 
"0 . .e 
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detail and carefully computed filter delays and algorithm 
constructions. The algorithm explicitly recognizes that 
the CWT can be realized with several filters, all of which 
are dilations of a single filter. Their construction intro­
duces the method of the algorithme it trous for efficiently 
implementing such a structure. 

To motivate the need for such an algorithm, we consider 
a numerical approximation to the integral in the CWT: 

If the signal set) is sampled with sampling interval Ts' 

then the CWT at the time step b = kTs is approximated 
by the sum 

The summation is essentially over the range of sam­
ples of the signal set). The computational problem arises 
from the scaling factor a in the denominator of the ar­
gument of the sampled wavelet. Because of this denom­
inator, the wavelet must be resampled at a sampling 
interval of Tia for the wavelet transform at scale a. If, 
for example, we wish to display the CWT over 10 oc­
taves, the high-scale computational complexity (size of 
the summation) increases by a factor of 210 = 1024. The 
algorithm by Holschneider et al.6 solves this problem for 
certain classes of wavelets by replacing the need to 
resample the wavelet with a recursive application of an 
interpolating filter. 

200 250 

Figure 8. Example of a CWT surface 
generated from actual data from an inter­
mittent process. (a) Section of the time 
series. (b) CWT of the time series. The 
horizontal axis is increasing time and the 
vertical axis is scale (frequency-related) 
from small (top of figure) to large (bottom 
of figure). Concentration of color reflects 
amplitude and color reflects phase. Inter­
esting structure is found in the phase; 
however, three peaks appear in the 
image-two at the left and one in mid­
image toward the right. 
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We must introduce some notation to explain exactly 
how to incorporate the interpolation filter. Our signal set) 
is a function of a continuous variable. We can perform 
some operations on such functions. One operation is 
dilation (we use the term dilation whether we actually 
dilate or constrict the function). If a is a positive real 
number, then the dilation of set) by a is also a function 
of the variable t and is defined and denoted by 

(SDas)(t) = a- i !2s(tla). 

The factor a-1/2 is for conservation of energy under the 
operation. 

The operation of filtering is actually a convolution, 
and so we introduce notation for the convolution of two 
signals. Given two functions, set) and h(t), the convolu­
tion of s by h is a function of the variable t defined and 
denoted by 

(S'r hs)(t) = f~oo s(x)h * (t - x) dx . 

With these two concepts defined, we can easily see 
that the CWT is effectively a filtering of a signal by a 
dilated, inverted mother wavelet. Speciflcally, if we denote 
the time-reversed mother wavelet by 1/; (t) = 1/;(-t), Eq. 1 
becomes 

W(a, b) = (Sf ~as)(b), (3) 

where ~a = §)a~' 
Defining dilation and convolution operators for se­

quences allows us to represent Eq. 2 as a discrete filtering 
operation as well. We will use boldface lowercase letters 
to denote doubly infinite sequences, such as s = { ... , 
L3, L2, Ll> So' Sl> S2, S3, ".}. We must carefully define 
the dilation operator because we cannot divide the se­
quence indices to obtain fractional indices. Instead, we 
change the sampling interval to stretch our sequences by 
interleaving zeroes between sample values. If p is a 
positive integer, then the dilation of sequence s by p is 
defined as the sequence Dp s whose nth element is 

(
D s) = {p-1I2 Sn / p' if n is a multiple of p 

p n 0, otherwise . 

When p = 3, for example, D3S = { ... , 0, 0, L3, 0, 0, 
S_2' 0, 0, Lj, 0, 0, so, 0, 0, Sl> 0, 0, S2'0, 0, S3, 0, 0, ... }, 
with the element So corresponding to the sample time 
n = 0. 

Convolution is in direct analogy with the convolution 
definition of the continuous variable case. Suppose that 
s = {"., S_2' Ll> So' Sl> S2, ".} and h = {. '" h_2' h_I' ho, hi' 
h2' ... } are two sequences. The convolution of s by h is the 
sequence denoted by Kh s whose nth element is defined as 

00 

(Khs)n = LSmh,:_m· 
m=-oo 

We will also need to use a delay operator Z, which 
delays the sequence by one sample position. Given s as 
defined above, one defines Zs such that the nth element 
is (Zs)n = Sn_I' 
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Finally, to relate the signals of the continuous variable 
with the doubly infinite sequences, we introduce a 
sampling operator to map the former into the latter. For 
this we fix a sampling interval Ts and define the sampling 
operator P to take a signal s(t) and map it to a sequence 
Ps whose nth element is (Ps)n = s(nTs) ' 

We can now rewrite Eq. 2 in a form similar to Eq. 3 
as follows. If the function ~ a defined in Eq:,.3 is sampled 
to produce the sequence denoted by ga = P 1/; a' and if the 
signal set) is sampled to produce the sequence s = Ps, then 
Eq. 2 becomes 

(4) 

Equation 4 is a filtering operation. The exponentially 
increasing computational complexity, as a function of 
number of octaves of scale, arises because the sampling 
operator is applied after the application of the continuous 
variable dilation operator. To solve this problem, 
Holschneider et a1.6 introduced another operator on se­
quences to approximate these operations. 

For the moment, suppose that we are only interested 
in a set of scale values that have constant ratio 2. Suppose 
also that we are interested in a range of scale over N 
octaves, that is, scale values from 1 to 2N. The scales can, 
therefore, be considered to be octaves, ao = 1, al = 2, 
a2 = 4, ... , aN= 2N. We will extend the algorithm later in 
the article to permit scales between successive octaves. 
It is not too difficult to show that for such a scale value, 
say a = ak = 2k, that the operator §)a = (§)2)k, that is, k 
successive applications of the operator §)2' 

We need an operation on the sampled signal s = Ps 
whose effect is as if we have sampled the dilated signal 
§) as' In particular, we would like to define an operator 
o on the sampled signals, such that O(Ps) = P(§)2S), and, 
in general, 

(5) 

The obvious choice is to use the dilation operator for 
sequences D2 ; however, it can easily be shown that 
Eq. 5 in this case would only be satisfied by signals s(t) 
that are zero on all of the dyadic numbers (rational 
numbers whose denominators are powers of 2). This 
follows because D2 interleaves zeroes between successive 
sample values. If set) were a continuous signal, then it 
would have to be zero everywhere; thus, one would need 
a different choice for to have a more interesting class 
of signals for candidate wavelets . 

D2 is not acceptable because it interleaves zeroes. An 
operator that interleaves interpolated samples could po­
tentially satisfy Eq. 5, at least to a reasonable approxi­
mation. An innovative idea in the work of Holschneider 
et a1.6 is to introduce an interpolation filter F and to define 

(6) 

The boxed insert (Examples of Interpolation Filters) 
presents some choices for the filter F. The introduction 
of the delay operator Z in Eq. 6 interleaves the interpo­
lated values of the signal in place of the zeroes. It is still 
not possible to find suitable choices for F such that 0 will 
satisfy Eq. 5 except in a few trivial cases for candidate 
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wavelet signals. Thus, another idea introduced by 
Holschneider et al. is to relax the requirement of Eq. 5 
to the approximation case. First, one fixes a tolerance c > 0 
and a maximum number of octaves N. Then Eq. 5 becomes 

Ilonps - P(~2tsll < c, for 0 ::; n::; N . (7) 

The notation II II denotes the norm in the space of 
sequences and is defined such that:i for g = { ... , g-2' g-b 
go, g], g2, ... }, IIgll = (L.-;=-ool gn I )1/2 . For a particular 
choice of wavelet signal set) and interpolating filter F, and 
for explicit range N and tolerance c, the condition in Eq. 7 
can be numerically verified. This verification is performed 
as part of the selection of algorithm parameters. An oper­
ator 0 satisfying Eq. 7 is called a pseudo-dilation operator. 

Holschneider et a1.6 showed that, for a selection of 
interpolating filter and a pseudo-dilation operator 0, as 
defined in Eq. 6, the filtering operation for the CWT 
presented in Eq. 4 can be factored into simple filtering 
operations. Moreover, these simple filters are recursively 
related to each other, thus facilitating an algorithme a 

EXAMPLES OF INTERPOLA TION FILTERS 
Here we consider the effect of (!J = D2 + ZD2KF for var­

ious interpolation filters F. Only the nonzero elements of the 
impulse response for F will be shown. 

First, suppose that the impulse response to F is {fo = I} 
(and all other samples are therefore zero). Then the convo­
lution of a signal s with F produces (KFs)1l = Sn- Thus, 

if n is even 

if n is odd . 

Thus, this simple filter merely stretches the signal and 
interleaves a repeat of each sample so that { .. . , L3, L2, L), So' 

sl, s2, S3,"'} becomes { ... , L3, L3, L2, L2, L), LJ, so, so, 
S), SJ, S20 S20 S3, S3, . . . }, appropriately scaled by 2- 112

. 

As a second example, consider the interpolation filter F 
whose impulse response is {f-I =fo= 1/2} . One can com­
pute at once that the operation of (!J on the signal s is 

if n is even 

if n is odd . 

Ignoring the scale change by 2-1/2 for the moment, the 
sample at time 0 is So and the sample at time 2 is S I . The 
sample at time 1 is (so + sl)/2. Continuing for all times, one 
sees that this filter is a straightforward linear interpolator. 

Similarly, we can construct polynomial interpolators by 
considering the effects of samples beyond the two adjacent 
samples. A cubic interpolator, for example, uses the filter F 
with impulse response {f-2 = -1/16, f - I = 9/16, fo = 9/16, 
fl = -1I16} . The interpolated value, in this case, between the 
samples Snl2 and Sn/2+1 is obtained by fitting a cubic poly­
nomial to the samples Sn/2-J, snl2, Sn/2+" and Sn/2+2, and 
evaluating it at n12 + 112. 
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trous approach to their implementation. The specific fac­
toring is presented in the lemma below, whose proof is 
presented in the boxed insert (Proof of Lemma). Recall 
that the CW~ filtering is by the sequence ga = g2D. More­
over, ga = p t/; a' and ~ ais defined in Eq. 3. Thus, _the 
CWT reguires a filtering by the sequence g2D = P~2n t/; = 
P(~2Y t/; =:= on(p t/;). For simplicity, let f denote the se­
quence Pt/;. Then the CWT requires filtering by the 
sequence Onf, that is, the performance of the convolution, 
K /If. 

LEMMA: Suppose that f is a sequence and that F is an 
interpolation filter defining the pseudo-dilation operator 
0 = D 2 + ZD2K F. Then the convolution operator K Ollf can 
be factored as 

(8) 

where a = 1I .fi, and 

fn = (a- ID2Yf , (9) 

PROOF OF LEMMA 
We present here a proof of the lemma in the article. We 

wish to prove that 

KOllf = a n
KfllKFIKF2 . .. KFn . 

Recall that z-transforms change such operations into 
multiplications, and there is a one-to-one correspondence 
between sequences and their z-transforms. If we denote a 
z-transform of a sequence s by s(z), then it therefore suffices 
to prove that 

«(!JIlO(Z) = allf ll(z)F I(z)F2(z) .. . FIl (z). 

We prove this by induction on n. 
It is helpful to review the effects of the various operators 

on the z-tranforms. The delay operator Z, for example, has 
the effect of multiplying the z-transform of the sequence by 
Z-I. The convolution operator KG has the effect of multiply­
ing the z-transform of the sequence by G(z) . The dilation 
operator D2 has the effect of a change of variable to the z­
transform as(z2) . Thus, if the operator (!J is applied to the 
sequence s, then the resulting sequence has z-transform, 
as(z2) + a z-I F(Z2)s(Z2) . 

For n = 1, the computation is straightforward. From the 
preceding paragraph, one has 

«(!JO(z) = af(z2) + az-I F(Z2)f (Z2) . 

The z-transform of f l is computed, from its definition, to be 
f(i), and that of Fl is computed to be 1 + z-IF(z2), using the 
fact that the z-transform of D is 1. Thus, the convolution by 
aflFl is a multiplication by 

a[f(z2)][1 + Z-IF(z2) ] 

in the z-transform domain. But this is exactly «(!JO(z) . 
Now assume, via induction, that n ~ 2 and that 

((!In-1o(z) = a n- 1f(z2n-I)[1 + z-lF(i) ] [1 + z-2F(z4)] ... 

[1 + z- 21l-2F(z2n- l)] . 

Applying (!J one more time evaluates the above at Z2 
rather than z and multiplies it by a[1 + Z-l F(Z2)]. Carrying 
out these operations shows that the identity holds for n as 
well, completing the proof. 
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(10) 

and 

(11) 

In the lemma, 0 is the impulse sequence { ... , d_ l> do, 
d l , ••• } for which do = 1 and d; = 0 for i =1= O. Note also 
that the convolution operators in the factoring of Eq. 8 
commute, and so the order of the filtering implied is not 
important. 

The lemma presents a simple method for deriving the 
filtering convolution for the kth octave in terms of the 
filtering convolution for the (k - 1) octave, because from 
Eq. 9 one has f k = (a - ID2)fk_1> and this fact and Eq. 11 
show that the convolutions for octave k can be computed 
from the convolutions from octave k - 1. The boxed insert 
(Computation of N + 1 Octaves) shows precisely how 
these octaves are computed; a data flow diagram of the 
computation is presented in Fig. 9. Here, arcs showing 
the flowdown of the (a- ID2) factor in the definitions of 
the filters Fi and fi are indicated. The algorithme a trous 
is a method for incorporating this flowdown as a se­
quence of multiplexing operations. 

We must first consider the relationship between con­
volution with an arbitrary filter H and convolution with 
the dilated filter (a- ID2)H. Suppose the impulse response 
for H has nonzero taps hkO' hkO+

I
' ••• , hkl , with ko :::; 0 :::; 

k l • Although the filter H is not necessarily causal, its 
support is consistent with the idea of an interpolating 
filter. For example, the nth output, given sequence s as 
input, is 

Outputn = hZo sn-ko + h;o+1 Sn-kO -1 + ... + hZ1 Sn-k1 • 

The output at time n is a function of future inputs Sn+l 
through Sn+1kol' current input Sn' and past inputs Sn_1 
through sn-kl' It interpolates past and future samples. If 
the convolution is performed with (a- 1D2)H, a direct 
calculation verifies that the output at time n is 

kl 
Outputn = L.. hZSn- 2k . 

k=ko 
(12) 

The subscript on the S indicates an introduction of two 
delays on the input between successive filter taps. Thus, 
Fig. lOa illustrates a tapped delay line implementation of 
Eq. 12. Here, the output at time n requires "future" inputs 
to time n + 21kol. Similarly, Fig. lOb illustrates the iter­
ative application of the dilation factor to produce the 
output when filtering with (a-1D2YH. 

An alternative formulation of the architecture shown 
in Fig. 10 can be constructed using the multiplexer pro­
cess and an interleaver process illustrated in Fig. 11. The 
multiplexer receives as input a sampled sequence and 
passes this input on an alternating basis onto two output 
sequences. The interleaver accepts two input sequences 
and interleaves them so as to construct a single output 
sequence. The implicit timing must be such that a mul­
tiplexer followed by an interleaver acts as an identity 
processor. If, for example, the multiplexer is alternately 
placing outputs on output lines A, B, A, B, ... , the cycles 
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COMPUTATION OF N+ 1 OCT A YES OF THE CWT 
Suppose S is the sampled input signal and f = P t/; for the 

wavelet t/;. The octaves of the CWT are computed as follows: 

Octave 0: 

Octave 1: 

For k = 2, ... , n 

Output Kfs 

Define Fl = 0 + T(a- ID2)F 
Define fl = (a-1D2)f 
Compute XI = aKFIs 
Output KflX1 

Octave k: Define Fk = (a-1D2)Fk_1 
Define f k = (a -I D2)fk- 1 
Compute Xk = aKFkXk- 1 
Output KfkXk 

.j.: Octave a 

CX-102 

~Octave1 
t (X-1 O2 

'2 Octave 2 

Octave 3 

Octave N 

Figure 9. Data flow diagram of the CWT over N + 1 octaves. The 
blue arrows indicate modifications to construct a filter from a 
previous filter via the dilation operator. Rectangles represent 
filtering operations (convolutions) and circles represent amplifica­
tion (multiplication). 

with output on line A must be synchronous with inter­
leaver inputs from line A, and similarly for line B. This 
assumes a pairing of multiplexers and interleavers. 

Figure 12 can easily be derived as an alternative 
implementation of the filters (a-1D 2)H and (a-1D2)JH 
using multiplexers and interleavers. The multiple input 
interleaver in Fig. 12b is synchronized so that the con­
structed signal is correctly timed. This synchronization is 
somewhat tricky. For a three-stage (j = 3) implementa­
tion, for example, the interleaving is constructed, in order, 
from legs 1, 5, 3, 7, 2, 6, 4, and 8. In the re-sorting of 
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(a) 

(b) 

Sequence s >-
Interleaver 

Multiplexer 

Sequence s Sequence s 

Identity processor 

Figure 11. Definition of multiplexer and interleaver processors. 

the graph representation of the algorithm, described 
below, this ordering is automatically performed. 

Now, to construct the CWT algorithm, we must 
replace the arbitrary filter H with specific filters. Equa­
tions 9 and 11 in the lemma show that the filters f and 
FI = 0 + T(a- 1D 2)F are iteratively dilated and so H in the 

Johns Hopkins APL Technical Digest, Volume 15, Number 4 (1994) 

(a) 

(b) 

Output 
at time n 

Output 
at time n 

The Continuous Wavelet Transform 

Figure 10. Tapped delay line imple­
mentation of the dilated H filter. The 
sample delay operator T is denoted by 
its z-transform Z-1. Weights are com­
plex conjugates ofthe impulse response 
for H. (a) Effect of a single dilation 
operation on the filter H. (b) Effect of j 
iterations of the dilation operation on 
the filter H. 

--I ~~ 
t: 
t: 

• • • 

t: 
t: 

Figure 12. Implementation of a dilation of a filter using multiplexers 
and ~n inter!eaver. ~a) Multiplexer/~nterlea~er implem~ntation of 
the dilated filter (a- D2)H. (b) Multlplexer/lnterleaver Implemen­
tation of the dilated filter (a-1D2}'H. 
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preceding discussion will be replaced by these two filters. 
The effect will be an expansion of the vertical and diag­
onal flows of Fig. 9 using the multiplexer/interleaver 
diagrams of Figs. 10--12. This more complicated flow 
diagram can be sorted out into an elegant algorithm, as 
will be seen presently. 

Consider next the specific computation of convolution 
with F J = 0 + Ta- JD2F. Assume that F has an impulse 
response whose nonzero terms are Wko' Wko , ... , Wk , 

with ko ~ ° ~ k J • It is a simple calculation to ~6e that th~ 
impulse response to F J is 

{

I, if n = ° 
(Pi)n = w (n-l)I2, if n is odd and 2ko + 1 ~ n ~ 2ko + 1 

0, otherwise. (13) 

Substituting Eq. 13 into the formula for the convolu­
tion, we compute that the output at time n of the filtering 
of sequence s by F

J 
is 

(a) 

k J 

sn + L.. wksn-2k-l . 
k=ko 

lkol - 1 delays 

denote 

and - IL ___ F __ ---.J~ denote 

(14) 

The form of the summation in Eq. 14 is similar to the 
convolution in Eq. 12, except for the delay by one (time 
is n - 1 rather than n). It can therefore also be implement­
ed with multiplexers and interleavers as before. More­
over, the additional term Sn is such that if n is odd, then 
the subscripts of the S term in the sum, n - 2k - 1, are all 
even and if n is even, then the subscripts are all odd. Thus, 
if we implement this form for F

J 
using multiplexers and 

interleavers, then for each of the two legs out of the 
multiplexer in Fig. 12, there must be a tap in the opposite 
leg with which to sum. In other words, the top output of 
the multiplexer is summed with a specifically tapped 
register from the bottom leg, and the bottom output of the 
multiplexer is summed with a specifically tapped register 
from the top leg. Figure 13a presents a careful determi­
nation of where these two taps should be, and Fig. 13b 
presents an implementation flow graph of this convolu­
tion, using these tapped convolution processors. 

Finally, we place the resulting processors into the 
original data flow architecture of Fig. 9. The graph is 
correct but rather complex. If we were to trace the paths 
from the input to the various octave outputs, recording 
the processors along the way, these paths would define 

(b)--1~Fl ~ 

equals 

Figure 13. Data flow diagram of the F1 filter. (a) Definitions of the upper and lower F processors. Note the different locations of the delay 
line taps in the two processors. (b) Diagram of the basic filter. 
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an invariant of the data flow graph for the algorithm­
any other graph with a single input source and octave 
output sources that produces the same traces is equivalent 
to the algorithm. The primary method of re-sorting the 
algorithm graph assumes that, through the implicit timing 
of multiplexers and interleavers, a data flow constructed 
from a multiplexer followed by an interleaver followed 
by a second interleaver has the same effect as the fIrst 
multiplexer alone. Using this method to reduce the com­
plexity of the algorithm graph will appropriately incor­
porate the ordering of a multiple input interleaver. 

In this way, we can construct a simpler data flow for 
the algorithm than that obtained in the way just described. 
In particular, this was performed by Holschneider et a1.6 

and is illustrated in Fig. 14. If we defIne an elemental 
component (EC) to be a processor that performs as illus­
trated in Fig. 14a, then the data flow diagram of Fig. 14b, 
using ECs, produces the CWT with octave rows. 

The algorithm described above produces rows of the 
CWT surface corresponding to scales at octaves, that is, 
scale values a = 1, 2, 4, 8, .... The nice quality of the 
algorithm is that the wavelet need only be sampled at 
scale a = 1, and the interpolator and algorithme a trous 
take care of the octave jumps in scale. The remaining 
concern is how to handle the scales between successive 
octaves. 

Because scale is a multiplicative rather than an addi­
tive parameter, a standard method for introducing levels 
between octaves is by the introduction of voices. Voices 
are defIned to be the scale levels between successive 
octaves, uniformly distributed in a multiplicative sense. 
Thus, the ratio between two successive voices is constant. 
For example, if one wishes to have 10 voices per octave, 
then the ratio between successive voices is 21110. The 
distance between two levels 10 voices apart is an octave. 

Suppose now that one wants to display a CWT surface 
covering N octaves with L voices per octave. There are 
NL rows in this surface, which we can number from row 
o to row NL - 1. If we were to consider row k, for ex­
ample, then by dividing k by L, say, k = qL + r 
(q = quotient and r = remainder), and we fInd that row k 
corresponds to voice r of octave q. The scale associated 
with row k is a = 2k/L = 2(qL+r)IL = 2Q2r1L. This, in tum, cor-
responds to octave q of the CWT that begins with a 
sampling of the mother wavelet 

(2rlL)-lI2l/;*(_2-rILt). (15) 

Thus, by executing the algorithm L times, for voice level 
r = 0, 1, . .. , L - 1 of the range of octaves, using the 
sampling of the corresponding wavelet given by Eq. 15 
for the appropriate voice, one can construct the CWT 
surface with the intermediate values fIlled in. 

An algorithm with additive spacing of scales can also 
be constructed by modifying the lemma in the preceding 
derivation. Holshneider et a1.6 outline this approach. 

FINAL COMMENT 
Software, written in generic C, has been designed and 

is available for investigation of CWT representation of 
data. This is prototype source code for generating the 
CWT over a specifIed number of octaves with a specifIed 
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(a) 

(b) 

I 

Elemental 
component (EC) 

is defined to be 

-w 

~ 
j 

i 
•• rw 

tW-
W 

t 

The Continuous Wavelet Transform 

~ 

Octave 0 

~ 

Octave 1 

:~ 
Octave 2 

~~~3 

tEC~~-------------~ 

EC~---------------~ 

'f · • • 

Figure 14. The graphical representation of the simplified CWT 
algorithm. (a) Diagram of the elemental component (EC). (b) Data 
flow diagram connecting ECs.6 

number of voices per octave, and for generating a raw 
image fIle from the complex data in the forms discussed 
in this article. The author will send the source code via 
e-mail to interested researchers who request it from 
js@ap1comm.jhuapl.edu. 
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