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ANALOG IMAGE PROCESSING WITH SILICON RETINAS 

Early vision algorithms map naturally on distributed physical systelTIS configured to process signals in 
continuous time and to act on analog image values. Using analog very large scale integrated technology, 
we have constructed prototypes of several experimental systems that implement biologically inspired 
image processing functions, including edge enhancement, centroid computation, and image translation 
(motion computation). Recent experiments at the Applied Physics Laboratory indicate that these systems 
are already practical for use in feedback loops in selected control system applications. 

INTRODUCTION 
The visual systems of animals routinely accomplish 

such sophisticated image processing tasks as image ac­
quisition, edge enhancement and detection, segmentation, 
motion estimation, and object recognition in real time and 
with minimum power dissipation. Further, these biolog­
ical operations are superior to corresponding human­
engineered functions in performance, robustness, and 
energetic efficiency. From careful studies of the visual 
systems of the cat, fly, frog, and turtle, I we now know 
enough about some of these neuromorphic early image 
processing strategies and architectures to use them as 
models for human-engineered systems. Early image pro­
cessing in biological systems does not precisely restore 
information; rather, it transforms and decomposes the 
image into suitable representations (maps) that are useful 
for allowing the animal to interact with its environment 
(in a closed-loop configuration, where the environment is 
an integral part of a loop). 

Most human-engineered image processing systems 
consist of an array detector, such as a charge-coupled 
device (CCD) camera, which senses or detects an image, 
and a digital processor, which reads and digitizes the 
image. The resulting array of numbers is then operated 
on by an image processing algorithm, implemented on 
either a special or general-purpose digital computer, to 
extract features of interest. Such systems produce sampled­
data, discrete-time outputs and are programmable. 

In contrast, biological systems perform image process­
ing in continuous time on analog or quasi-analog signal 
values. Also, much of this computation occurs in a dis­
tributed fashion near the site of image detection, so that 
the animal can "read out" information based on reduced­
bit-rate representations and thus avoid communication 
bottlenecks. We can demonstrate this strategy by exam­
ining edge enhancement in biological retinas, where 
computation is circumscribed by the inherent physics of 
the underlying substrate as well as limited energy re­
sources and physical space. 

When an animal views a scene, the retinal cells stim­
ulate neurons to reduce the potential of their membranes 
and permit ions to diffuse through the intracellular fluid. 
The second- and higher-order spatial derivatives of the 
cell response to the diffusion at a particular location are 
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proportional to the net flux of particles (current injection) 
introduced. If there is no net flux to this region, the 
distribution of ions is linearly graded. Biological retinas 
exploit this property to compute deviations from the 
average spatial intensity (i.e., to identify edges). They 
recognize contrast by sensing the local diffusivities of the 
medium, which are functions of the injected ion current. 
This "local gain control" mechanism makes the system 
nonlinear. 

Artificial silicon retinas can be fabricated to mimic this 
behavior because diffusion is the dominant charge trans­
port mechanism in the subthreshold metal-oxide-semi­
conductor (MOS) transistor. In subthreshold mode, the 
circuits are operated with the transistor gate voltages well 
below the point at which the mobile charge begins to limit 
the flow of current. In this operating regime, the transis­
tors put out very small but highly controllable (via the 
terminal voltages) diffusion currents in the nanoampere 
range. Subthreshold operation enables ultra-low-power 
analog processing (and, therefore, ultra-low heat dissipa­
tion) with the high integration density of silicon transistors. 

Our experiments at APL have indicated several appli­
cations for analog image processing systems that can 
acquire an image, perform local gain control and edge 
enhancement, and compute image translation. Our chips 
now put out a small number of signals-for example, x 
and y positions and velocity rather than some field quan­
tity-because we have tried to implement as much func­
tionality as possible on a single die. 

PRINCIPLES OF ANALOG IMAGE 
PROCESSING 

One of the central goals for this work is to use bio­
logical systems as models, an approach pioneered by 
Carver Mead's group at Caltech.2

,3 The efficiency and 
performance of many visual systems found in nature are 
still far beyond those possible with any current technol­
ogy; therefore, we can learn- and borrow-much from 
natural systems. 

Biological systems excel in terms of power consump­
tion, size, and overall performance rather than the raw 
speed of the individual components. These attributes are 
also characteristic of neurons, the nerve cells that are the 
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basis for natural computation. Natural systems perform 
so well because their processing architecture is tailored 
to the computational units (neurons) as well as to the task 
at hand. Neuron-based systems are fully analog proces­
sors that process data continuously and in real time. 

The fundamental computational unit of our silicon 
system (analogous to the neuron) is the MOS field-effect 
transistor (MOSFET). Figure 1 shows a diagram of two 
complementary MOSFETs, an n-type (charge carriers are 
electrons) and a p-type (charge carriers are holes). Their 
functions are identical except that increasing the voltage 
on the gate terminal increases the current through an n­
type device and decreases the current through a p-type 
device. In a complementary MOS (CMOS) device, both 
types of MOSFETs are available on a single chip. 

A MOSFET's operation is conceptually simple.4--6 The 
gate terminal is insulated and thus conducts no current 
itself. Its function is to control the current flowing be­
tween the drain and source terminals. Also, the MOSFET 
is symmetric so that reversing the potentials on the drain 
and source switches the direction of the current but does 
not otherwise affect the device 's behavior. 

Although some of today 's fastest microprocessors con­
sist of MOSFETs, our systems use these devices quite 
differently from the way they are used in traditional digital 
computers. For example, most of the transistors in our 
image processors are operated in the subthreshold region, 
which is characterized by extremely low currents (100 nA 
or less). Such small currents mean that the power con­
sumption and heat dissipation of our chips are orders of 
magnitude below those of a digital integrated circuit of 
similar computational capability. Thus, solar cells or batteries 
can easily power the system, and heat removal is un­
necessary. As a result, our processors are much more com­
pact than traditional digital systems, which enhances their 
portability and facilitates their inclusion in larger systems. 

As another important benefit of subthreshold opera­
tion, the MOSFET has the highest possible gain in this 
region, that is, the current is an exponential function of 
the gate voltage. For an n-type transistor, the current from 
the drain to the source, Ids, is given by 

where Wand L are the transistor width and length, re­
spectively, and are available as design parameters. The 10 
term (in amperes) takes into account carrier mobility. Uth, 
the thermal voltage, is approximately 0.026 V at room 
temperature and is calculated as kTlq, where k is Boltz­
mann's constant, T is absolute temperature, and q is the 
charge of an electron. Note that Uth is not the threshold 
voltage. Vgate, V source, and Vdrain are the voltages of the 
corresponding terminals shown in Fig. 1 relative to the 
substrate terminal. The dimensionless K term accounts for 
capacitive coupling of the MOSFET gate to the substrate, 
which reduces the gate's effectiveness in controlling the 
surface potential under it; K has typical values of 0.6 to 
0.7 for our devices. The drain current equation for a 
p-type MOSFET is identical to Eq. 1 except that all volt­
ages are reversed in sign. 
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Figure 1. Symbols for n-type and p-type MOSFETs. Each transis­
tor consists of a semiconductor substrate and source and drain 
regions that have been implanted with impurities that either donate 
electrons (n-type) or accept electrons (p-type). A metal electrode 
or gate spans the region from the source to the drain . A voltage 
applied to the gate lowers the resistance to charge flow, and 
charge diffuses through the channel under the gate from the high 
charge density at the source to the low charge density at the drain. 
The current developed is an exponential function of the applied 
voltage for subthreshold operation . 

The subthreshold current is dominated by the diffusion 
of charge carriers from a high-concentration region (the 
source) to a low-concentration region (the drain), which 
is exponentially related to voltage.5,6 It is this exponential 
behavior that enables our designs to perform important 
functions with only a fraction of the power and chip 
surface area required by digital circuits. Our use of innate 
device characteristics is an important similarity between 
our processors and natural ones. 

Neural computation is based in part on the diffusion 
of ions across permeable membranes and Boltzmann 
statistics, which describes the exponential decrease in the 
density of particles in thermal equilibrium with a poten­
tial gradient. However, the properties of ion channels and 
digital integrated circuits are fundamentally different. In 
particular, ion channels are physical systems that do not 
have to obey solid-state Fermi statistics, that is, the ions 
do not have to occupy a certain energy state at thermal 
equilibrium, as do electrons in semiconductors or metals. 
Thus, even though the characteristics of gated channel 
conductance in transistors depend exponentially on 
charge diffusion, the exponential dependence of the nat­
ural system is steeper (the equivalent of a K greater than 
1) because of a collective phenomenon called correlated 
charge transport. The importance of this fundamental 
difference and its effect on the behavior of biological 
computational systems are not presently clear. However, 
from our experience with the synthesis of complex silicon 
systems, correlated transport in the active elements could 
yield reliable operation in noisy environments as well as 
good noise margins at very low power (100 mY). Oper­
ating at reduced power also reduces the energy required 
per computation. 

Another important similarity between our analog im­
age processors and nature's arrangement is that both use 
local processors to perform many computations in par­
allel. This scheme allows a much faster overall rate of 
computation even though the individual processors do not 
operate at high speed. Most digital imaging systems 
suffer from computational bottlenecks as many sensors 
attempt to access a central processor at the same time. 
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With no controls needed on processor access, parallel 
computation also simplifies issues related to the timing 
and coordination of individual circuits. 

At times, some very "unnatural" features appear in our 
designs as an unavoidable consequence of differences 
between neuron-based and CMOS systems. We cannot 
stack our devices in multiple layers like biological sys­
tems, which means that the devices cannot be intercon­
nected as fully as in nature. Also, the differences between 
MOSFETs and neurons can significantly affect the im­
plementation of biological algorithms in silicon. In ad­
dition, because our designs are more specialized than 
biological systems, we can often obtain a simpler solution 
by deviating from purely natural types of processing. 
Nevertheless, neuromorphic-like computation gives our 
systems unique advantages in terms of size and power for 
their processing abilities. 

A SECOND-GENERATION SILICON RETINA 
Several years ago, Boahen and Andreou 7 implemented 

a model of early image processing in the vertebrate retina 
in CMOS circuitry, hereafter referred to as the silicon 
retina. We have extended this work to show that sub­
threshold analog circuitry can mimic the functionality of 
the first two retinal cell layers (the outer plexiform). To 
demonstrate this concept, we constructed a circuit with 
a minimum of transistors that continuously computes a 
powerful image processing transformation. 

In vertebrates, the retina performs vital image process­
ing in addition to collecting light. Most important among 
these functions, as we mentioned before, are local gain 
control and enhancement of image edges. Thus, the outer 
plexiform output is primarily contrast-sensitive rather 
than intensity-sensitive. To understand how this edge en­
hancement works, consider the response of the retina to 
a small point of light that stimulates a single photorecep­
tor cell (for example, a cone cell). The stimulated cell is 
excited above its baseline activity level and inhibits its 
neighboring cells, i.e. , it attempts to decrease their activ­
ity. In other words, the retinal cells engage in a local 
competition in which active cells attempt to turn off their 
neighbors. The receptive field of the photoreceptor cell 
is described as on-center, off-surround because the stim­
ulated cell is turned on (is at the center), and a stimulus 
in the surrounding area of the cell tends to turn it off. In 
effect, the on-center, off-surround receptive fields act as 
a high-pass spatial filter to enhance edges. 

This type of processing is frequently represented by 
a linear systems model that convolves the image with the 
well-known difference-of-Gaussians (DOG) filter. The 
resulting output is the difference between two smoothed 
images, one smoothed with a Gaussian kernel (weighting 
function) with a wide response that computes a local 
average, and the other smoothed with a narrower kernel 
that estimates local activity. The difference produces a 
high-pass spatial response, with the additional benefit of 
local smoothing to provide noise immunity. In biological 
retinas, resistive, leaky connections between cells pro­
duce similar local smoothing. The retina also compresses 
the range of intensity of the incident light (a nonlinear 
operation), limiting the dynamic range of signals presented 
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for further operations and thus facilitating processing by 
subsequent stages. Beyond the outer plexiform layer, the 
bipolar and ganglion cells provide even more processing 
prior to transmission of information along the optic 
nerve. These later processing stages have not yet been 
implemented in our circuitry, but are discussed in detail 
(as is the entire retina) by Dowling. 1 

Figures 2a and b show, respectively, a schematic model 
of the retina's outer plexiform and the corresponding 
circuit for a single silicon retina pixel. The cones, the 
retina's color receptors , are interconnected by gap junc­
tions so that each cone's activity also spreads to its 
neighbors. The gap junctions are effectively leaks in the 
cell membrane that provide some resistance to ion flow, 
and thereby constitute a resistive network. The horizontal 
cells below the cones are also excited by cone activity and 
spread their activity through another resistive network of 
gap junctions. However, connections from the horizontal 
cells back to the cones are inhibitory, producing negative 
feedback. This latter mechanism produces the on-center, 
off-surround receptive field just discussed. Since the con­
ductance of the gap-junction network determines its spatial 
response, arbitrarily large kernels can be implemented with 
only nearest-neighbor connections (i.e. , cells in a neighbor­
hood do not have to be directly connected to respond to 
a stimulus). These two cell layers and the inhibitory/ex­
citatory connections between them constitute a simple yet 
powerful structure for computing a DOG-like convolution. 

(a) 

Gap junction 

Excitatory 
connection 

~ 

Inhibitory 
connection ! 
Horizontal cell 

Gap junction 

(b) 

Photodetector 
(bipolar p-n-p device) 

Figure 2. Turtle retina and silicon retina structures. (a) In the outer 
plexiform of the biological retina, activity in the cones spreads to 
neighboring cones through a gap-junction resistive network and 
also to a horizontal layer of cells below with their own resistive 
network. Connections from the horizontal cells back to the cones 
provide negative feedback. Gap-junction networks perform local 
spatial averaging of the illumination level within the visual scene. 
The resulting receptive field is called on-center, off-surround . 
(Reprinted from Andreou et al.a by permission. ©1991 IEEE.) 
(b) Simplified, one-dimensional unit pixel of a silicon implementa­
tion of the turtle retina consists of a photodetector and five 
MOSFETs. A bias voltage Vb is input to the M3 transistor, which 
produces a base-level current in the system. M4 and MS, respec­
tively, are smoothing networks for M1 and M2 and are biased by 
voltages Vh and Vg. Light striking the photodetector produces an 
excitatory current that reduces the gate voltages on M2 and M1 ; 
M1 , in turn, produces negative feedback by increasing the voltage 
on the gate of M2. The circuit output is the drain current of M2, 
which represents the processed input image. 
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Our retina circuit attempts to mimic this economy and 
functionality with only seven MOSFETs and a photode­
tector. These elements constitute a pixel. The photodetec­
tor is a vertical bipolar transistor with a floating base that 
consumes approximately 22% of the area within a pixel. 
The two gap-junction networks, formed by the transistors 
M4 and M5, respectively, are independently biased from 
external voltage sources for easy control of the diffusion 
of charge. With this design, we can adjust the sizes of both 
the on-center and off-surround receptive fields and control 
the amount of localization or smoothing performed by the 
retina. 

To more easily explain the operation of this circuit, we 
have depicted it in Fig. 2b as a simplified unit cell with 
five MOSFETs, which provide one-dimensional connec­
tivity. In actual practice, transistors M4 and M5 are rep­
licated to provide two-dimensional connectivity, but the 
operation does not differ conceptually from the one­
dimensional case. 

The p-type transistors Ml and M2 form the negative 
feedback loop analogous to the inhibitory connections 
between the horizontal cell and the cone or photoreceptor 
in the natural retina. Incident photons detected at the 
reverse-biased base-collector junction of the photoreceptor 
(bipolar transistor) produce an emitter current that dis­
charges the gate of the source follower M2. The disch~ge 
is smoothed by the M5 diffusion network. The resultmg 
decrease in voltage can be interpreted as an excitatory 
response. The gate voltage of the inverting amplifier M1, 
which is smoothed by the M4 diffusion network, decreases 
along with the gate voltage of M2. The decrease in Ml's 
gate voltage increases the drain current of M 1, which then 
charges up the M2 gate and provides the negative feedback. 
Just as retinal cells compete, M2 competes with the M4 
network for the bias current provided by current -source 
transistor M3 to produce the output drain current. If an 
adjacent output is providing a large amount of current, ~4 
takes available output current from M2, thereby producmg 
the on-center, off-surround response. In addition, the out­
puts are all normalized to the level set by the bias voltage 
Vb' As a result, the output level is relatively indepe~dent 
of the overall illumination level, which is another hIghly 
desirable property for our silicon retina. 

The silicon retina carries out "current-mode" computa­
tions8 in which current, rather than voltage, is the variable 
of interest. This design philosophy is directly drawn from 
biological systems, which use ion flow (i.e., currents) for 
their computations. Also like the natural retina, the silicon 
retina is sensitive to image contrast rather than absolute 
intensity. By providing for local gain control, the circuit 
allows resolution of detail across images that contain large 
nonuniformities in average intensity. The amount of gain 
localization is also controlled by the transistor bias levels. 

The pixel shown in Fig. 2b can be connected in a 
hexagonal, two-dimensional array to maximize its 
number of nearest neighbors. Using the second-difference 
approximation to the Laplacian operator V2

, we can obtain 
an approximate continuous equation for the retina: 
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where A is determined by the product of the spatial con­
stants of the upper and lower diffusive networks, and IMl 

is the drain current through Ml. The spatial constants are 
set by Vh and V" the biases on the gates of M4 and M5, 
respectively. Equation 2 can be recognized as the bihar­
monic equation.8 The solution IMl of this equation is an 
estimate of the image for the input Iphoto' Since this es­
timation problem is ill-posed in general, a biharmonic 
term (double Laplacian) is commonly added as a smooth­
ness constraint. By adjusting the A term, we can select 
the relative extent of smoothing versus sensitivity to 
edges. The output current lout is a normalized, high-pass­
filtered version of the image estimate solution: 

(3) 

Several versions of the retina have been fabricated in 
CMOS processes with a 2-J.tm feature size. The same 
design was scaled down and fabricated in a 1.2-J.tn: pro­
cess on a 1-cm2 die; this chip holds 590,000 tranSIstors 
in a 48,000-pixel array and is fully functional. To our 
knowledge, this fully analog processor is the largest ever 
fabricated and certainly performs more computations per 
silicon area and per unit of energy than any other silicon 
system, commercial or experimental. If we serially scan 
out the values at each pixel9 and display the result on a 
standard television monitor, we can easily see the edge­
enhancing properties of this design. 

Figure 3b shows the response of a 50 X 50 pixel sil­
icon retina to a photograph of Saturn and its moons (Fig. 
3a). This figure serves to illustrate several properties of 
silicon retinas. First, the retinal response is very "flat" 
compared with a conventional image because back­
ground illumination variations are replaced by a constant 
background level. In fact, the input image was processed 
under a severe illumination gradient (a desk lamp was 
cocked at an angle to the photograph), but the output of 
the retina is insensitive to illumination level as long as 
it receives enough photons to detect sufficient contrast. 
To test this invariance, we varied the room lighting while 
observing the retinal output on the monitor. As expe~ted, 
the output remained constant over many orders of Illu­
mination magnitude. 

The primary edges detected in this image are along the 
edges of Saturn, the foreground moon, and the rings. Note 
the response to an edge: the retina pixels are brighter than 
average along the bright side of the edge and dar~er t?an 
average along the dark side of the edge, and the mtenors 
of both light and dark objects are replaced by the back­
ground level. These properties are just what we would 
expect. In present versions of the retina, the gain of the 
input phototransistors is rather nonuniform, wh~ch causes 
a fixed-pattern input noise that competes WIth actual 
image edges and limits the edge sensitivity. We are there­
fore investigating several ways of reducing fixed-pattern 
noise. In this case, we chose a smoothing level that re­
duced the fixed-pattern edges somewhat but still permitted 
detection of the interesting edges in the input image con­
sistent with the 50 X 50 pixel spatial resolution limits. 

Even though the static retina output is not yet partic­
ularly impressive compared with that of a video camera, 
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the present retina is mature enough for practical applica­
tion in certain position control systems. 

VIDEO-CENTROID COMPUTATIONS 
The centroid of an image is a very useful quantity for 

image-tracking applications. Since finding the centroid is 
an averaging process, the solution is robust to noise as 
well as insensitive to minor variations in the apparent 
image due to changes in illumination level (but not gra­
dient). In addition, centroid computation is consistent 
with our retina paradigm, i.e. , it uses many simple, local 
computing elements in parallel to calculate a global 
quantity. Thus, this particular problem is a good candi­
date for an analog very large scale integrated (VLSI) 
implementation. 

The earliest work on centroid-computing chips of this 
type was reported by Deweerth. 1O The core element for 

(a) 

Figure 3. (a) Photographic montage of Saturn and its moons 
(courtesy of the Planetary Society). (b) Digitized video output of a 
50 x 50 pixel retina chip for the Saturn image in (a) . 
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a simple centroid computation is simply an array of trans­
conductance amplifiers, each of which is biased by a 
photodetector (Fig. 4a). (A transconductance amplifier 
generates an output current that is a function of the dif­
ference of two input voltages.) The gate of one MOSFET 
of the input differential pair is connected to the output 
line (as a follower) , while the gate of the other is con­
nected to a resistive divider. Applying known voltages v+ 
and V- on either end of the divider produces an output 
that varies linearly along its length and thus can be used 
to encode position. The left MOSFET can be considered 
as carrying the output current of the pair, while the right 
one carries the position current. 

To perform the actual centroid computation, we con­
figure the transconductance amplifiers as followers with 
a common position output node (Fig. 4b). The network 
attempts to satisfy the following equation: 

0 _' (.) h[VCi) - Vout ] - £... I photo l tan , 
i 2Uth 

(4) 

(a) 

(b) 

v-

Figure 4. (a) Schematic of a simple centroid-computing circuit, 
consisting of a transconductance amplifier biased with a photo­
transistor. Application of known voltages on either end of the 
resistive divider produces a linear voltage that can encode position. 
(b) Schematic of the centroid computation circuitry used in the 
video-centroid chip. The output is the image centroid for small 
signals or the weighted median for large signals, both of which are 
excellent position estimates for images with a well-defined centroid. 
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where VO) is the position voltage at the noninverting (+) 
input of the ith amplifier, IphotoO) is the corresponding ith 
photocurrent, and Urb is the thermal voltage divided by 
K. The slope of the tanh function is the transconductance 
of the amplifier. For small signals, tanh can be replaced 
by the transconductance, which is linear with the bias 
current (i.e. , photocurrent) in the subthreshold region. If 
we apply Kirchoff 's current law (conservation of charge) 
at the output node, we can readily see that the solution 
to Eq. 4 is the centroid of the photocurrent distribution. 
The network stabilizes at a point where the output V out is 
equal to the solution of Eq. 4, which is the image centroid 
for small signals or the weighted median for large signals. 
Both the centroid and the median yield excellent position 
estimates for images with a well-defined centroid as 
shown in Fig. 5, which is a plot of the y-channel position 
output versus a laser spot position on one of our exper­
imental chips (the x-channel results are similar). 

To create a centroid-computing chip, we modified the 
architecture of Fig. 4 to establish a two-dimensional pho­
totransistor array with current summing lines along each 
row and column. II These lines were then used as the 
inputs to the centroid computation circuitry. The sum­
ming operation allows each pixel to contribute to both the 
x and y centroids, in contrast to Deweerth's design in 
which alternating x and y pixels were used. In addition, 
summation is an averaging process, which helps to elim­
inate errors in the centroid caused by unusually conduc­
tive MOSFETs. Mismatch in transistor currents for iden­
tical drain, gate, and source voltages is unavoidable and 
must be accounted for in the design.12 We solved the 
mismatch problem by aggregation (i.e. , averaging) in the 
same way as nature, which has to deal with nonunifor­
mities in neuron properties that are far greater than those 
in MOSFETs. Aggregating the response of many parallel 
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Figure 5. The y-channel position sensitivity (output voltage) of an 
experimental video-centroid chip is a linear function of the position 
of a laser spot, indicating that the network computations provide 
excellent position estimates for images with a well-defined centroid. 
Data shown are for a 489-pW laser. The x-channel results are 
similar. 
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elements is a common technique in biological computa­
tion to improve the robustness of the output signal. 

In addition to summing lines, our centroid chips add 
scanning circuitry to read out the photocurrent at each 
pixel. Because the chip output is both a video image and 
the centroid of that image, we designated our design the 
video-centroid (VC) chip. The video circuitry allows us 
to view the same image as the chip and thus to ensure 
that the system is tracking the intended target. Note that 
incorporation of a small amount of circuit complexity 
helps reduce complexity in other parts of the system, for 
example, by eliminating the need for additional beam­
splitters and methods of aligning the viewing and track­
ing optical components. 

The first-generation VC chip is currently being used to 
generate image-position error signals for an image-motion 
stabilization system at the National Solar Observatory in 
Sunspot, New Mexico. It has successfully replaced a half­
height rack of digital processing equipment formerly used 
for tracking. Although power consumption is not an issue 
here, the VC chip's power dissipation is many orders of 
magnitude below that of its digital predecessor. Finally, the 
chip's frequency response is very fast compared with that 
of the photodiode sensor used in the digital system because 
the sensor array does not have to be read out prior to 
position computation. Since the VC chip's scanning cir­
cuitry is independent of the centroid computation, it can 
achieve bandwidths up to 40 kHz. For closed-loop sys­
tems, the mechanical positioning elements are the only 
limitations. Figure 5 shows a plot of the VC chip position 
sensitivity for static inputs. The bandwidth is dependent on 
illumination, as might be expected from Fig. 4. 

Our next-generation VC chip incorporated several 
improvements, most notably, replacement of the single 
phototransistor with the silicon retina described previous­
ly.13 We named this design the retina-VC chip, or RVC 
chip. Because the retina is contrast-sensitive, the VC chip 
architecture could accommodate lower contrast images as 
well as scenes with illumination gradients. Scanner circuit­
ry was also improved to enhance the speed and quality of 
the video readout. With these modifications, we were able 
to increase the size of the pixel array while still maintaining 
a standard video output. The RVC chip included an on-chip 
video driver, thereby reducing off-chip components to a 
single field-programmable gate array chip containing the 
video timing circuitry, a transistor, and fewer than 10 
discrete resistors and potentiometers for biasing the chip. 
The entire centroid computation system fit on a printed 
circuit board approximately 4 in2, which is considerably 
more compact than an equivalent digital system. Figure 6 
shows a block diagram of the RVC chip system. 

We tested the RVC chip's sensitivity by using it to view 
star fields through an II-in. Celestron telescope set at 
fl10 . Stars of magnitude +3 were the dimmest objects 
which could be viewed reliably. (Fainter stars were ob­
scured by nonuniforrnities in the retina resulting from the 
transistor mismatch discussed earlier.) Since the RVC chip 
does not use an integrating detector, which builds up an 
image over time, it is much less sensitive than a CCD 
detector and is appropriate only for bandwidths greater 
than 1 kHZ.1 3 However, converting the photodetector to an 
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Figure 6. Retina video-centroid chip 
architectural block diagram. The de­
tector array consists of our silicon 
retina, which provides continuous-time 
x and y signals and a scanned video 
signal. Current summing lines on each 
row and column enable each pixel to 
contribute to both the x and y cen­
troids. Scanning circuitry reads out 
the photocurrent at each pixel. Global 
xand ycomputations, such as image 
centroid , are performed at the periph­
ery. VH+ and VH- are the voltages in 
the positive and negative horizontal 
directions; Vv+ and Vv- are the volt­
ages in the positive and negative ver­
tical directions; Helk and Velk are the 
horizontal and vertical clocks; Hsync 

and V sync are the horizontal and ver­
tical synchronization pulses; Hpas and 
V pas are the horizontal and vertical 
position outputs. 
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integrating detector is straightforward. Its sensitivity and 
fixed-pattern noise would then be similar to those of a CCD 
detector, but no readout would be required for the position 
estimate information. RVC chip attributes such as small 
size, low power dissipation, and simplicity extend the 
scope of potential applications even further. 

The centroid computation on this RVe chip was largely 
ineffective because the silicon retina enhanced the high­
frequency portions of the image and removed the low­
frequency information. As a result, the image became 
insensitive to the sort of aggregating centroid computa­
tion that we are performing (see Ref. 13, p. 13, for a full 
derivation). We corrected the problem in the next design 
by using a current-mode absolute value circuit on the 
retina output prior to the centroid computation. The abso­
lute value circuit effectively restores the DC value removed 
by the retina, allowing the centroid to be computed. 

MOTION COMPUTATION 
WITH CORRELATING DETECTORS 

We have also fabricated designs that can estimate 
both image position and velocity on-chip. Instead of a 
centroid calculation, these systems use a correlation 
algorithm that is inspired by biological image process­
ing systems. The system outputs a continuous voltage 
proportional to either image displacement or velocity, 
which can be used as the feedback signal in a closed­
loop tracking system without further processing. 

Subthreshold analog VLSI techniques have been ap­
plied to the motion computation problem in a number 
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of instances. Some earlier work l4 also attempted to 
directly implement a local gradient algorithm of the 
type proposed by Hom and Schunck, 15 but explicit com­
putation of spatial and temporal derivatives, combined 
with the global constraint olution required by the al­
gorithm, resulted in complex circuitry and a large pixel 
size. Other implementations also lack the simplicity of 
a biologically inspired solution (see, for example, Hori­
uchi et al. I 6 and Etienne-Cummings, Van der Spiegel, 
and Mueller I7

) . A notable exception is the work by 
Benson and DelbrUck,18 who used nearest-neighbor in­
hibition to produce a direction-sensitive and speed­
proportional output. Unfortunately, their chip output 
was a pulse-width modulated signal with a limited range 
of velocity sensitivity, which is less easily integrated 
into a larger system. 

Our approach is based on correlation, which is the 
method used in the visual systems of variou insects. 19 
The correlation algorithm, which is equivalent to Hom 
and Schunck's gradient approach,2o is well- uited to our 
preference for current-mode circuits and doe not require 
the explicit computation of derivatives. A ba ic unit of the 
Reichardt detector is shown in Fig. 7. The detector con­
sists of two branches, each of which computes the prod­
uct of that branch 's pixel delayed by a time E and the 
instantaneous value of the neighboring pixel. The right­
and left-branch products are maximum for leftward and 
rightward motion, respectively. The detector output i the 
difference of these two products and, in the continuous 
limit for very close pixel spacings, is given by21 
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Figure 7. The Reichardt detector estimates both image position 
and velocity using a biologically inspired correlation algorithm. 
Each detector branch computes the product of that branch's pixel 
delayed by a time E and the instantaneous value of the neighboring 
pixel. The detector output is the difference of the right- and left­
branch products, which are maximum for leftward and rightward 
motion, respectively. F(x) defines the input image. F[x+s(t)] is the 
image brightness distribution at position x and time t for an image 
displacement of s(t) over time. 

-E ds [(aF)2 _ F a
2 

FJdX' 
dt ax ax2 (5) 

where the input image is described by F(x) and the image 
displacement over time is set). The output is then propor­
tional to the image velocity, ds/dt. Although the output 
also depends on the image itself, through the partial 
derivative terms, the image velocity factor weights the 
output for spatial frequency and contrast, thus emphasiz­
ing the more information-rich portions of the image. 

To improve the robustness of the system, we again 
exploited the benefits of collective computation and 
implemented a one-dimensional array of 47 Reichardt 
detectors in silicon.22 Figure 8 is a block diagram of our 
architecture showing two linked detectors. To make the 
design more space-efficient, each pixel was actually part 
of two detector elements, forming the right branch of one 
and the left branch of another. A silicon retina was used 
to enhance the image. In addition, all computations were 
current-mode except for the delay circuit, which was the 
most challenging element from a circuit design stand­
point. The individual left- and right-branch outputs were 
summed on global current lines, in much the same way 
as with the VC chips, and were then fed into an off-chip 
instrumentation amplifier to generate the velocity signal. 

The one-dimensional test chip was completely func­
tional and correctly computed the image velocity; how­
ever, transistor mismatch caused a non-zero output, even 
for a stable image. This offset proved to be troublesome 
when we attempted to include the Reichardt chip in a 
closed-loop image stabilization system because it also 
varied with image movement and thus could not be sep­
arated from the true velocity signal. When the output was 
subsequently integrated to obtain image position infor­
mation (the required control variable), the offset errors 
were also integrated and rapidly swamped the true signal. 

To compensate for the offset error problems, we de­
signed a second-generation chip that replaced the delay 
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Figure 8. Two linked detectors of the 47-detector one-dimen­
sional Reichardt detector array, which correlates image position 
and motion. A silicon retina enhances the image. All computations 
are current-mode except for the delay circuit. The individual left­
and right-branch outputs are summed on current lines, similar to 
the video-centroid chip, and output off-chip for velocity calcula­
tions. To eliminate drift, the delay circuit was replaced with a 
sample-and-hold circuit, which makes the chip's output propor­
tional to image displacement rather than velocity. (Reprinted from 
Meitzler et al.23 by permission. © 1993 IEEE.) 

circuit with a sample-and-hold circuitY The sample-and­
hold alters the Reichardt detector response equation to 

(6) 

so that the chip's output is now proportional to the image 
displacement s, rather than velocity. Because image dis­
placement cannot be computed while the image is being 
sampled, we maximized the duty cycle of the chip by using 
a sample-and-hold circuit with as long a hold time as 
possible. This approach also minimized the time spent 
resampling the image. The sample-and-hold circuit used 
is attributable to Vittoz et al.24 and has a decay rate 10 to 
20 times lower than that of a simple capacitor and switch 
arrangement. With the low-leakage sample-and-hold, the 
image needs to be resampled at most once per minute. 

A one-dimensional sample-and-hold design was fab­
ricated and again found to be functional. Testing is 
planned for a more practical, two-dimensional implemen­
tation in which two one-dimensional arrays are tiled 
perpendicular to each other. By arranging these arrays so 
that their photosensitive axes are in the center of the chip, 
we can sample along the horizontal and vertical center­
lines of the image to compute displacement. Because 
sample-and-hold chips contain only nearest-neighbor 
connections, they are best suited for closed-loop systems 
where the displacement signal is used for stabilization, 
i.e., the image does not move more than 1 pixel. This 
limitation is necessary because excursions greater than 
1 pixel will result in the correlation of unrelated portions 
of the scene and an unpredictable output. 
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Applications for the correlating motion chips are sim­
ilar to those for the centroid chips, i.e., image tracking 
and stabilization systems where high bandwidth is impor­
tant and space and power are at a premium. The sample­
and-hold chip will be used with a system to stabilize solar 
granulation images, which will be carried aloft in a 
balloon. This project places strict limitations on weight 
and power dissipation yet demands high performance­
in other words, an ideal candidate for our analog image 
processing chips. Future space missions that require 
high-bandwidth image stabilization loops are also appro­
priate applications for chips with integrating detectors 
instead of phototransistors. 

FUTURE WORK 
The development of subthreshold analog circuitry and 

low-power techniques for image processing is still largely 
in its infancy. Results to date demonstrate that we can 
design tailored systems with exceptional performance for 
their small size and energy requirements. 

Further advances in this field hinge on a number of 
unresolved and developing issues. Our most immediate 
problem is to minimize the input fixed-pattern noise. The 
most promising approach is to combine a CCD-like in­
tegrating detector25 with our present retinal circuitry. The 
sensitivity of this type of active retinal pixel should be 
comparable to that of CCD cameras, and fixed-pattern 
noise should be less than 0.1 %. Such a sensor should find 
wide application in tracking systems. 

On a more fundamental level, our algorithms will 
continue to evolve as the fields of neuroscience and 
psychology expand human knowledge of the visual sys­
tem. Our challenge will be to map these discoveries into 
novel architectures in silicon. As our systems necessarily 
expand in complexity, we will have to consider multichip 
implementation, which raises issues of communication 
bandwidth and robust signaling across noisy wires. Re­
search is under way at APL and elsewhere to develop 
practical solutions to these very difficult problems. 

Another area we are investigating is improvements in 
design methodology and practices. Current transistor 
models for simulating subthreshold circuits are frequent­
ly of limited use for verifying a circuit's operation prior 
to fabrication. 26 We are also evaluating the larger variety 
of devices made available by improvements in fabrication 
technology. Understanding how to use devices such as 
floating-gate MOSFETs27 will allow us to expand our 
repertoire of tools and design approaches. 

A number of other applications besides image pro­
cessing are being targeted for this technology. Subthresh­
old analog image processors have been proposed for use 
in laser tracking for optical communications, guidance 
systems, polarization-based imaging systems, and 
pattern-recognition neural networks. As fabrication tech­
nology and design skills advance, we expect these com­
pact, low-power systems to play an expanding role. 
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