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ANALYSIS OF DYNAMIC POSITRON EMISSION 
TOMOGRAPHY IMAGES USING A NEURAL NETWORK 

The imaging of neurotransmitter receptors by positron emission tomography (PET) scanning is useful 
for assessing drug potency. We obtained two time series of PET images forming a time history of brain 
activity. In one time series, the subject was given a histamine blocker; no blocker was administered in the 
other. In both cases a radioligand was used for imaging. The images were input to an adaptive resonance 
theory (ART) neural network, which categorized the blocked and unblocked PET scan time series 
differently. Differences corresponded to areas of high histamine receptor density. Although the sample 
size was small, the disparity in the blocked and unblocked results agreed with locations of histamine 
receptors, indicating that the ART neural network has promise as a means of determining the effectiveness 
of histamine blockers. 

INTRODUCTION 
Many diseases and syndromes are caused by abnor­

malities in the behavior of receptors. Positron emission 
tomography (PET) is used to quantitatively image neu­
roreceptor systems of the human brain in vivo. Such 
imaging involves the injection of a radioligand (a neu­
rotransmitter-like substance tagged with a positron-emit­
ting isotope) or tracer, which is imaged by a PET scanner. 
Receptor-rich areas will bind the ligand more strongly 
than receptor-poor areas. The goals of pattern recognition 
are to identify and separate those regions of interest for 
further quantitative analysis of the data. 

In this study, we analyzed PET image sequences by 
using an adaptive resonance theory (ART) neural net­
work. The goals were to show that the ART network could 
separate image pixels into receptor-rich and receptor­
poor regions and that receptor blockage would reduce the 
number of image pixels in receptor-rich regions. 

Dynamic PET studies involving a series of PET im­
ages taken to obtain a time history of brain activity have 
previously been analyzed by factor analysis. I In this 
method, a time series for each pixel of a dynamic PET 
study is created and is represented by a linear combina­
tion of several independent factors. However, the kinetics 
of the injected tracer are not always linear, so represent­
ing the activity of the tracer using a linear equation may 
not be accurate. Also, the results of factor analysis de­
pend on the method applied for factor extraction and 
rotation, and thus may not be reproducible. 

DESCRIPTION OF THE DATA 
The data for this study were obtained from a normal 

volunteer who was injected twice with [llC]pyrilamine 
as the radioligand.2 The fIrst injection was given with no 
pretreatment ("unblocked"). The second injection was 
given after administration of an HI receptor antagonist 
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("blocked"). For the dynamic PET studies, 13 scans were 
taken over 90 min. The scans were not evenly spaced in 
time. Scanning duration increased with time following 
injection to compensate for data degradation due to phys­
ical decay of the isotope. 

Figure I shows the PET scans obtained. The two brain 
slices are at the level of the temporal cortex and the 
cerebellum. Images of the two slices for both the un­
blocked and blocked study are displayed as 64 X 64 pixel 
matrices; thus both the unblocked and blocked images are 
displayed by 32 X 64 pixels. For our study, a time series 
of 13 points was created for each pixel, that is, 32 X 64 
= 2048 time series were obtained for the blocked and 
unblocked states. 

ADAPTIVE RESONANCE THEORY 
NEURAL NETWORK 

The time series were input to an ART neural network,3 

which is self-organizing. The desired output need not be 
known to train the network. Figure 2 shows the basic 
operation of an ART neural network. The network clas­
sifIes similar pixel time histories into categories. 

The input is fed to the FI layer and leads to activity 
in the feature detector neurons in FI. Each neuron in the 
FI layer represents a feature (i.e., pixel intensity at I of 
13 times). The activity passes through weighted connec­
tions to the neurons in the F2 layer. This is the bottom­
up pathway. Each F2 neuron represents a category. It adds 
together its input from the FI neurons and responds by 
sending information back to the FI layer. This is the top­
down pathway. The top-down pathway is a template of 
critical features for a category. Each neuron in FI is 
connected to every neuron in F2 by a bottom-up connec­
tion, and each neuron in F2 is connected to every neuron 
in FI by a top-down connection. When the bottom-up and 
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Figure 1. Two brain slices each for blocked 
and unblocked studies for PET scans at 13 
different times, forming a time history. The time 
history for each pixel in blocked and unblocked 
scans was input to a neural network. 
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Figure 2. ART neural network. Features are input to the F1 layer, 
and the ART neural network indicates the category of the input in 
the F2 layer. The input check system ensures there is input. The 
similarity check system controls how similar sets of input must be 
to be put into the same category. 

top-down activIties are very similar, resonance occurs 
and a category is chosen. 

The neural network learns categories by adjusting the 
top-down and bottom-up connection weights. These 
weights are changed in response to the presentation of 
input patterns. Thus, during learning, the template for a 
particular category is adjusted every time a new input is 
added to that category. During learning, only one F2 
neuron (category) is active at a time. Thus, while the 
template for one category is being learned, the templates 
for other categories are unaffected. 

The input check unit shown in Fig. 2 prevents purely 
top-down signals from leading to FI activity. If an F2 
neuron were active without any input, the top-down 
pathway would lead to activity in the FI layer, and the 
bottom-up pathway would lead to reinforcement in the F2 
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layer. Resonance therefore exists without any input. This 
phenomenon is known as hallucination, and is prevented 
by the input check system. That system has two inputs 
and one output. The inputs are the input data in an ex­
citatory mode and the F2 activity in an inhibitory mode. 
If F2 activity occurs without any FI activity, there is 
negligible output from the input check system. 

The similarity check system (Fig. 2) determines how 
different two patterns can be and still be placed in the 
same category. This system has two inputs and one out­
put. The two inputs are the input signal in an excitatory 
mode and the activity in FI in an inhibitory mode. The 
output goes to F2 as a reset wave. When an input pattern 
is similar to what has been input before, the input pattern 
and the top-down activity from F2 to FI are similar, so 
the signals to this system cancel each other out and there 
is no reset wave. When a new pattern is input, an F2 
neuron is activated. If this category is not similar to the 
input, the resulting F2 to FI top-down activity differs 
from the input activity, and a reset wave is sent to the F2 
layer. The active F2 neuron is made inactive, a previously 
unused neuron of F2 is made active, and a new category 
is formed. A vigilance parameter controls how similar a 
pattern must be to the category template to prevent a reset 
wave from being sent. The higher the vigilance, the more 
similar patterns must be to be in the same category. 

RESULTS 
Blocked and unblocked time series for each pixel were 

fed into an ART neural network and categorized. The Fl 
layer had 13 neurons, 1 for each time step in the series . 
Since the F2 layer had 15 neurons, 15 categories were 
possible. One run through the data consisted of all of the 
blocked and unblocked data (4096 time series). 

Figures 3a and b show the results for the unblocked 
and blocked time series, respectively. They demonstrate 
that the neural network puts most of the brain portion of 
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the pixel time series into one of two categories. The 
vigilance parameter for this run was 0.999, which is very 
high. The neural network was first run with a vigilance 
parameter of 0.95 and did not separate the data into cat­
egories at that value. The vigilance value was increased 
until more than one category was obtained. Category 1 in 
Fig. 3a (blue) corresponds to category 1 in Fig. 3b. The 
neural network put the blue pixels in Fig. 3a (unblocked 
brain) in the same category as the blue pixels in Fig. 3b 
(blocked brain), and likewise for the green pixels. 

CONCLUSIONS 
Figures 3a and b show a marked difference in the 

blocked and unblocked category maps created by the 
neural network. In the unblocked state, most of the tem­
poral cortex is put into one of two categories, and most 
of the cerebellum shows only a small portion in either of 
the two categories. Since the cerebellum has very few 
histamine HI receptors, it is expected to act differently 
than the upper brain when the histamine H I receptors are 
unblocked. In the blocked state, most of the brain, includ­
ing the cerebellum, is put into the other of the two cat­
egories. When the histamine HI receptors are blocked, the 
temporal cortex and cerebellum are expected to look the 
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Figure 3. ART neural network categori­
zation . (a) Unblocked time series. (b) 
Blocked time series. The pixel time histo­
ries were broken into two main catego­
ries, shown in green and blue. Pixel time 
histories that were given a different cat­
egory or were outside the brain are shown 
in red. 

same. Thus, the ART neural network seems to be able to 
identify receptor-rich and receptor-poor regions, since the 
temporal cortex and the cerebellum are categorized differ­
ently in the unblocked state. It also appears that the ART 
neural network categorizes fewer pixels in the receptor­
rich category when the brain is in the unblocked state. 

This method may help to assess the effectiveness of 
histamine blockers. We undertook the study described 
to determine the feasibility of applying neural networks 
to PET analysis. To determine if a neural network can, 
in general, assess the effectiveness of the histamine 
blocker, this study should be expanded to analyze ad­
ditional sets of data. The results from the ART neural 
network should then be compared with results obtained 
using other approaches. 
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