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THE WIGNER DISTRIBUTION: A TIME-FREQUENCY 
ANALYSIS TOOL 

Time-frequency di tributions are enormously powerful tools for analysis of time series data. Often our 
data contain signals whose frequency content may be changing with time. Capturing this change with good 
frequency and time resolutions has been the subject of much research in the last two decades. The Wigner 
distribution and the a ociated Cohen class of generalized Wigner distributions offer a possible way to 
conduct such analysis. In this article I review some of the basic features of the Wigner distribution and 
emphasize its relationship to the two-dimensional ambiguity function. I discuss the interference terms that 
arise in the Wigner distribution of multicomponent signals and define the two most popular classes of 
kernal functions designed to eliminate cross-term interference. I point out that experimental kernel 
functions must be designed in the Doppler-lag domain with a complete knowledge of the signals of interest 
and give an example of an unusual kernel in one application. I apply the methods outlined to two real data 
sets obtained by APL staff during different experiments. For both sets, the Wigner distribution with 
appropriate kernel functions is shown to be superior to the standard spectrogram. 

INTRODUCTION 
Time-frequency analy is is one of the most important 

areas of signal processing. The standard Fourier analysis, 
although very useful in identifying individual frequency 
components of a signal, has no time resolution. Hence, 
efforts have continued in the last several decades to invent 
new methods for the analysis of local time and frequency 
content of waveforms. 

The simplest of these methods is the short-time Fourier 
transform, i.e. , the spectrogram, in which one transforms 
windowed section of the data to the frequency domain. 
Time resolution is arrived at by centering the window 
function on the epoch of interest and then sliding the 
window along the time axis. Thus, one may obtain a time­
frequency "image ' that can serve a a useful tool in the 
analysi by delineating the frequency content of the signal 
as a function of time, much like a musical score denotes 
the individual tone in a piece as time progresses. Al­
though this method is ea y to implement and indeed is 
an indispen able analytical tool it fails to provide high 
time and frequency resolution simultaneously. To localize 
some frequency component in time one must choose a 
very short window, which will inevitably lead to poor 
frequency resolution upon Fourier transformation. Con­
versely, to increase the frequency resolution one must 
Fourier-transform long sections of the data, which ad­
versely affects the localization in time. 

Notwithstanding its inherent resolution problems, the 
spectrogram has been successful in much data analysis, 
in part because most experimental data have temporal 
variations that are "slow." In some instances, the most 
notable being human speech, the time variations of the 
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frequency content can be sufficiently fast to render the 
spectrogram practically useles . 

Time-varying spectra were studied in the classical 
works of Gabor, Ville, Page, and Wigner. Their work was 
not motivated by improving on the spectrogram, but by 
a desire to construct a joint time and frequency distribu­
tion of energy of a waveform based on general mathemat­
ical principles. Wigner, of course, was concerned with 
constructing such a function for the quantum mechanical 
wavefunction, which, with its probabilistic interpretation, 
led naturally to the concept of a distribution function 
similar to those in probability theory. 

In the rest of this article I shall de cribe the Wigner 
class of distributions and show how they are related to the 
two-dimensional ambiguity function. I shall describe how 
the so-called interference terms can be filtered in the 
ambiguity function space, give some examples of these 
distributions on synthetic data, and pre ent two examples 
of an application to real data: data from an electromag­
netic sensor and data from ocean current measurements 
taken during an internal wave experiment. Both data set 
were obtained by APL staff. 

THE WIGNER DISTRIBUTION 
Consider a waveform set). The instantaneous energy of 

the signal per unit time at time t is given by Is(t)12. The 
intensity per unit frequency is given by IS(f)12

, where 
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is the standard Fourier transform relationship. Parseval's 
theorem then states that the total energy can be computed 
in the time or the frequency domain; thus, 

The fundamental goal is then to devise a joint function 
of time and frequency that represents the energy or in­
tensity of a waveform per unit time and per unit frequen­
cy. This joint function , which we shall denote by PCt,j), 
must necessarily satisfy the following "marginal" condi­
tions: 

f~ P(t,f)dt = IS(ft 

and 

f~P(t, f)df = Is(tt 

The spectrogram i a time-frequency distribution and 
is defined as follows: 

?'poctrog"m (t,f) = [ s( 7 )W( 7 - t)e -2;v! , d+ 
where the window function w( 7 - t) is centered at time t. 

The Wigner distribution for a real waveform set) does 
satisfy the marginal properties (it is a quadratic functional 
of the signal) and is defined as follows: 

- 7 _ . 7 -2i7rf 7 fOO ( ) ( ) Pwigner(t,f)= -oo s t+2 s 'l' t-
2 

e d7, 

where set) is the so-called analytic signal whose imagi­
nary part is related to the original waveform by Hilbert 
transformation; thus, 

S(t):=S(t)+i!f
OO 

s(~) d~. 
7r -00 t-~ 

The analytic signal is used for several reasons. As is 
clear from its definition, the Wigner distribution is a 
quadratic functional of the signal and so it will, in general, 
exhibit interference between the negative and positive 
frequency components of the signal. However, if the 
analytic signal is used in the computation, no negative 
frequencies are present and hence no negative and pos­
itive frequency interference will persist. In addition, the 
analytic signal formulation guarantees that the first mo­
ment of the distribution is the instantaneous frequency, 
i.e., the time derivative of the signal phase function. As 
we shall see later, a practical algorithm for the compu­
tation of the Wigner distribution will have to rely on 
oversampling the original waveform to avoid serious 
aliasing in the frequency domain, unless the analytic 
signal formulation is used, in which case no oversampling 
is required. The following presents some properties of the 
Wigner distribution. 1,2 
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An alternative definition for the Wigner distribution 
can be given in the frequency domain: 

- v -* v -2i7rvt f OO ( ) ( ) PWignerCt,f) = -00 S f +2 s f -2 e dv, 

where S(f) denotes the Fourier transform of the ana­
lytic function s(t). 

The marginal properties are satisfied: 

The Wigner distri bution is time-limited if the original 
waveform is time-limited, and frequency-limited if 
the original signal is frequency-limited. 

If sct) = sl (t)s2 ct), then 

P~icrnerCt,f) = f oo P~icrner(t, v)P~1crner(t,f - v)dv. 
b b b 

-00 

The Wigner distribution and the two-dimensional 
ambiguity function are a Fourier transform pair. The 
two-dimensional ambiguity function is commonly 
used in radar signal analysis as the most complete 
statement of the waveform's inherent performance. It 
reveals the range-Doppler position of ambiguous re­
sponses and defines the range and Doppler resolution. 
It is defined as 

_ 7 _ 7 2i7rVt fOO ( ) ( ) A( v, 7):= -00 S t + 2 s * t - 2 e dt. 

The Fourier transform relationship is 

p. (f) - ffA( ) -2i7rVt-2i7rf7d d wigner t, = V,7 e v 7. 

The following diagram can be constructed, where 
each arrow indicates a Fourier transformation on the 
indicated variable.3 

-( 7J-' ( 7J 
7 

s t+2 s'l' t- 2 ~ P wigner (t, f) 

Y 
t t t v t t t v 7 

~ 

s~+~) S*~-~) A (v, 7) y 
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The instantaneous frequency], is defined by 

_ f PWigner(t, f)f df 
it = -=-:=------

f Pwign« (t,J) df 

Now , if we write the analytic signal in the 
form set) = I s(t) I exp[2i7r¢(t)], then the '!.bov~ equa­
tion reduces to the well-known relation it = ¢(t). 

The "time center" at frequency f is analogously de­
fined by 

_ f Pwigne,(t,J)t dt 

tf = f ' 
Pwigner (t, f ) dt 

which is related to the derivative of the phase func­
tion of the Fourier transform function 
S(f) = I S(f) I exp[2i7l"~(f)] through the analogous 
relation, viz. if = ~'(f) · The latter can be interpreted 
as the group delay at frequency f of the waveform. 

The second moments of the Wigner distribution are 
somewhat less meaningful because the Wigner distri­
bution itself is not positive-definite. For instance, 

2 2 - 2 1 d
2 

1- 1 
a f it == it - it = -2 dt2 lns (t) 

is independent of the phase but is in general nonpositive! 
Thus, the second moment cannot be considered as a 
true variance. 

The most serious problem with the Wigner distribu­
tion is that it is a nonlinear functional of the original 
waveform. This has significant consequences on the 
output when the waveform is a sum of two or more 
independent components. Thus, if set) = Sl(t) + si t), 
then 

where the cross-Wigner distribution is defined by 

The cross terms appearing in the Wigner distribution 
of multicomponent signals pose a serious problem, 
and for such signals (e.g. , the sum of independent 
narrowband components), methods must be devised 
to minimize the contribution of the cross terms. 

A useful relationship that relates the Wigner distribu­
tion to the inner product of two signals and has 
applications in detection theory is Moyal ' s formula, 
which is basically a Parseval identity: 

00 

~~ s, (t)s2(t ) dt l2 = f f P:\gne< (t, f)P:J.gne< (t, f) dt df. 

To discretize the equation defining the Wigner distri­
bution we begin with the ambiguity function and write it 
in the following equivalent form: 

Now we may discretize according to t -+ IL1T and t -+ 

nL1T, where land n are integers, and obtain 

A(v, 21) =!1T I s* [n -l]s[n + l]e2i7rvnAT , 

n =-oo 

which gives the following equation for the Wigner dis­
tribution: 

P [ AT f] - 2foo ~ A( 21) -2i7rvnAT -4i7rIATf d 
wigner n~ , - -ool=~ v, e e v . 

For discrete frequencies we will clearly have frequency 
aliasing. To prevent this problem we can either overs am­
pIe the input data by a factor of 2 or use the analytic 
signal. A discrete formulation of the latter can be given 
in terms of the following discrete Hilbert transformer: 

[ 
m-nj sin 2 71"--

H{s[nJ} = L s[m] 2 , 
m-n 

m#n 71"--

2 

which can be used in the construction of the analytic 
signal via s[n] = s[nJ + iH{s[n]}. 

THE COHEN CLASS OF TIME-FREQUENCY 
DISTRIBUTION FUNCTIONS 

The relationship between the two-dimensional ambi­
guity function and the Wigner distribution can be gener­
alized to define a wide class of time-frequency distribu­
tions? Indeed, the Wigner distribution is a special case 
of a more general class of time-frequency functions 
parametrized by a two-dimensional kernel function K: 

Clearly, the Wigner distribution is obtained by setting 
K = 1 in the above equation. The spectrogram is also a 
special case of that class and corresponds to the following 
choice of the kernel: 

To satisfy the marginal properties and ensure that the 
distribution is real, the kernel must satisfy the following: 
K(v, 0) = K(O, 7) = I and K (V, 7) = K *( -v, -7). 
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Moyal's formula is no longer valid, but instead the 
following equation is true: 

f f P:';goe,(t, f)P:lgoe,(t',f')Q(t - t',f - n dt dt' df df' , 

where 

Thus, the strict Moyal formula is only valid when the 
kernel is identically unity. In general, the validity of 
Moyal's strict formula is not a requirement on the design 
of the kernel function. 

The general relationship between the Wigner distribu­
tion and the two-dimensional ambiguity function now 
becomes 

PK(t,f) '" f f A(v, T)K(v, T)e-2i"t-2i'fr dvdT. 

This result is very important. It implies that the effect of 
the kernel function is that of a mask in the Doppler-lag 
domain of the ambiguity function. It also provides a 
starting point for the computation of P K shown in Fig.l. 

Before addressing the issues of interference reduction 
for multicomponent signals I shall present some examples 
of the Wigner distribution for some simple signals that 
will motivate the discussion on kernel design. 

The fIrst example consists of two sinusoids at frequen­
cies of 4.5 and 9 Hz added together. The second example 
is a linear chirp signal extending from 2.5 Hz at a rate 
of 2 Hz/s. In both cases the sampling frequency is 32 Hz. 
These two signals (with small added random noise) are 
shown in Figs. 2 and 3, respectively. (All computations 
and images were produced using IDL from Research 
Systems, Inc., Boulder, CO.) Figures 4 and 5 show spec­
trograms of these two data sets. Notice that in Fig. 3 the 
frequencies are resolved quite well but the time resolu­
tion, when compared with the actual time series in Fig. 2, 
is quite inadequate. This trade-off between the frequency 
and time resolutions is, of course, the main problem with 
the spectrogram and the reason why other time-frequency 
distributions have been sought. The situation for the chirp 
is far worse, and the spectrogram fails miserably. 

Figure 6 shows the standard Wigner distribution of 
the two sinusoids. Clearly, they are very well resolved 
both in time and frequency, but the image suffers from 
the cross-term "ghost" between the two frequencies. This 
ghost is precisely the sort of interference that we wish to 
minimize in the analysis of multicomponent signals, and 
the key is the two-dimensional Fourier transform relation 
between the generalized Cohen class of distributions and 
the two-dimensional ambiguity function. To design an 
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Signal 

Time­
frequency 
distribution 

Kernel function 

Figure 1. Computation of time-frequency distributions (FFT = fast 
Fourier transform) . 

Figure 2. Time series of two sinusoids. 

II ~'I ~ I~H! :I I II il -= 

'.1t.Jvt~/V I! I]i II ~~Av~1'I1: 

I ~II ~II i I, I i I 
-= , I 

Figure 3. Time series of the chirp signal. 

appropriate kernel function we must look at the magni­
tude of the ambiguity function shown in Fig. 7. The 
contributions from the original frequencies lie close to the 
lag axes (at both ends of the Doppler axis). The design 
strategy for this example is now clear: the kernel function 
must have most of its energy concentrated along the two 
ends of the Doppler axis. 
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Figure 4. Spectrogram of two sinusoids. 

Figure 5. Spectrogram of the chirp signal. 

Figure 6. Wigner distribution of two sinusoids (kernel = 1). 
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Figure 7. Magnitude of the ambiguity function of two sinusoids. 

Two well-known classes of kernel functions can easily 
be made to satisfy the preceding design criterion. The 
Choi-Williams4 (CW) class is parametrized by a single 
parameter a and is defmed as 

Kcw (v, r) = exp( _ v2; 2]-

The Zhao-Atlas-Marks5 (ZAM) class of kernels is of the 
form 

K ( ) _ ( ) sin(27rvITl/a) 
ZAM V,T - g t , 

7rV 

where the function geT) is arbitrary, and the parameter a 
is a number greater than or equal to 1. Generally, the 
function geT) is set equal to l. 

The CW and ZAM classes of kernel functions were 
originally derived based on certain mathematical condi­
tions. For instance, the ZAM kernel was derived in the 
time-lag, i.e. , (t, T) , domain by requiring a finite time 
support for the distribution, which led to the so-called 
cone-shaped kernels given by 

{
geT), ITI ~ altl 

KzAM(t, T) = 
0, otherwise 

The kernel in the Doppler-lag domain is the Fourier trans­
form of the above with respect to the time t variable, and 
the result is exactly the form given for KZAM ' The com­
putation of the ZAM distribution can be simplified some­
what since the defining equations reduce to 

m=k+2Ii l l =oo a 
2(AT)2 I e-4i7rJlAT I s* [n -l]s[n + I] . 

l=-oo m=k -21~1 
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Clearly, in order to reduce interference terms in a time­
frequency distribution of the Cohen class of multicom­
ponent signals, one needs an appropriate "mask' function 
in the Doppler-lag domain. This observation, of course, 
opens the door to a whole new class of experimental 
functions that may not lead to tractable analytic forms for 
the distributions but may be computationally efficient and 
have properties that need to be explored. One example of 
such a kernel function will be given later when I discuss 
the real data examples. 

An appropriate CW kernel for the two sinusoids is 
shown in Fig. 8, and the corresponding CW distribution 
is shown in Fig. 9, in which the cross term has been 
successfully removed and the two sinusoids are well 
resolved, both in time and frequency. A similar result can 
be obtained using the ZAM distribution, with the ZAM 
parameter chosen as 1 or 2. 

Figure 10 shows the ambiguity function of the chirp 
signal. Obviously, to resolve the chirp accurately, no 
mask should be used in the Doppler-lag domain. Figure 
11 shows the Wigner distribution of the chirp and the 
excellent resolution both in time and frequency. The chirp 
signal is one example of a class of signals that are not 
multicomponent. 

The important lesson of the preceding examples is that 
the design of the kernel function must take into account 
the type of signal whose time-frequency representation is 
sought; multicomponent signals need "narrow" kernels, 
whereas chirp-like signals need as wide a kernel as pos­
sible, perhaps none at all! In the next section I shall show 
the results of applying some of these ideas to two real data 
sets that were obtained by APL staff during two complete­
ly different experiments using different sensors. 

APPLICATIONS TO SOME REAL DATA 
The fIrst data set is the output of an electromagnetic 

sensor. The time series shown in Fig. 12 consists of 3072 
points sampled at 216 Hz. The purpose of the analysis is 
the search for some very weak harmonics of a 4-Hz 
signal, specifIcally one at 24 Hz in the fIrst 4 s of the data. 
We also know that there are other frequency components 

Figure 8. Choi-Williams kernel function for two sinusoids. 
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Figure 9. Choi-Williams distribution of two sinusoids using the 
kernel in Fig. 8. 

Figure 10. Magnitude of the ambiguity function of the chirp signal. 

Figure 11. Wigner distribution of the chirp signal (kernel = 1). 
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(notably, one at 25 Hz) that are not of interest but whose 
presence in the distribution will validate the method. 

Figure 13 shows a spectrogram of this data set. There 
is, perhaps, a hint of the presence of the signals of interest, 
but not enough frequency resolution to identify the two 
signals. Increasing the section lengths leads to even worse 
results because the data length is so short. Figure 14 
shows a ZAM time-frequency distribution for the first 5 s 
of these. A distinct component is present at 24 Hz be­
tween 3.5 to 4.5 s of the data as well as one at 36 Hz, 
0.5 s before. The 25-Hz component lasts for 1 s starting 
at 2.5 s into the data. The ZAM distribution in this case 
has shown enormous improvement over the standard 
spectrogram. 

The second data set is the output of a wave current 
meter deployed during an internal wave experiment.6 The 
data set is 512 points long, sampled once every 6 s, and 
is shown in Fig. 15. Theoretical calculations for the 
current meter data predicted a chirp signal in the 0.002-
and 0.007-Hz range 10 min into the data. In practice, 
interference effects caused a slow fading of the amplitude 
of the chirp between 0.007 and 0.008 Hz, after which the 
chirp was expected to be visible again. Figure 16 shows 
a standard spectrogram for this data set. Something re­
motely resembling two chirps can be seen, although the 
frequency and time re olutions are too poor to ascertain 
anything. Figure 17 hows a kernel function that I 

Figure 12. Time series of electromagnetic data. 

Figure 13. Spectrogram of electromagnetic data. 
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designed specifically for this data set; although unusual, 
it does seems to lead to results superior to the standard 
Wigner distribution (i.e. , unity kernel function). The re­
sulting distribution is shown in Fig. 18, and appears to 
verify the theoretical expectation and offer a definite 
advantage over the spectrogram. 

Figure 14. Zhao-Atlas-Marks distribution of electromagnetic data. 

Figure 15. Time series of ocean current data. 

Figure 16. Spectrogram of ocean current data. 
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Figure 17. Experimental kernel function for ocean current data. 

CONCLUSION 
In this article I have presented the Wigner time­

frequency distribution and emphasized its relationship to 
the two-dimensional ambiguity function. I have shown 
some interesting results of applying these distributions to 
real data sets. Time-frequency analysis is an extremely 
important area of signal processing, and the Wigner dis­
tribution and related functions provide us with a powerful 
tool in the analysis. The design of kernel functions is 
perhaps the most important aspect of the analysis, and the 
ambiguity function space of the data provides the most 
natural place to study such designs. 
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Figure 18. Wigner distribution of ocean current data using kernel 
in Fig. 17. 
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